Download citation
Download citation
link to html
Several interesting fluoroberyllium borates were synthesized hydrothermally and characterized by single-crystal X-ray diffraction. The crystal structures of RbBe2BO3F2 (RBBF; rubidium fluoroberyllium borate) and CsBe2BO3F2 (CBBF; caesium fluoroberyllium borate), previously determined in the space group C2, were reinvestigated for higher symmetry and found to have more suitable solutions in the space group R32. TlBe2BO3F2 (TBBF; thallium fluoroberyllium borate) was synthesized as a novel compound also having this trigonal structure type. Details of the space-group determination and unique structural features are discussed. These crystal structures were compared with that of KBe2BO3F2, revealing interesting structural trends within this family of compounds that are also discussed. A crystallographic explanation of the physical morphology is postulated.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108768109024161/bp5022sup1.cif
Contains datablocks cdm1031r32, cdmrbbf3hex1, cbbf2a

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108768109024161/bp5022cdm1031r32sup2.hkl
Contains datablock cdm1031r32

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108768109024161/bp5022cdmrbbf3hex1sup3.hkl
Contains datablock cdmrbbf3hex1

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108768109024161/bp5022cbbf2asup4.hkl
Contains datablock cbbf2a

Computing details top

For all compounds, data collection: CrystalClear (Rigaku/MSC, 1999); cell refinement: CrystalClear (Rigaku/MSC, 1999); data reduction: CrystalClear (Rigaku/MSC, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXL97 (Sheldrick, 1997).

(cdm1031r32) top
Crystal data top
BBe2F2O3TlDx = 4.673 Mg m3
Mr = 319.20Mo Kα radiation, λ = 0.71073 Å
Trigonal, R32Cell parameters from 808 reflections
a = 4.4387 (6) Åθ = 3.1–26.0°
c = 19.942 (4) ŵ = 35.54 mm1
V = 340.27 (9) Å3T = 293 K
Z = 3Hexagonal plate fragment, colorless
F(000) = 4080.36 × 0.08 × 0.04 mm
Data collection top
Rigaku AFC8S
diffractometer
163 independent reflections
Radiation source: fine-focus sealed tube162 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.074
Detector resolution: 14.6199 pixels mm-1θmax = 26.1°, θmin = 3.1°
ω scansh = 55
Absorption correction: multi-scan
REQAB, CrystalClear
k = 45
Tmin = 0.020, Tmax = 0.241l = 2423
