Download citation
Download citation
link to html
Five isomorphous d0 transition metal oxofluoride compounds A3[M2OxF11 - x]·(AF)0.333 (A = K, Rb, NH4; M = Nb, Mo, W; x = 2, 4) have been synthesized from acid fluoride solutions, and their crystal structures have been determined by single-crystal X-ray diffraction. The basic structural building units are dinuclear M2X11 (dimers) formed from NbOF5 or Mo(W)O2F4 octahedra connected by the fluorine bridging atom. In the Nb2O2F9 dimer, the O atoms occupy apical corners. In the M2O4F7 (M = Mo, W) dimers two O atoms are also apically placed, whereas the other two O atoms are statistically disordered in equatorial planes. The arrangement of dimers is so that the hexagonal tunnels containing `free' fluoride ions are formed. During the irradiation process the orthorhombic structure of K3Nb2O2F9·(KF)0.333 transforms into a pseudo-trigonal one with a = 23.15 Å, which is the [101] diagonal of the orthorhombic unit cell. The other four trigonal crystals are merohedral twins.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108768112042577/bp5045sup1.cif
Contains datablocks I, II, III, IV, V

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108768112042577/bp5045Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108768112042577/bp5045IIsup3.hkl
Contains datablock II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108768112042577/bp5045IIIsup4.hkl
Contains datablock III

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108768112042577/bp5045IVsup5.hkl
Contains datablock IV

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108768112042577/bp5045Vsup6.hkl
Contains datablock V

Computing details top

Data collection: Bruker Smart v5.054 (Bruker, 1998) for (II), (III), (IV), (V). Cell refinement: Bruker SAINT v6.02a (Bruker, 2000) for (II), (III), (IV), (V). Data reduction: Bruker SAINT v6.02a (Bruker, 2000) for (II), (III), (IV), (V). Program(s) used to solve structure: SHELXS97 (Sheldrick, 1990) for (I); Bruker SHELXTL v5.1 (Bruker, 1998) for (II), (III), (IV), (V). Program(s) used to refine structure: SHELXL97 (Sheldrick, 1997) for (I); Bruker SHELXTL v5.1 (Bruker, 1998) for (II), (III), (IV), (V). Molecular graphics: Bruker SHELXTL v5.1 (Bruker, 1998) for (II), (III), (IV), (V). Software used to prepare material for publication: Bruker SHELXTL v5.1 (Bruker, 1998) for (II), (III), (IV), (V).

Figures top
[Figure 1]
[Figure 2]
[Figure 3]
[Figure 4]
[Figure 5]
[Figure 6]
(I) potassium oxofluoroniobate top
Crystal data top
3(F9Nb2O2)·F·10(K)F(000) = 1472
Mr = 1576.46Dx = 2.902 Mg m3
Orthorhombic, Pmn21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P2ac-2Cell parameters from 512 reflections
a = 20.1095 (6) Åθ = 2.7–31.9°
b = 7.8045 (2) ŵ = 3.16 mm1
c = 11.4938 (4) ÅT = 223 K
V = 1803.89 (9) Å3Plate, colorless
Z = 60.32 × 0.28 × 0.18 mm
Data collection top
Bruker P4
diffractometer
5889 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.019
Graphite monochromatorθmax = 31.9°, θmin = 2.8°
Absorption correction: multi-scan
SADABS v.2.03; Bruker 1999
h = 2829
Tmin = 0.431, Tmax = 0.600k = 1110
20107 measured reflectionsl = 1617
5975 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0447P)2 + 4.7059P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.031(Δ/σ)max = 0.014
wR(F2) = 0.093Δρmax = 1.37 e Å3
S = 1.18Δρmin = 0.78 e Å3
5889 reflectionsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
239 parametersExtinction coefficient: 0.00013 (10)
1 restraintAbsolute structure: Flack H D (1983), Acta Cryst. A39, 876-881
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.05 (6)
Crystal data top
3(F9Nb2O2)·F·10(K)V = 1803.89 (9) Å3
Mr = 1576.46Z = 6
Orthorhombic, Pmn21Mo Kα radiation
a = 20.1095 (6) ŵ = 3.16 mm1
b = 7.8045 (2) ÅT = 223 K
c = 11.4938 (4) Å0.32 × 0.28 × 0.18 mm
Data collection top
Bruker P4
diffractometer
5975 independent reflections
Absorption correction: multi-scan
SADABS v.2.03; Bruker 1999
5889 reflections with I > 2σ(I)
Tmin = 0.431, Tmax = 0.600Rint = 0.019
20107 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0311 restraint
wR(F2) = 0.093Δρmax = 1.37 e Å3
S = 1.18Δρmin = 0.78 e Å3
5889 reflectionsAbsolute structure: Flack H D (1983), Acta Cryst. A39, 876-881
239 parametersAbsolute structure parameter: 0.05 (6)
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Nb10.694119 (14)0.54920 (4)0.31782 (2)0.02328 (5)
Nb20.802239 (12)1.00119 (4)0.42425 (2)0.02032 (5)
Nb30.50000.07657 (5)0.51913 (3)0.02165 (7)