990 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0626P)2]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.035(Δ/σ)max < 0.001
wR(F2) = 0.084Δρmax = 2.65 e Å3
S = 1.20Δρmin = 1.72 e Å3
163 reflectionsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
17 parametersExtinction coefficient: 0.013 (3)
0 restraintsAbsolute structure: Flack H D (1983), Acta Cryst. A39, 876-881
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.00 (9)
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Tl10.00000.00000.00000.0294 (8)
F10.33330.33330.0626 (6)0.028 (2)
B10.33330.33330.16670.014 (5)
O10.358 (2)0.025 (2)0.16670.015 (2)
Be10.33330.33330.1401 (11)0.013 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Tl10.0263 (8)0.0263 (8)0.0357 (9)0.0131 (4)0.0000.000
F10.030 (3)0.030 (3)0.024 (5)0.0152 (16)0.0000.000
B10.002 (6)0.002 (6)0.038 (15)0.001 (3)0.0000.000
O10.003 (4)0.003 (4)0.035 (7)0.001 (5)0.002 (2)0.002 (2)
Be10.006 (4)0.006 (4)0.027 (11)0.003 (2)0.0000.000
Geometric parameters (Å, º) top
Tl1—F12.851 (6)B1—O1viii1.369 (11)
Tl1—F1i2.851 (6)B1—O1ii1.369 (11)
Tl1—F1ii2.851 (6)B1—O1ix1.369 (11)
Tl1—F1iii2.851 (6)O1—B1vi1.369 (11)
Tl1—F1iv2.851 (6)O1—Be1x1.626 (9)
Tl1—F1v2.851 (6)O1—Be11.626 (9)
F1—Be11.55 (2)Be1—O1xi1.626 (9)
F1—Tl1vi2.851 (6)Be1—O1xii1.626 (9)
F1—Tl1vii2.851 (6)
F1—Tl1—F1i180.0 (5)Tl1—F1—Tl1vi102.2 (3)
F1—Tl1—F1ii102.2 (3)Be1—F1—Tl1vii116.0 (2)
F1i—Tl1—F1ii77.8 (3)Tl1—F1—Tl1vii102.2 (3)
F1—Tl1—F1iii77.8 (3)Tl1vi—F1—Tl1vii102.2 (3)
F1i—Tl1—F1iii102.2 (3)O1viii—B1—O1ii120.000 (2)
F1ii—Tl1—F1iii180.0 (5)O1viii—B1—O1ix120.000 (6)
F1—Tl1—F1iv102.2 (3)O1ii—B1—O1ix120.000 (1)
F1i—Tl1—F1iv77.8 (3)B1vi—O1—Be1x121.5 (4)
F1ii—Tl1—F1iv102.2 (3)B1vi—O1—Be1121.5 (4)
F1iii—Tl1—F1iv77.8 (3)Be1x—O1—Be1117.0 (7)
F1—Tl1—F1v77.8 (3)F1—Be1—O1xi109.0 (7)
F1i—Tl1—F1v102.2 (3)F1—Be1—O1109.0 (7)
F1ii—Tl1—F1v77.8 (3)O1xi—Be1—O1109.9 (7)
F1iii—Tl1—F1v102.2 (3)F1—Be1—O1xii109.0 (7)
F1iv—Tl1—F1v180.0 (5)O1xi—Be1—O1xii109.9 (7)
Be1—F1—Tl1116.0 (2)O1—Be1—O1xii109.9 (7)
Be1—F1—Tl1vi116.0 (2)
Symmetry codes: (i) y, x, z; (ii) x1, y, z; (iii) y+1, x, z; (iv) x, y+1, z; (v) y, x1, z; (vi) x+1, y, z; (vii) x, y1, z; (viii) y, xy, z; (ix) x+y, x+1, z; (x) y+1/3, x1/3, z1/3; (xi) y, xy1, z; (xii) x+y+1, x, z.
(cdmrbbf3hex1) top
Crystal data top
BBe2F2O3RbDx = 2.951 Mg m3
Mr = 200.30Mo Kα radiation, λ = 0.71073 Å
Trigonal, R32Cell parameters from 772 reflections
a = 4.4387 (6) Åθ = 3.1–26.7°
c = 19.820 (4) ŵ = 10.93 mm1
V = 338.17 (9) Å3T = 293 K
Z = 3Hexagonal plate fragment, colorless
F(000) = 2760.50 × 0.26 × 0.24 mm
Data collection top
Rigaku AFC8S
diffractometer
162 independent reflections
Radiation source: fine-focus sealed tube161 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.079
Detector resolution: 14.6306 pixels mm-1θmax = 26.2°, θmin = 3.1°
ω scansh = 54
Absorption correction: multi-scan
REQAB, CrystalClear
k = 55
Tmin = 0.030, Tmax = 0.073l = 2324
974 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036 w = 1/[σ2(Fo2) + (0.0552P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.081(Δ/σ)max < 0.001
S = 1.18Δρmax = 0.72 e Å3
162 reflectionsΔρmin = 1.00 e Å3
16 parametersAbsolute structure: Flack H D (1983), Acta Cryst. A39, 876-881
0 restraintsAbsolute structure parameter: 0.15 (5)
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Rb10.00000.00001.00000.0190 (4)
F10.33330.33330.9390 (2)0.0194 (10)
B10.66670.66670.83330.011 (2)
O10.3586 (11)0.0253 (11)0.83330.0109 (11)
Be10.33330.33330.8618 (4)0.0069 (15)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Rb10.0164 (4)0.0164 (4)0.0243 (7)0.0082 (2)0.0000.000
F10.0244 (14)0.0244 (14)0.010 (2)0.0122 (7)0.0000.000
B10.012 (3)0.012 (3)0.011 (5)0.0059 (15)0.0000.000
O10.0046 (17)0.0046 (17)0.021 (3)0.000 (2)0.0019 (11)0.0019 (11)
Be10.005 (2)0.005 (2)0.010 (4)0.0026 (10)0.0000.000
Geometric parameters (Å, º) top
Rb1—F12.833 (2)F1—Rb1vi2.833 (2)
Rb1—F1i2.833 (2)F1—Rb1vii2.833 (2)
Rb1—F1ii2.833 (2)B1—O1viii1.367 (5)
Rb1—F1iii2.833 (2)B1—O1vii1.367 (5)
Rb1—F1iv2.833 (2)B1—O1ix1.367 (5)
Rb1—F1v2.833 (2)O1—B1iv1.367 (5)
Rb1—Be1iii3.752 (6)O1—Be1x1.639 (4)
Rb1—Be1i3.752 (6)O1—Be11.639 (4)
Rb1—Be1ii3.752 (6)Be1—O1xi1.639 (4)
Rb1—Be13.752 (6)Be1—O1ix1.639 (4)
Rb1—Be1v3.752 (6)Be1—Rb1vi3.752 (6)
Rb1—Be1iv3.752 (6)Be1—Rb1vii3.752 (6)
F1—Be11.532 (9)Be1—Rb1xii3.867 (9)
F1—Rb1—F1i180.00 (17)Be1ii—Rb1—Be1v107.46 (15)
F1—Rb1—F1ii103.14 (10)Be1—Rb1—Be1v107.46 (14)
F1i—Rb1—F1ii76.86 (10)F1—Rb1—Be1iv89.86 (9)
F1—Rb1—F1iii76.86 (10)F1i—Rb1—Be1iv90.14 (9)
F1i—Rb1—F1iii103.14 (10)F1ii—Rb1—Be1iv89.86 (9)
F1ii—Rb1—F1iii180.0F1iii—Rb1—Be1iv90.14 (9)
F1—Rb1—F1iv103.14 (10)F1iv—Rb1—Be1iv21.67 (12)
F1i—Rb1—F1iv76.86 (10)F1v—Rb1—Be1iv158.33 (12)