Nb40.50000.53236 (5)0.73355 (3)0.02077 (7)
K10.50000.54735 (18)0.37941 (14)0.0436 (3)
K20.64207 (5)0.46945 (13)0.00278 (8)0.0435 (2)
K30.67135 (4)0.76061 (8)0.61290 (6)0.02692 (13)
K40.87478 (4)0.97010 (12)0.76828 (7)0.03550 (18)
K50.00000.93829 (15)0.35489 (10)0.0322 (2)
K60.83901 (4)0.73830 (8)0.14066 (6)0.02574 (13)
F10.78186 (14)0.4685 (4)0.2716 (2)0.0480 (7)
F20.69629 (14)0.6967 (4)0.1824 (2)0.0473 (7)
F30.62425 (12)0.6942 (3)0.3809 (2)0.0408 (6)
F40.70869 (13)0.4663 (3)0.47488 (19)0.0376 (5)
F50.75475 (14)0.7516 (3)0.3912 (2)0.0438 (6)
F60.87385 (13)0.8739 (5)0.3539 (3)0.0739 (10)
F70.77051 (16)1.0426 (4)0.2683 (2)0.0567 (8)
F80.71371 (12)1.0506 (3)0.4812 (3)0.0441 (6)
F90.81935 (15)0.8788 (4)0.5676 (2)0.0496 (7)
F100.56946 (10)0.0149 (3)0.6199 (2)0.0344 (5)
F110.56705 (10)0.2271 (3)0.4530 (2)0.0344 (5)
F120.50000.2707 (4)0.6564 (3)0.0377 (8)
F130.5673 (3)0.4272 (7)0.8224 (5)0.1565 (16)
F140.5645 (2)0.5641 (5)0.6136 (4)0.1158 (12)
O10.6462 (2)0.3870 (4)0.2612 (3)0.0631 (10)
O20.84304 (17)1.1876 (4)0.4493 (3)0.0492 (8)
O30.50000.0765 (5)0.4103 (4)0.0414 (10)
O40.50000.7276 (5)0.7987 (4)0.0497 (12)
F150.50000.1013 (9)0.1186 (3)0.084 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Nb10.03248 (12)0.01998 (11)0.01738 (9)0.00326 (10)0.00528 (10)0.00175 (9)
Nb20.02055 (10)0.02420 (11)0.01620 (9)0.00367 (9)0.00220 (9)0.00127 (8)
Nb30.01597 (13)0.01967 (14)0.02932 (17)0.0000.0000.00198 (13)
Nb40.01802 (14)0.01919 (14)0.02511 (16)0.0000.0000.00084 (13)
K10.0337 (5)0.0368 (6)0.0602 (8)0.0000.0000.0055 (6)
K20.0531 (5)0.0402 (4)0.0372 (4)0.0021 (4)0.0104 (4)0.0014 (3)
K30.0320 (3)0.0180 (2)0.0307 (3)0.0015 (2)0.0034 (3)0.0009 (2)
K40.0379 (4)0.0362 (4)0.0324 (3)0.0028 (3)0.0085 (3)0.0045 (3)
K50.0312 (5)0.0325 (5)0.0328 (5)0.0000.0000.0021 (4)
K60.0338 (3)0.0196 (2)0.0238 (3)0.0054 (2)0.0013 (2)0.0004 (2)
F10.0541 (14)0.0393 (12)0.0506 (14)0.0127 (11)0.0240 (12)0.0007 (11)
F20.0596 (15)0.0521 (15)0.0303 (10)0.0053 (12)0.0004 (10)0.0123 (11)
F30.0361 (10)0.0455 (13)0.0410 (11)0.0099 (10)0.0013 (9)0.0014 (10)
F40.0533 (13)0.0353 (11)0.0241 (9)0.0023 (10)0.0087 (9)0.0084 (8)
F50.0534 (13)0.0263 (10)0.0517 (14)0.0127 (10)0.0101 (11)0.0008 (9)
F60.0319 (11)0.119 (2)0.0707 (16)0.0041 (15)0.0185 (11)0.0570 (17)
F70.0734 (17)0.0608 (15)0.0359 (11)0.0270 (14)0.0190 (12)0.0208 (11)
F80.0331 (11)0.0396 (12)0.0597 (15)0.0078 (10)0.0143 (11)0.0073 (11)
F90.0729 (16)0.0481 (14)0.0279 (10)0.0069 (14)0.0180 (11)0.0043 (10)
F100.0214 (8)0.0308 (10)0.0509 (13)0.0045 (7)0.0032 (9)0.0084 (9)
F110.0273 (9)0.0379 (11)0.0379 (10)0.0074 (8)0.0076 (8)0.0065 (9)
F120.0595 (19)0.0196 (12)0.0339 (14)0.0000.0000.0012 (11)
F130.200 (3)0.114 (3)0.156 (3)0.080 (3)0.145 (2)0.068 (3)
F140.132 (2)0.080 (2)0.135 (3)0.0669 (18)0.100 (2)0.0600 (19)
O10.097 (2)0.0439 (15)0.0485 (17)0.0395 (17)0.0126 (18)0.0171 (14)
O20.0542 (16)0.0410 (15)0.0526 (17)0.0226 (14)0.0003 (14)0.0096 (13)
O30.047 (2)0.0306 (18)0.046 (2)0.0000.0000.0107 (17)
O40.076 (3)0.0228 (17)0.050 (2)0.0000.0000.0110 (17)
F150.0131 (11)0.229 (6)0.0091 (10)0.0000.0000.004 (2)
Geometric parameters (Å, º) top
Nb1—O11.718 (3)K4—O1i2.820 (4)
Nb1—F21.937 (3)K4—F11i2.871 (2)
Nb1—F41.940 (2)K4—F3x2.922 (3)
Nb1—F31.945 (2)K4—F7x2.923 (3)
Nb1—F11.947 (3)K4—F8x3.030 (3)
Nb1—F52.166 (2)K4—F15i3.100 (2)
Nb1—K33.7994 (8)K4—O3i3.114 (3)
Nb1—K23.8203 (10)K4—F2x3.127 (3)
Nb1—K63.8489 (8)K5—F6xi2.586 (3)
Nb1—K2i3.9233 (11)K5—F6iii2.586 (3)
Nb2—O21.695 (3)K5—O4xii2.686 (4)
Nb2—F61.928 (3)K5—F12xiii2.804 (3)
Nb2—F71.930 (3)K5—F15vii3.047 (3)
Nb2—F91.936 (2)K5—F10xiii3.099 (3)
Nb2—F81.936 (2)K5—F10v3.099 (3)
Nb2—F52.203 (2)K5—F13xiii3.179 (6)
Nb2—K33.8929 (8)K5—F13v3.179 (6)
Nb2—K63.9217 (7)K6—F4vi2.665 (2)
Nb2—K2i3.9447 (11)K6—F8ii2.682 (3)
Nb2—K4ii3.9919 (9)K6—F62.760 (3)
Nb3—O31.730 (4)K6—F12.832 (3)
Nb3—F111.943 (2)K6—F10vi2.847 (2)
Nb3—F11iii1.943 (2)K6—F11vi2.880 (2)
Nb3—F101.950 (2)K6—F22.928 (3)
Nb3—F10iii1.950 (2)K6—F14vi3.071 (4)
Nb3—F122.188 (3)K6—F13vi3.095 (6)
Nb3—K6i3.8104 (7)K6—F73.113 (3)
Nb3—K6iv3.8104 (7)K6—F12vi3.2432 (8)
Nb3—K4v3.8454 (9)F1—F52.659 (4)
Nb3—K4vi3.8454 (9)F1—F22.681 (4)
Nb4—O41.698 (4)F1—F42.761 (3)
Nb4—F131.884 (5)F1—O12.803 (5)
Nb4—F13iii1.884 (5)F2—F32.703 (4)
Nb4—F14iii1.909 (4)F2—F52.707 (4)
Nb4—F141.909 (4)F2—O12.770 (4)
Nb4—F122.226 (3)F3—F52.665 (4)
Nb4—K5vii3.9290 (13)F3—F42.686 (4)
Nb4—K6iv4.0103 (8)F3—O12.799 (4)
Nb4—K6i4.0103 (8)F4—F52.596 (3)
Nb4—K14.0720 (17)F4—O12.827 (4)
Nb4—K34.1195 (8)F5—F92.605 (4)
Nb4—K3iii4.1195 (8)F5—F62.614 (4)
K1—F32.749 (3)F5—F82.683 (4)