F1ii—Rb1—F1iv103.14 (10)Be1iii—Rb1—Be1iv107.46 (15)
F1iii—Rb1—F1iv76.86 (10)Be1i—Rb1—Be1iv107.46 (14)
F1—Rb1—F1v76.86 (10)Be1ii—Rb1—Be1iv72.54 (14)
F1i—Rb1—F1v103.14 (10)Be1—Rb1—Be1iv72.54 (14)
F1ii—Rb1—F1v76.86 (10)Be1v—Rb1—Be1iv180.000 (1)
F1iii—Rb1—F1v103.14 (10)Be1—F1—Rb1115.24 (8)
F1iv—Rb1—F1v180.0Be1—F1—Rb1vi115.24 (8)
F1—Rb1—Be1iii90.14 (9)Rb1—F1—Rb1vi103.14 (10)
F1i—Rb1—Be1iii89.86 (9)Be1—F1—Rb1vii115.24 (8)
F1ii—Rb1—Be1iii158.33 (12)Rb1—F1—Rb1vii103.14 (10)
F1iii—Rb1—Be1iii21.67 (12)Rb1vi—F1—Rb1vii103.14 (10)
F1iv—Rb1—Be1iii90.14 (9)O1viii—B1—O1vii120.000 (4)
F1v—Rb1—Be1iii89.86 (9)O1viii—B1—O1ix120.000 (12)
F1—Rb1—Be1i158.33 (12)O1vii—B1—O1ix120.000 (4)
F1i—Rb1—Be1i21.67 (12)B1iv—O1—Be1x121.33 (16)
F1ii—Rb1—Be1i90.14 (9)B1iv—O1—Be1121.33 (16)
F1iii—Rb1—Be1i89.86 (9)Be1x—O1—Be1117.3 (3)
F1iv—Rb1—Be1i90.14 (9)F1—Be1—O1xi110.1 (3)
F1v—Rb1—Be1i89.86 (9)F1—Be1—O1110.1 (3)
Be1iii—Rb1—Be1i72.54 (14)O1xi—Be1—O1108.8 (3)
F1—Rb1—Be1ii89.86 (9)F1—Be1—O1ix110.1 (3)
F1i—Rb1—Be1ii90.14 (9)O1xi—Be1—O1ix108.8 (3)
F1ii—Rb1—Be1ii21.67 (12)O1—Be1—O1ix108.8 (3)
F1iii—Rb1—Be1ii158.33 (12)F1—Be1—Rb1vi43.09 (9)
F1iv—Rb1—Be1ii89.86 (9)O1xi—Be1—Rb1vi145.7 (3)
F1v—Rb1—Be1ii90.14 (9)O1—Be1—Rb1vi102.2 (2)
Be1iii—Rb1—Be1ii180.0O1ix—Be1—Rb1vi73.56 (19)
Be1i—Rb1—Be1ii107.46 (14)F1—Be1—Rb143.09 (9)
F1—Rb1—Be121.67 (12)O1xi—Be1—Rb1102.2 (2)
F1i—Rb1—Be1158.33 (12)O1—Be1—Rb173.56 (19)
F1ii—Rb1—Be189.86 (9)O1ix—Be1—Rb1145.7 (3)
F1iii—Rb1—Be190.14 (9)Rb1vi—Be1—Rb172.54 (14)
F1iv—Rb1—Be189.86 (9)F1—Be1—Rb1vii43.09 (9)
F1v—Rb1—Be190.14 (9)O1xi—Be1—Rb1vii73.56 (19)
Be1iii—Rb1—Be1107.46 (14)O1—Be1—Rb1vii145.7 (3)
Be1i—Rb1—Be1180.00 (18)O1ix—Be1—Rb1vii102.2 (2)
Be1ii—Rb1—Be172.54 (14)Rb1vi—Be1—Rb1vii72.54 (14)
F1—Rb1—Be1v90.14 (9)Rb1—Be1—Rb1vii72.54 (14)
F1i—Rb1—Be1v89.86 (9)F1—Be1—Rb1xii180.000 (1)
F1ii—Rb1—Be1v90.14 (9)O1xi—Be1—Rb1xii69.9 (3)
F1iii—Rb1—Be1v89.86 (9)O1—Be1—Rb1xii69.9 (3)
F1iv—Rb1—Be1v158.33 (12)O1ix—Be1—Rb1xii69.9 (3)
F1v—Rb1—Be1v21.67 (12)Rb1vi—Be1—Rb1xii136.91 (9)
Be1iii—Rb1—Be1v72.54 (14)Rb1—Be1—Rb1xii136.91 (9)
Be1i—Rb1—Be1v72.54 (14)Rb1vii—Be1—Rb1xii136.91 (9)
Symmetry codes: (i) y, x, z+2; (ii) x1, y, z; (iii) y+1, x, z+2; (iv) x, y+1, z; (v) y, x1, z+2; (vi) x+1, y, z; (vii) x, y1, z; (viii) y+1, xy1, z; (ix) x+y+1, x, z; (x) y+1/3, x1/3, z+5/3; (xi) y, xy1, z; (xii) x+1/3, y1/3, z1/3.
(cbbf2a) top
Crystal data top
BBe2CsF2O3Dx = 3.366 Mg m3
Mr = 247.74Mo Kα radiation, λ = 0.71073 Å
Trigonal, R32Cell parameters from 2649 reflections
a = 4.4575 (6) Åθ = 2.9–29.6°
c = 21.310 (4) ŵ = 7.52 mm1
V = 366.68 (10) Å3T = 293 K
Z = 3Hexagonal plate, colorless
F(000) = 3300.35 × 0.32 × 0.09 mm
Data collection top
Rigaku AFC8S
diffractometer
200 independent reflections
Radiation source: fine-focus sealed tube200 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.048
Detector resolution: 14.6199 pixels mm-1θmax = 29.3°, θmin = 5.4°
ω scansh = 55
Absorption correction: multi-scan
REQAB, CrystalClear
k = 55
Tmin = 0.163, Tmax = 0.510l = 2527
1166 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.P)2 + 0.6492P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.016(Δ/σ)max = 0.001
wR(F2) = 0.034Δρmax = 0.39 e Å3
S = 1.25Δρmin = 0.47 e Å3
200 reflectionsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
17 parametersExtinction coefficient: 0.052 (4)
0 restraintsAbsolute structure: Flack H D (1983), Acta Cryst. A39, 876-881
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.09 (7)
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cs11.00001.00001.00000.0238 (3)
F11.33330.66670.93099 (12)0.0214 (5)
B10.66671.33330.83330.0101 (10)
O11.3596 (6)1.0262 (6)0.83330.0118 (6)
Be11.33330.66670.8594 (2)0.0088 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cs10.0201 (3)0.0201 (3)0.0314 (4)0.01004 (15)0.0000.000
F10.0253 (8)0.0253 (8)0.0137 (11)0.0126 (4)0.0000.000
B10.0075 (15)0.0075 (15)0.015 (3)0.0037 (7)0.0000.000
O10.0060 (9)0.0060 (9)0.0230 (15)0.0026 (11)0.0003 (6)0.0003 (6)
Be10.0065 (11)0.0065 (11)0.014 (2)0.0032 (6)0.0000.000
Geometric parameters (Å, º) top
Cs1—F1i2.9641 (13)F1—Cs1vi2.9641 (13)
Cs1—F12.9641 (13)F1—Cs1vii2.9641 (13)
Cs1—F1ii2.9641 (13)B1—O1viii1.369 (3)
Cs1—F1iii2.9641 (13)B1—O1iii1.369 (3)
Cs1—F1iv2.9641 (13)B1—O1ix1.369 (3)
Cs1—F1v2.9641 (13)O1—B1vi1.369 (3)
Cs1—Be1ii3.950 (3)O1—Be1x1.644 (2)
Cs1—Be1iii3.950 (3)O1—Be11.644 (2)
Cs1—Be1i3.950 (3)Be1—O1xi1.644 (2)
Cs1—Be13.950 (3)Be1—O1xii1.644 (2)
Cs1—Be1iv3.950 (3)Be1—Cs1vi3.950 (3)
Cs1—Be1v3.950 (3)Be1—Cs1vii3.950 (3)
F1—Be11.526 (5)Be1—Cs1xiii4.107 (5)
F1i—Cs1—F1180.00 (8)Be1i—Cs1—Be1iv68.70 (7)
F1i—Cs1—F1ii97.51 (6)Be1—Cs1—Be1iv111.30 (7)
F1—Cs1—F1ii82.49 (6)F1i—Cs1—Be1v95.37 (5)
F1i—Cs1—F1iii82.49 (6)F1—Cs1—Be1v84.63 (5)
F1—Cs1—F1iii97.51 (6)F1ii—Cs1—Be1v95.37 (5)
F1ii—Cs1—F1iii180.0F1iii—Cs1—Be1v84.63 (5)
F1i—Cs1—F1iv97.51 (6)F1iv—Cs1—Be1v160.40 (6)