K1—F3iii2.749 (3)F5—F72.694 (4)
K1—O3viii2.957 (4)F6—F92.691 (4)
K1—F11iii2.963 (3)F6—O22.753 (5)
K1—F112.963 (3)F7—F82.702 (4)
K1—F142.992 (5)F7—O22.781 (4)
K1—F14iii2.992 (5)F8—F92.701 (4)
K2—F13ix2.582 (5)F8—O22.836 (4)
K2—O2ii2.763 (3)F9—O22.808 (4)
K2—F9vi2.923 (3)F10—F122.663 (3)
K2—F22.932 (3)F10—F112.692 (3)
K2—F5vi2.987 (3)F10—F10iii2.793 (4)
K2—O13.041 (4)F10—O32.826 (5)
K2—F4vi3.059 (3)F11—F122.721 (4)
K2—F1vi3.104 (3)F12—F132.639 (5)
K2—F6vi3.195 (4)F12—F13iii2.639 (5)
K3—F7x2.630 (3)F12—F10iii2.663 (3)
K3—F142.639 (4)F12—F142.678 (4)
K3—F10viii2.697 (2)F12—F14iii2.678 (4)
K3—F1i2.722 (3)F12—F11iii2.721 (4)
K3—F82.853 (3)F13—F142.627 (7)
K3—F32.877 (3)F13—F13iii2.707 (11)
K3—F42.890 (3)F13—O42.721 (6)
K3—F53.051 (3)F14—F14iii2.596 (8)
K3—F93.159 (3)F14—O42.799 (6)
K4—F92.659 (3)
O1—Nb1—F298.40 (15)O3—Nb3—F1197.74 (13)
O1—Nb1—F4101.04 (14)O3—Nb3—F11iii97.74 (13)
F2—Nb1—F4160.54 (12)F11—Nb3—F11iii87.86 (13)
O1—Nb1—F399.48 (16)O3—Nb3—F10100.19 (13)
F2—Nb1—F388.28 (12)F11—Nb3—F1087.51 (9)
F4—Nb1—F387.49 (11)F11iii—Nb3—F10161.93 (10)
O1—Nb1—F199.59 (16)O3—Nb3—F10iii100.19 (13)
F2—Nb1—F187.29 (12)F11—Nb3—F10iii161.93 (10)
F4—Nb1—F190.52 (12)F11iii—Nb3—F10iii87.51 (9)
F3—Nb1—F1160.85 (12)F10—Nb3—F10iii91.52 (14)
O1—Nb1—F5179.23 (15)O3—Nb3—F12179.84 (17)
F2—Nb1—F582.37 (11)F11—Nb3—F1282.15 (9)
F4—Nb1—F578.20 (10)F11iii—Nb3—F1282.15 (9)
F3—Nb1—F580.62 (11)F10—Nb3—F1279.92 (9)
F1—Nb1—F580.33 (11)F10iii—Nb3—F1279.92 (9)
O2—Nb2—F698.74 (16)O4—Nb4—F1398.76 (19)
O2—Nb2—F7100.01 (15)O4—Nb4—F13iii98.76 (19)
F6—Nb2—F786.77 (14)F13—Nb4—F13iii91.9 (4)
O2—Nb2—F9101.13 (15)O4—Nb4—F14iii101.63 (16)
F6—Nb2—F988.29 (14)F13—Nb4—F14iii159.44 (19)
F7—Nb2—F9158.79 (13)F13iii—Nb4—F14iii87.7 (2)
O2—Nb2—F8102.52 (14)O4—Nb4—F14101.63 (16)
F6—Nb2—F8158.72 (13)F13—Nb4—F1487.7 (2)
F7—Nb2—F888.67 (14)F13iii—Nb4—F14159.44 (19)
F9—Nb2—F888.49 (13)F14iii—Nb4—F1485.7 (3)
O2—Nb2—F5176.73 (14)O4—Nb4—F12177.31 (18)
F6—Nb2—F578.21 (13)F13—Nb4—F1279.40 (16)
F7—Nb2—F581.08 (12)F13iii—Nb4—F1279.40 (16)
F9—Nb2—F577.72 (11)F14iii—Nb4—F1280.31 (13)
F8—Nb2—F580.55 (11)F14—Nb4—F1280.31 (13)
Symmetry codes: (i) x+3/2, y+1, z+1/2; (ii) x+3/2, y+2, z1/2; (iii) x+1, y, z; (iv) x1/2, y+1, z+1/2; (v) x1/2, y+1, z1/2; (vi) x+3/2, y+1, z1/2; (vii) x+1/2, y+1, z+1/2; (viii) x, y+1, z; (ix) x, y, z1; (x) x+3/2, y+2, z+1/2; (xi) x1, y, z; (xii) x+1/2, y+2, z1/2; (xiii) x+1/2, y+1, z1/2.
(II) ammonium oxofluoroniobate top
Crystal data top
3(F9Nb2O2)·F·10(NH4)Dx = 2.272 Mg m3
Mr = 1325.56Mo Kα radiation, λ = 0.71073 Å
Trigonal, P3m1Cell parameters from 512 reflections
Hall symbol: -P 3 2θ = 2.8–31.7°
a = 20.3757 (4) ŵ = 1.88 mm1
c = 8.0851 (3) ÅT = 173 K
V = 2906.97 (13) Å3Shere, colorless
Z = 90.25 × 0.25 × 0.25 mm
F(000) = 1848
Data collection top
Bruker P4
diffractometer
3484 independent reflections
Radiation source: fine-focus sealed tube3158 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
Detector resolution: 8.33 pixels mm-1θmax = 31.9°, θmin = 2.8°
ω scansh = 2929
Absorption correction: multi-scan
SADABS v.2.03; Bruker 1999
k = 2829
Tmin = 0.651, Tmax = 0.651l = 1111
34445 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.082 w = 1/[σ2(Fo2) + (0.1002P)2 + 30.7776P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.224(Δ/σ)max = 0.068
S = 1.08Δρmax = 3.02 e Å3
3158 reflectionsΔρmin = 2.19 e Å3
137 parametersExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.00016 (12)
Crystal data top
3(F9Nb2O2)·F·10(NH4)Z = 9
Mr = 1325.56Mo Kα radiation
Trigonal, P3m1µ = 1.88 mm1
a = 20.3757 (4) ÅT = 173 K
c = 8.0851 (3) Å0.25 × 0.25 × 0.25 mm
V = 2906.97 (13) Å3
Data collection top
Bruker P4
diffractometer
3484 independent reflections
Absorption correction: multi-scan
SADABS v.2.03; Bruker 1999
3158 reflections with I > 2σ(I)
Tmin = 0.651, Tmax = 0.651Rint = 0.025
34445 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0820 restraints
wR(F2) = 0.224 w = 1/[σ2(Fo2) + (0.1002P)2 + 30.7776P]
where P = (Fo2 + 2Fc2)/3
S = 1.08Δρmax = 3.02 e Å3
3158 reflectionsΔρmin = 2.19 e Å3
137 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Nb10.53585 (3)0.07171 (5)0.78533 (10)0.04191 (19)
Nb20.40677 (6)0.20338 (3)0.30603 (10)0.04243 (18)
Nb30.26826 (5)0.13413 (2)0.74052 (10)0.03681 (16)
N10.5818 (4)0.4182 (4)0.2623 (9)0.064 (3)
N20.3335 (3)0.3335 (3)0.00000.0333 (13)
N30.5108 (4)0.2554 (2)0.7742 (10)0.0407 (16)
N40.3329 (4)0.3329 (4)0.50000.0368 (14)
N50.0857 (3)0.1714 (5)0.7383 (10)0.0490 (19)
F10.5671 (3)0.0018 (4)0.7283 (8)0.1019 (17)
F20.6271 (3)0.1206 (3)0.9204 (8)0.0795 (18)
F30.50000.00001.00000.081 (3)
F40.3365 (3)0.1002 (2)0.2283 (5)0.0686 (12)
F50.4526 (2)0.1601 (2)0.4482 (6)0.0585 (11)
F60.3247 (4)0.16237 (18)0.5043 (7)0.0573 (16)
F70.2238 (5)0.0384 (3)0.6568 (15)0.235 (5)
F80.3471 (4)0.1077 (4)0.7761 (8)0.119 (2)
O10.5678 (5)0.1355 (9)0.6309 (14)0.129 (4)
O20.4739 (7)0.2370 (4)0.1510 (11)0.096 (3)
O30.2185 (6)0.1093 (3)0.9301 (12)0.088 (3)
F90.00000.00000.829 (7)0.136 (17)0.50
F100.66670.33330.751 (7)0.34 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Nb10.03258 (19)0.0696 (5)0.0359 (4)0.0348 (2)0.00163 (18)0.0033 (4)
Nb20.0757 (5)0.03456 (19)0.0308 (3)0.0378 (3)0.0048 (4)0.00241 (18)
Nb30.0524 (4)0.0314 (2)0.0336 (3)0.0262 (2)0.0037 (3)0.00184 (15)
N10.063 (3)0.063 (3)0.023 (3)0.001 (4)0.011 (2)0.011 (2)
N20.0413 (15)0.0413 (15)0.018 (2)0.0207 (19)0.0016 (11)0.0016 (11)
N30.043 (4)0.038 (2)0.042 (4)0.0217 (18)0.002 (3)0.0012 (16)
N40.0518 (16)0.0518 (16)0.0135 (19)0.031 (2)0.0032 (11)0.0032 (11)
N50.046 (2)0.074 (5)0.036 (3)0.037 (3)0.0095 (18)0.019 (4)
F10.094 (2)0.173 (3)0.089 (4)0.1054 (19)0.020 (3)0.051 (3)
F20.045 (2)0.060 (2)0.114 (5)0.0114 (18)0.017 (3)0.014 (3)
F30.086 (6)0.050 (5)0.095 (8)0.025 (2)0.016 (3)0.031 (5)
F40.129 (3)0.0503 (16)0.0394 (18)0.0550 (17)0.028 (2)0.0224 (14)
F50.0714 (17)0.0615 (17)0.061 (2)0.0472 (14)0.013 (2)0.0010 (18)
F60.067 (4)0.072 (3)0.032 (2)0.0333 (19)0.011 (3)0.0056 (14)
F70.227 (7)0.047 (3)0.305 (9)0.026 (4)0.187 (7)0.050 (5)
F80.147 (3)0.183 (4)0.083 (4)0.125 (3)0.012 (3)0.057 (3)
O10.109 (4)0.235 (13)0.086 (6)0.118 (6)0.046 (4)0.093 (7)
O20.158 (10)0.094 (4)0.058 (4)0.079 (5)0.054 (6)0.027 (3)
O30.078 (6)0.120 (7)0.053 (5)0.039 (3)0.003 (5)0.002 (2)
F90.109 (16)0.109 (16)0.19 (5)0.055 (8)0.0000.000
F100.033 (4)0.033 (4)0.95 (10)0.0167 (18)0.0000.000
Geometric parameters (Å, º) top
Nb1—O11.681 (12)N4—F1vii2.736 (8)
Nb1—F21.946 (5)N4—F5vi2.968 (4)
Nb1—F2i1.946 (5)N4—F5ii2.968 (4)
Nb1—F1i1.953 (6)N4—F4ii2.975 (5)
Nb1—F11.953 (6)N4—F4vi2.975 (5)
Nb1—F32.1479 (9)N4—F7vi2.983 (12)
Nb2—O21.724 (10)N4—F7ii2.983 (12)
Nb2—F5ii1.947 (5)N4—F8vi3.041 (8)
Nb2—F51.947 (5)N4—F8ii3.041 (8)
Nb2—F4ii1.963 (4)N5—F7ii2.762 (7)
Nb2—F41.963 (4)N5—F7x2.762 (7)
Nb2—F62.160 (6)N5—O3xi2.807 (13)
Nb3—O31.766 (10)N5—F4vi3.237 (10)
Nb3—F71.822 (7)N5—F4xii3.237 (10)
Nb3—F7ii1.822 (7)N5—F6vi3.341 (11)
Nb3—F81.954 (7)N5—F93.112 (17)
Nb3—F8ii1.954 (7)F1—F32.597 (6)
Nb3—F62.154 (6)F1—F22.661 (8)
N1—F5iii3.002 (6)F1—F1i2.771 (10)
N1—F5ii3.002 (6)F1—O12.900 (15)
N1—O1iii3.021 (13)F2—F32.607 (4)
N1—F2iv3.173 (10)F2—O12.720 (11)
N1—F2v3.173 (10)F2—F2i2.720 (11)
N1—F1vi3.176 (12)F3—F1xiii2.597 (6)
N1—F1vii3.176 (12)F3—F1i2.597 (6)
N1—O23.340 (10)F3—F1xiv2.597 (6)
N1—O2iii3.340 (10)F3—F2xiv2.607 (4)
N2—F4viii2.730 (5)F3—F2i2.607 (4)
N2—F4ii2.730 (5)F3—F2xiii2.607 (4)
N2—F8vi2.750 (7)F4—F62.635 (7)
N2—F8v2.750 (7)F4—F52.712 (6)
N2—F1vii2.976 (8)F4—F4ii2.773 (9)
N2—F1iv2.976 (8)F4—O22.862 (12)
N2—F2vii3.013 (7)F5—F62.666 (7)
N2—F2iv3.013 (7)F5—F5ii2.695 (9)
N2—F3iv3.393 (7)F5—O22.780 (9)
N3—F102.756 (9)F6—F8ii2.604 (8)
N3—F2i2.845 (6)F6—F82.604 (8)
N3—F2iii2.845 (6)F6—F7ii2.634 (9)
N3—O2ix3.116 (12)F6—F72.634 (9)
N3—F53.134 (9)F6—F4ii2.635 (7)
N3—F5ii3.134 (9)F6—F5ii2.666 (7)
N3—F83.185 (9)F7—F82.385 (12)
N3—F8ii3.185 (9)F7—O32.672 (13)
N3—O1iii3.390 (12)F7—F7ii2.997 (17)
N3—O13.390 (12)F8—F8ii2.682 (15)
N4—F1iii2.736 (8)F8—O32.915 (12)
O1—Nb1—F296.9 (4)F5—Nb2—F487.84 (19)
O1—Nb1—F2i96.9 (4)F4ii—Nb2—F489.9 (3)
F2—Nb1—F2i88.7 (4)O2—Nb2—F6178.7 (4)
O1—Nb1—F1i105.6 (4)F5ii—Nb2—F680.79 (18)
F2—Nb1—F1i157.3 (3)F5—Nb2—F680.79 (18)
O1—Nb1—F1105.6 (4)F4ii—Nb2—F679.31 (18)
F2—Nb1—F186.1 (2)F4—Nb2—F679.31 (18)
F2i—Nb1—F1157.3 (3)O3—Nb3—F796.2 (4)
O1—Nb1—F3174.1 (5)O3—Nb3—F7ii96.2 (4)
F2—Nb1—F378.93 (17)F7—Nb3—F7ii110.7 (8)
F2i—Nb1—F378.93 (17)O3—Nb3—F8103.1 (3)
F1i—Nb1—F378.4 (2)F7—Nb3—F878.3 (4)
F1—Nb1—F378.4 (2)F7ii—Nb3—F8157.8 (4)
F1i—Nb1—F190.4 (3)O3—Nb3—F8ii103.1 (3)
O2—Nb2—F5ii98.3 (3)F7—Nb3—F8ii157.8 (4)
O2—Nb2—F598.3 (3)F7ii—Nb3—F8ii78.3 (4)
F5ii—Nb2—F587.6 (3)F8—Nb3—F8ii86.7 (4)
O2—Nb2—F4ii101.6 (3)O3—Nb3—F6177.8 (4)
F5ii—Nb2—F4ii87.84 (19)F7—Nb3—F682.5 (3)
F5—Nb2—F4ii160.0 (2)F7ii—Nb3—F682.5 (3)
O2—Nb2—F4101.6 (3)F8—Nb3—F678.5 (2)
F5ii—Nb2—F4160.0 (2)F8ii—Nb3—F678.5 (2)
Symmetry codes: (i) x+y+1, y, z; (ii) x, xy, z; (iii) x+y+1, x+1, z; (iv) x+y+1, x+1, z1; (v) x, xy, z1; (vi) xy, x, z+1; (vii) x+1, x+y+1, z+1; (viii) xy, x, z; (ix) x, y, z+1; (x) y, xy, z; (xi) xy, x, z+2; (xii) y, x, z+1; (xiii) xy, y, z+2; (xiv) x+1, y, z+2.
(III) rubidium oxofluorodiniobate top
Crystal data top
9(F9Nb2O2)·Cl·2(F)·30(Rb)Dx = 3.442 Mg m3
Mr = 6136.93Mo Kα radiation, λ = 0.71073 Å
Trigonal, P3m1Cell parameters from 512 reflections
Hall symbol: -P 3 2θ = 2.8–32.0°
a = 20.4958 (4) ŵ = 14.11 mm1
c = 8.1385 (2) ÅT = 223 K
V = 2960.77 (11) Å3Prism, colorless
Z = 90.30 × 0.28 × 0.26 mm
F(000) = 2756
Data collection top
Bruker P4
diffractometer
3800 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.052
Graphite monochromatorθmax = 34.0°, θmin = 2.8°
Detector resolution: 8.33 pixels mm-1h = 2732
ω scansk = 3232
72081 measured reflectionsl = 1212
4318 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039 w = 1/[σ2(Fo2) + (0.0445P)2 + 18.7832P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.104(Δ/σ)max = 0.008
S = 1.09Δρmax = 2.56 e Å3
3800 reflectionsΔρmin = 1.75 e Å3
139 parametersExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.00015 (5)
Crystal data top
9(F9Nb2O2)·Cl·2(F)·30(Rb)Z = 9
Mr = 6136.93Mo Kα radiation
Trigonal, P3m1µ = 14.11 mm1
a = 20.4958 (4) ÅT = 223 K
c = 8.1385 (2) Å0.30 × 0.28 × 0.26 mm
V = 2960.77 (11) Å3
Data collection top
Bruker P4
diffractometer
3800 reflections with I > 2σ(I)
72081 measured reflectionsRint = 0.052
4318 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.104 w = 1/[σ2(Fo2) + (0.0445P)2 + 18.7832P]
where P = (Fo2 + 2Fc2)/3
S = 1.09Δρmax = 2.56 e Å3
3800 reflectionsΔρmin = 1.75 e Å3
139 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Nb10.537402 (19)0.07480 (4)0.79084 (8)0.01771 (12)
Nb20.40882 (4)0.20441 (2)0.30343 (11)0.02379 (14)
Nb30.27454 (6)0.13727 (3)0.74899 (10)0.03251 (19)
Rb10.57809 (3)0.42191 (3)0.26420 (13)0.0403 (2)
Rb20.33914 (4)0.33914 (4)0.00000.02283 (15)
Rb30.50682 (7)0.25341 (3)0.76568 (14)0.0417 (2)
Rb40.32760 (4)0.32760 (4)0.50000.02534 (16)
Rb50.09282 (3)0.18564 (6)0.72202 (15)0.0409 (2)
F10.5689 (2)0.0050 (3)0.7184 (6)0.0391 (9)
F20.6273 (2)0.1235 (2)0.9266 (6)0.0354 (9)
F30.50000.00001.00000.046 (2)
F40.3400 (2)0.1030 (2)0.2259 (5)0.0365 (9)
F50.4555 (2)0.1614 (3)0.4377 (6)0.0444 (11)
F60.3269 (3)0.16346 (17)0.5038 (7)0.0379 (13)
F70.2190 (4)0.0415 (3)0.6444 (10)0.088 (2)
F80.3532 (4)0.1107 (4)0.7814 (9)0.077 (2)
O10.5688 (3)0.1375 (5)0.6325 (9)0.048 (2)
O20.4747 (5)0.2374 (3)0.1493 (12)0.059 (2)
O30.2291 (10)0.1146 (5)0.9359 (12)0.111 (5)
Cl10.00000.00000.00000.0356 (12)
F100.66670.33330.252 (4)0.064 (8)0.50
F110.66670.33330.981 (6)0.084 (12)0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Nb10.01521 (17)0.0239 (3)0.0169 (3)0.01193 (14)0.00217 (11)0.0043 (2)
Nb20.0276 (3)0.01828 (19)0.0286 (3)0.01378 (16)0.0005 (3)0.00023 (13)
Nb30.0555 (5)0.0319 (3)0.0180 (3)0.0278 (3)0.0022 (3)0.00111 (16)
Rb10.0366 (3)0.0366 (3)0.0320 (4)0.0066 (4)0.0020 (2)0.0020 (2)
Rb20.0257 (3)0.0257 (3)0.0172 (3)0.0129 (3)0.00073 (13)0.00073 (13)
Rb30.0581 (6)0.0304 (3)0.0459 (5)0.0291 (3)0.0012 (5)0.0006 (2)
Rb40.0287 (3)0.0287 (3)0.0192 (3)0.0149 (3)0.00116 (14)0.00116 (14)
Rb50.0324 (3)0.0358 (4)0.0557 (7)0.0179 (2)0.0034 (2)0.0069 (4)
F10.039 (2)0.050 (2)0.043 (2)0.0332 (19)0.0002 (18)0.013 (2)
F20.0212 (16)0.036 (2)0.044 (2)0.0100 (15)0.0067 (16)0.0005 (17)
F30.049 (4)0.036 (4)0.049 (5)0.018 (2)0.014 (2)0.029 (4)
F40.052 (2)0.0222 (16)0.036 (2)0.0191 (16)0.0083 (18)0.0113 (15)
F50.037 (2)0.048 (3)0.061 (3)0.030 (2)0.009 (2)0.003 (2)
F60.038 (3)0.046 (3)0.027 (2)0.0188 (15)0.001 (2)0.0004 (12)
F70.076 (4)0.029 (2)0.122 (6)0.002 (3)0.034 (4)0.012 (3)
F80.081 (4)0.074 (4)0.093 (5)0.050 (3)0.020 (4)0.024 (4)
O10.050 (3)0.062 (5)0.035 (4)0.031 (3)0.0140 (19)0.028 (4)
O20.057 (5)0.060 (4)0.057 (5)0.029 (3)0.028 (5)0.014 (2)
O30.144 (14)0.158 (11)0.025 (4)0.072 (7)0.012 (7)0.006 (3)
Cl10.0198 (12)0.0198 (12)0.067 (4)0.0099 (6)0.0000.000
F100.040 (8)0.040 (8)0.11 (3)0.020 (4)0.0000.000
F110.043 (10)0.043 (10)0.17 (4)0.021 (5)0.0000.000
Geometric parameters (Å, º) top
Nb1—O11.703 (7)Nb3—F62.201 (6)
Nb1—F1i1.933 (4)Rb1—F5iii2.931 (5)
Nb1—F11.933 (4)Rb1—F5ii2.931 (5)
Nb1—F21.943 (4)Rb1—F103.1460 (17)
Nb1—F2i1.943 (4)Rb2—F8iv2.782 (6)
Nb1—F32.1589 (6)Rb2—F8v2.782 (6)
Nb2—O21.715 (8)Rb2—F4vi2.793 (4)
Nb2—F5ii1.931 (4)Rb2—F4ii2.793 (4)
Nb2—F51.931 (4)Rb3—F2i2.875 (4)
Nb2—F41.943 (4)Rb3—F2iii2.875 (4)
Nb2—F4ii1.943 (4)Rb3—F113.33 (2)
Nb2—F62.185 (6)Rb4—F1iii2.808 (4)
Nb3—O31.721 (11)Rb4—F1vii2.808 (4)
Nb3—F71.907 (6)Rb5—F7viii2.748 (5)
Nb3—F7ii1.907 (6)Rb5—F7ii2.748 (5)
Nb3—F8ii1.960 (6)Rb5—O3ix2.889 (10)
Nb3—F81.960 (6)Rb5—Cl1x3.9970 (12)
O1—Nb1—F1i100.9 (3)F5—Nb2—F487.50 (19)
O1—Nb1—F1100.9 (3)O2—Nb2—F4ii101.0 (3)
F1i—Nb1—F189.5 (3)F4—Nb2—F4ii89.9 (3)
O1—Nb1—F298.0 (3)O2—Nb2—F6178.7 (4)
F1i—Nb1—F2161.1 (2)F5ii—Nb2—F682.11 (19)
F1—Nb1—F288.40 (18)F4—Nb2—F679.86 (17)
F2—Nb1—F2i87.5 (3)O3—Nb3—F798.8 (4)
O1—Nb1—F3177.1 (3)O3—Nb3—F7ii98.8 (4)
F1i—Nb1—F381.15 (15)F7—Nb3—F7ii93.9 (5)
F1—Nb1—F381.15 (15)O3—Nb3—F8ii102.4 (4)
F2—Nb1—F379.95 (13)F7—Nb3—F8ii158.7 (3)
F2i—Nb1—F379.95 (13)O3—Nb3—F8102.4 (4)
O2—Nb2—F5ii97.0 (3)F7—Nb3—F885.7 (3)
O2—Nb2—F597.0 (3)F8ii—Nb3—F887.1 (4)
F5ii—Nb2—F589.5 (3)O3—Nb3—F6177.1 (6)
O2—Nb2—F4101.0 (3)F7—Nb3—F679.3 (2)
F5ii—Nb2—F4162.0 (2)F8—Nb3—F679.7 (2)
Symmetry codes: (i) x+y+1, y, z; (ii) x, xy, z; (iii) x+y+1, x+1, z; (iv) x, xy, z1; (v) xy, x, z+1; (vi) xy, x, z; (vii) x+1, x+y+1, z+1; (viii) y, xy, z; (ix) xy, x, z+2; (x) x, y, z+1.
(IV) rubidium oxofluoromolybdate top
Crystal data top
3(F7Mo2O4)·F·10(Rb)Dx = 3.533 Mg m3
Mr = 2040.34Mo Kα radiation, λ = 0.71073 Å
Trigonal, P3m1Cell parameters from 512 reflections
Hall symbol: -P 3 2θ = 2.8–31.7°
a = 20.2744 (2) ŵ = 14.66 mm1
c = 8.0811 (1) ÅT = 243 K
V = 2876.72 (5) Å3Prism, colorless
Z = 90.38 × 0.29 × 0.20 mm
F(000) = 2748
Data collection top
Bruker P4
diffractometer
4199 independent reflections
Radiation source: fine-focus sealed tube3674 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.043
Detector resolution: 8.33 pixels mm-1θmax = 34.0°, θmin = 2.8°
ω scansh = 3131
Absorption correction: multi-scan
SADABS v.2.03; Bruker 1999
k = 2731
Tmin = 0.072, Tmax = 0.158l = 1212
65645 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042 w = 1/[σ2(Fo2) + (0.0671P)2 + 14.0018P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.119(Δ/σ)max = 0.016
S = 1.08Δρmax = 3.58 e Å3
3674 reflectionsΔρmin = 1.75 e Å3
139 parametersExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.00026 (5)
Crystal data top
3(F7Mo2O4)·F·10(Rb)Z = 9
Mr = 2040.34Mo Kα radiation
Trigonal, P3m1µ = 14.66 mm1
a = 20.2744 (2) ÅT = 243 K
c = 8.0811 (1) Å0.38 × 0.29 × 0.20 mm
V = 2876.72 (5) Å3
Data collection top
Bruker P4
diffractometer
4199 independent reflections
Absorption correction: multi-scan
SADABS v.2.03; Bruker 1999
3674 reflections with I > 2σ(I)
Tmin = 0.072, Tmax = 0.158Rint = 0.043
65645 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.119 w = 1/[σ2(Fo2) + (0.0671P)2 + 14.0018P]
where P = (Fo2 + 2Fc2)/3
S = 1.08Δρmax = 3.58 e Å3
3674 reflectionsΔρmin = 1.75 e Å3
139 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Mo10.536270 (14)0.07254 (3)0.78655 (6)0.02384 (9)
Mo20.40922 (3)0.204609 (17)0.30643 (8)0.03274 (11)
Mo30.27359 (3)0.136794 (16)0.75362 (6)0.02762 (10)
Rb10.57809 (2)0.42191 (2)0.25143 (9)0.03932 (15)
Rb20.34062 (3)0.34062 (3)0.00000.02856 (12)
Rb30.50739 (5)0.25369 (2)0.75732 (10)0.04097 (15)
Rb40.32677 (3)0.32677 (3)0.50000.02963 (12)
Rb50.09321 (2)0.18643 (4)0.70946 (10)0.04012 (15)
F10.56736 (13)0.00406 (17)0.7207 (4)0.0412 (6)
F20.62653 (13)0.12305 (16)0.9200 (4)0.0360 (7)
F30.50000.00001.00000.0337 (12)
F40.33930 (17)0.10465 (14)0.2296 (4)0.0389 (7)
F50.45503 (16)0.16233 (17)0.4366 (5)0.0472 (8)
F60.3274 (3)0.16372 (13)0.5078 (5)0.0397 (10)
F70.2197 (3)0.0442 (2)0.6401 (9)0.115 (2)
F80.3486 (2)0.1092 (2)0.7873 (6)0.0747 (12)
O10.56719 (16)0.1344 (3)0.6274 (6)0.0430 (12)
O20.4723 (4)0.23617 (18)0.1487 (8)0.0534 (15)
O30.2273 (5)0.1137 (2)0.9341 (9)0.076 (3)
F90.00000.00000.00000.49 (7)
F100.66670.33330.240 (3)0.068 (7)0.50
F110.66670.33330.960 (5)0.090 (10)0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mo10.02277 (13)0.0283 (2)0.02231 (19)0.01413 (10)0.00432 (8)0.00865 (16)
Mo20.0342 (3)0.02748 (15)0.0387 (3)0.01712 (13)0.0007 (2)0.00036 (11)
Mo30.0375 (2)0.02584 (14)0.02339 (19)0.01875 (12)0.00401 (18)0.00201 (9)
Rb10.03747 (16)0.03747 (16)0.0329 (3)0.0111 (2)0.00131 (14)0.00131 (14)
Rb20.02853 (12)0.02853 (12)0.0224 (2)0.00959 (16)0.00086 (11)0.00086 (11)
Rb30.0569 (4)0.03170 (17)0.0427 (3)0.0285 (2)0.0021 (3)0.00106 (16)
Rb40.03007 (13)0.03007 (13)0.0222 (2)0.01015 (16)0.00380 (11)0.00380 (11)
Rb50.0383 (2)0.0416 (3)0.0415 (3)0.02079 (17)0.00297 (14)0.0059 (3)
F10.0401 (9)0.0549 (11)0.0435 (14)0.0349 (8)0.0024 (10)0.0178 (11)
F20.0209 (9)0.0381 (12)0.0450 (15)0.0116 (8)0.0040 (10)0.0015 (11)
F30.038 (2)0.028 (2)0.032 (2)0.0140 (11)0.0076 (10)0.015 (2)
F40.0616 (13)0.0231 (9)0.0358 (13)0.0240 (9)0.0080 (12)0.0073 (9)
F50.0513 (11)0.0487 (12)0.0573 (19)0.0368 (9)0.0165 (13)0.0062 (13)
F60.051 (2)0.0473 (17)0.0221 (15)0.0255 (12)0.0009 (17)0.0005 (9)
F70.105 (4)0.0327 (18)0.138 (5)0.018 (2)0.048 (4)0.017 (3)
F80.0756 (18)0.085 (2)0.078 (3)0.0505 (16)0.011 (2)0.020 (2)
O10.0453 (19)0.055 (3)0.032 (2)0.0275 (15)0.0114 (11)0.023 (2)
O20.052 (3)0.062 (3)0.043 (3)0.0261 (17)0.018 (3)0.0089 (13)
O30.074 (5)0.108 (5)0.036 (3)0.037 (2)0.009 (3)0.0044 (17)
F90.35 (5)0.35 (5)0.8 (2)0.17 (2)0.0000.000
F100.051 (6)0.051 (6)0.103 (18)0.025 (3)0.0000.000
F110.045 (7)0.045 (7)0.18 (3)0.023 (3)0.0000.000
Geometric parameters (Å, º) top
Mo1—O11.683 (5)Rb3—F2i2.865 (3)
Mo1—F1i1.866 (3)Rb3—F5v3.051 (4)
Mo1—F11.866 (3)Rb3—F53.051 (4)
Mo1—F21.920 (3)Rb3—F8v3.094 (4)
Mo1—F2i1.920 (3)Rb3—F83.094 (4)
Mo1—F32.1442 (5)Rb3—O2xii3.222 (6)
Mo1—Rb2ii3.8781 (5)Rb3—F113.240 (19)
Mo1—Rb2iii3.8781 (5)Rb4—F1vi2.823 (3)
Mo1—Rb3iv4.0048 (4)Rb4—F1x2.823 (3)
Mo1—Rb34.0048 (4)Rb4—F7ix2.957 (7)
Mo2—O21.689 (6)Rb4—F7v2.957 (7)
Mo2—F5v1.871 (3)Rb4—F4v2.967 (3)
Mo2—F51.871 (3)Rb4—F4ix2.967 (3)
Mo2—F4v1.905 (2)Rb4—F5ix3.049 (3)
Mo2—F41.905 (2)Rb4—F5v3.049 (3)
Mo2—F62.170 (4)Rb4—F8ix3.083 (5)
Mo2—Rb5ii3.9138 (10)Rb4—F8v3.083 (5)
Mo2—Rb43.9390 (3)Rb5—F7v2.740 (4)
Mo2—Rb4ii3.9390 (3)Rb5—F7xiii2.740 (4)
Mo2—Rb14.0306 (5)Rb5—O3xiv2.968 (7)
Mo3—O31.669 (7)Rb5—F4ix3.030 (3)
Mo3—F71.873 (5)Rb5—F4xv3.030 (3)
Mo3—F7v1.873 (5)Rb5—F6ix3.035 (4)
Mo3—F8v1.884 (5)Rb5—F7ix3.177 (7)
Mo3—F81.884 (5)Rb5—F7xv3.177 (7)
Mo3—F62.200 (4)F1—F32.618 (3)
Mo3—Rb4ii4.0056 (5)F1—F22.638 (4)
Mo3—Rb44.0056 (5)F1—F1i2.649 (5)
Mo3—Rb5ii4.0430 (9)F1—O12.749 (6)
Rb1—F5vi2.965 (3)F2—O12.714 (5)
Rb1—F5v2.965 (3)F2—F32.612 (2)
Rb1—F2vii3.042 (3)F2—F2i2.636 (6)
Rb1—F2viii3.042 (3)F4—F62.614 (4)
Rb1—O1vi3.063 (5)F4—F52.632 (4)
Rb1—F103.1118 (12)F4—F4v2.636 (6)
Rb1—F1ix3.118 (3)F4—O22.761 (6)
Rb1—F1x3.118 (3)F5—F5v2.643 (7)
Rb2—F8viii2.743 (5)F5—F62.664 (5)
Rb2—F8ix2.743 (5)F5—O22.693 (7)
Rb2—F4xi2.829 (3)F6—F72.548 (6)
Rb2—F4v2.829 (3)F6—F82.642 (6)
Rb2—F1x2.956 (3)F7—F82.556 (7)
Rb2—F1vii2.956 (3)F7—F7v2.662 (11)
Rb2—F2x2.958 (3)F7—O32.726 (9)
Rb2—F2vii2.958 (3)F8—F8v2.640 (10)
Rb2—F3vii3.2314 (6)F8—O32.772 (9)
Rb3—F2vi2.865 (3)
O1—Mo1—F1101.40 (17)F4v—Mo2—F487.5 (2)
F1i—Mo1—F190.42 (15)O2—Mo2—F6179.6 (2)
O1—Mo1—F297.53 (17)F5—Mo2—F682.13 (13)
F1i—Mo1—F2160.90 (14)F4—Mo2—F679.50 (12)
F1—Mo1—F288.31 (13)O3—Mo3—F7100.5 (3)
F2—Mo1—F2i86.7 (2)F7—Mo3—F7v90.6 (5)
O1—Mo1—F3176.3 (2)F7—Mo3—F8v157.1 (2)
F1—Mo1—F381.19 (10)O3—Mo3—F8102.3 (2)
F2—Mo1—F379.78 (9)F7—Mo3—F885.8 (3)
O2—Mo2—F598.17 (19)F8v—Mo3—F888.9 (3)
F5v—Mo2—F589.9 (2)O3—Mo3—F6176.3 (3)
F5—Mo2—F4v161.61 (14)F7—Mo3—F677.0 (2)
O2—Mo2—F4100.20 (19)F8—Mo3—F680.21 (17)
F5—Mo2—F488.37 (13)
Symmetry codes: (i) x+y+1, y, z; (ii) y, x+y, z+1; (iii) y+1, xy, z+1; (iv) y+1, xy, z; (v) x, xy, z; (vi) x+y+1, x+1, z; (vii) x+y+1, x+1, z1; (viii) x, xy, z1; (ix) xy, x, z+1; (x) x+1, x+y+1, z+1; (xi) xy, x, z; (xii) x, y, z+1; (xiii) y, xy, z; (xiv) xy, x, z+2; (xv) y, x, z+1.
(V) rubidium oxofluorotungstate top
Crystal data top
3(F7W2O4)·F·10(Rb)Dx = 4.496 Mg m3
Mr = 2567.80Mo Kα radiation, λ = 0.71073 Å
Trigonal, P3m1Cell parameters from 512 reflections
Hall symbol: -P 3 2θ = 2.8–30.2°
a = 20.1457 (7) ŵ = 31.01 mm1
c = 8.0951 (5) ÅT = 203 K
V = 2845.2 (2) Å3Prism, colorless
Z = 90.32 × 0.26 × 0.20 mm
F(000) = 3324
Data collection top
Bruker P4
diffractometer
3254 independent reflections
Radiation source: fine-focus sealed tube2724 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.093
Detector resolution: 8.33 pixels mm-1θmax = 31.0°, θmin = 2.8°
ω scansh = 2829
Absorption correction: multi-scan
SADABS v.2.03; Bruker 1999
k = 2628
Tmin = 0.036, Tmax = 0.063l = 1111
32262 measured reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullPrimary atom site location: structure-invariant direct methods
R[F2 > 2σ(F2)] = 0.057Secondary atom site location: difference Fourier map
wR(F2) = 0.150 w = 1/[σ2(Fo2) + (0.0713P)2 + 119.5815P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.018
2724 reflectionsΔρmax = 6.92 e Å3
137 parametersΔρmin = 2.66 e Å3
Crystal data top
3(F7W2O4)·F·10(Rb)Z = 9
Mr = 2567.80Mo Kα radiation
Trigonal, P3m1µ = 31.01 mm1
a = 20.1457 (7) ÅT = 203 K
c = 8.0951 (5) Å0.32 × 0.26 × 0.20 mm
V = 2845.2 (2) Å3
Data collection top
Bruker P4
diffractometer
3254 independent reflections
Absorption correction: multi-scan
SADABS v.2.03; Bruker 1999
2724 reflections with I > 2σ(I)
Tmin = 0.036, Tmax = 0.063Rint = 0.093
32262 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0570 restraints
wR(F2) = 0.150 w = 1/[σ2(Fo2) + (0.0713P)2 + 119.5815P]
where P = (Fo2 + 2Fc2)/3
S = 1.03Δρmax = 6.92 e Å3
2724 reflectionsΔρmin = 2.66 e Å3
137 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
W10.536013 (18)0.07203 (4)0.79253 (8)0.02227 (13)
W20.40948 (4)0.20474 (2)0.30982 (9)0.02713 (14)
W30.27020 (4)0.135100 (18)0.72991 (8)0.02414 (13)
Rb10.58080 (5)0.41920 (5)0.2646 (2)0.0334 (4)
Rb20.33394 (8)0.33394 (8)0.00000.0289 (4)
Rb30.51037 (11)0.25519 (5)0.7690 (2)0.0328 (4)
Rb40.33234 (9)0.33234 (9)0.50000.0311 (4)
Rb50.09113 (6)0.18226 (12)0.7345 (2)0.0399 (4)
F10.5654 (4)0.0013 (5)0.7307 (12)0.059 (2)
F20.6267 (4)0.1221 (5)0.9270 (12)0.048 (2)
F30.50000.00001.00000.060 (6)
F40.3416 (5)0.1058 (4)0.2394 (10)0.044 (2)
F50.4535 (4)0.1626 (4)0.4460 (10)0.0373 (18)
F60.3258 (7)0.1629 (3)0.5042 (14)0.042 (3)
F70.2333 (11)0.0411 (7)0.666 (3)0.301 (8)
F80.3462 (8)0.1152 (11)0.791 (2)0.155 (7)
O10.5692 (5)0.1385 (10)0.633 (2)0.067 (4)
O20.4804 (9)0.2402 (4)0.1534 (17)0.042 (3)
O30.2182 (12)0.1091 (6)0.923 (3)0.106 (10)
F90.00000.00000.761 (6)0.055 (13)0.50
F100.66670.33330.261 (4)0.027 (7)*0.50
F110.66670.33330.013 (4)0.022 (6)*0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
W10.02068 (17)0.0277 (3)0.0208 (3)0.01386 (13)0.00049 (11)0.0010 (2)
W20.0414 (3)0.02434 (18)0.0214 (3)0.02068 (17)0.0056 (3)0.00282 (14)
W30.0264 (3)0.02446 (19)0.0222 (3)0.01321 (13)0.0059 (2)0.00296 (11)
Rb10.0322 (4)0.0322 (4)0.0251 (7)0.0080 (5)0.0010 (3)0.0010 (3)
Rb20.0367 (4)0.0367 (4)0.0133 (6)0.0183 (5)0.0019 (3)0.0019 (3)
Rb30.0440 (9)0.0275 (5)0.0324 (8)0.0220 (4)0.0032 (7)0.0016 (4)
Rb40.0420 (4)0.0420 (4)0.0147 (6)0.0249 (5)0.0044 (3)0.0044 (3)
Rb50.0411 (6)0.0473 (10)0.0333 (9)0.0236 (5)0.0056 (4)0.0113 (8)
F10.064 (3)0.087 (4)0.052 (5)0.058 (3)0.012 (4)0.034 (4)
F20.027 (3)0.063 (5)0.046 (5)0.016 (3)0.002 (3)0.006 (4)
F30.052 (8)0.017 (7)0.099 (17)0.008 (4)0.003 (5)0.006 (9)
F40.069 (4)0.027 (3)0.038 (4)0.026 (3)0.014 (4)0.006 (3)
F50.047 (3)0.039 (3)0.033 (4)0.026 (3)0.014 (3)0.002 (3)
F60.040 (6)0.046 (5)0.037 (6)0.020 (3)0.004 (5)0.002 (3)
F70.347 (14)0.023 (5)0.387 (17)0.015 (8)0.324 (12)0.029 (8)
F80.067 (7)0.221 (14)0.135 (11)0.040 (8)0.014 (8)0.105 (10)
O10.068 (7)0.080 (9)0.058 (8)0.040 (5)0.031 (4)0.062 (7)
O20.062 (9)0.043 (5)0.027 (6)0.031 (5)0.004 (6)0.002 (3)
O30.051 (11)0.18 (2)0.040 (10)0.025 (6)0.003 (9)0.001 (5)
F90.054 (15)0.054 (15)0.06 (3)0.027 (8)0.0000.000
Geometric parameters (Å, º) top
W1—O11.736 (14)Rb4—F5x2.981 (7)
W1—F1i1.863 (10)Rb4—F5v2.981 (7)
W1—F11.863 (10)Rb4—F8x3.22 (2)
W1—F21.923 (8)Rb4—F8v3.22 (2)
W1—F2i1.923 (8)Rb5—F7xiii2.823 (13)
W1—F32.0976 (6)Rb5—F7v2.823 (13)
W1—Rb2ii3.9487 (15)Rb5—O3xiv2.85 (2)
W1—Rb2iii3.9487 (15)Rb5—F4x3.080 (9)
W1—Rb3iv3.9780 (6)Rb5—F4xv3.080 (9)
W1—Rb33.9780 (6)Rb5—F6x3.163 (12)
W2—O21.771 (15)Rb5—F93.187 (4)
W2—F41.855 (7)F1—F32.540 (9)
W2—F4v1.855 (7)F1—F1i2.607 (17)
W2—F51.863 (8)F1—F22.639 (13)
W2—F5v1.863 (8)F1—O12.838 (17)
W2—F62.147 (12)F2—F32.576 (8)
W2—Rb4ii3.9228 (5)F2—F2i2.644 (18)
W2—Rb43.9227 (5)F2—O12.738 (17)
W2—Rb1iv3.9750 (7)F3—F1xvi2.540 (9)
W2—Rb13.9750 (7)F3—F1xvii2.540 (9)
W3—F71.731 (12)F3—F1i2.540 (9)
W3—F7v1.731 (12)F3—F2xvii2.576 (8)
W3—O31.80 (2)F3—F2xvi2.576 (8)
W3—F81.834 (18)F3—F2i2.576 (8)
W3—F8v1.834 (18)F4—F62.527 (13)
W3—F62.068 (12)F4—F52.570 (11)
W3—Rb4ii3.9806 (13)F4—F4v2.620 (16)
W3—Rb43.9806 (13)F4—O22.840 (15)
W3—Rb5ii4.060 (2)F4—F7xviii3.08 (2)
Rb1—F5vi2.965 (9)F4—F1xix3.503 (13)
Rb1—F5v2.965 (9)F5—F5v2.582 (16)
Rb1—F102.9962 (19)F5—F62.618 (13)
Rb1—O1vi3.009 (16)F5—O22.738 (14)
Rb1—F2vii3.113 (10)F5—O13.017 (11)
Rb1—F2viii3.113 (10)F5—F83.368 (19)
Rb1—F1ix3.127 (9)F6