F1—Cs1—F1iv82.49 (6)F1v—Cs1—Be1v19.60 (6)
F1ii—Cs1—F1iv97.51 (6)Be1ii—Cs1—Be1v111.30 (7)
F1iii—Cs1—F1iv82.49 (6)Be1iii—Cs1—Be1v68.70 (7)
F1i—Cs1—F1v82.49 (6)Be1i—Cs1—Be1v111.30 (7)
F1—Cs1—F1v97.51 (6)Be1—Cs1—Be1v68.70 (7)
F1ii—Cs1—F1v82.49 (6)Be1iv—Cs1—Be1v180.0
F1iii—Cs1—F1v97.51 (6)Be1—F1—Cs1119.74 (4)
F1iv—Cs1—F1v180.0Be1—F1—Cs1vi119.74 (4)
F1i—Cs1—Be1ii84.63 (5)Cs1—F1—Cs1vi97.51 (5)
F1—Cs1—Be1ii95.37 (5)Be1—F1—Cs1vii119.74 (4)
F1ii—Cs1—Be1ii19.60 (6)Cs1—F1—Cs1vii97.51 (5)
F1iii—Cs1—Be1ii160.40 (6)Cs1vi—F1—Cs1vii97.51 (5)
F1iv—Cs1—Be1ii84.63 (5)O1viii—B1—O1iii120.000 (3)
F1v—Cs1—Be1ii95.37 (5)O1viii—B1—O1ix120.000 (10)
F1i—Cs1—Be1iii95.37 (5)O1iii—B1—O1ix120.000 (4)
F1—Cs1—Be1iii84.63 (5)B1vi—O1—Be1x121.53 (9)
F1ii—Cs1—Be1iii160.40 (6)B1vi—O1—Be1121.53 (9)
F1iii—Cs1—Be1iii19.60 (6)Be1x—O1—Be1116.93 (18)
F1iv—Cs1—Be1iii95.37 (5)F1—Be1—O1xi109.73 (15)
F1v—Cs1—Be1iii84.63 (5)F1—Be1—O1109.73 (15)
Be1ii—Cs1—Be1iii180.0O1xi—Be1—O1109.21 (15)
F1i—Cs1—Be1i19.60 (6)F1—Be1—O1xii109.73 (15)
F1—Cs1—Be1i160.40 (6)O1xi—Be1—O1xii109.21 (15)
F1ii—Cs1—Be1i84.63 (5)O1—Be1—O1xii109.21 (15)
F1iii—Cs1—Be1i95.37 (5)F1—Be1—Cs1vi40.66 (4)
F1iv—Cs1—Be1i84.63 (5)O1xi—Be1—Cs1vi143.72 (16)
F1v—Cs1—Be1i95.37 (5)O1—Be1—Cs1vi102.47 (13)
Be1ii—Cs1—Be1i68.70 (7)O1xii—Be1—Cs1vi75.30 (10)
Be1iii—Cs1—Be1i111.30 (7)F1—Be1—Cs140.66 (4)
F1i—Cs1—Be1160.40 (6)O1xi—Be1—Cs1102.47 (12)
F1—Cs1—Be119.60 (6)O1—Be1—Cs175.30 (10)
F1ii—Cs1—Be195.37 (5)O1xii—Be1—Cs1143.72 (16)
F1iii—Cs1—Be184.63 (5)Cs1vi—Be1—Cs168.70 (7)
F1iv—Cs1—Be195.37 (5)F1—Be1—Cs1vii40.66 (4)
F1v—Cs1—Be184.63 (5)O1xi—Be1—Cs1vii75.30 (10)
Be1ii—Cs1—Be1111.30 (7)O1—Be1—Cs1vii143.72 (16)
Be1iii—Cs1—Be168.70 (7)O1xii—Be1—Cs1vii102.47 (12)
Be1i—Cs1—Be1180.00 (9)Cs1vi—Be1—Cs1vii68.70 (7)
F1i—Cs1—Be1iv84.63 (5)Cs1—Be1—Cs1vii68.70 (7)
F1—Cs1—Be1iv95.37 (5)F1—Be1—Cs1xiii180.000 (1)
F1ii—Cs1—Be1iv84.63 (5)O1xi—Be1—Cs1xiii70.27 (15)
F1iii—Cs1—Be1iv95.37 (5)O1—Be1—Cs1xiii70.27 (15)
F1iv—Cs1—Be1iv19.60 (6)O1xii—Be1—Cs1xiii70.27 (15)
F1v—Cs1—Be1iv160.40 (6)Cs1vi—Be1—Cs1xiii139.34 (4)
Be1ii—Cs1—Be1iv68.70 (7)Cs1—Be1—Cs1xiii139.34 (4)
Be1iii—Cs1—Be1iv111.30 (7)Cs1vii—Be1—Cs1xiii139.34 (4)
Symmetry codes: (i) y, x, z+2; (ii) y+1, x, z+2; (iii) x1, y, z; (iv) y, x1, z+2; (v) x, y+1, z; (vi) x+1, y, z; (vii) x, y1, z; (viii) y+2, xy+1, z; (ix) x+y+1, x+3, z; (x) y+1/3, x1/3, z+5/3; (xi) y+2, xy, z; (xii) x+y+2, x+2, z; (xiii) x+1/3, y1/3, z1/3.
 

Follow Acta Cryst. B
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds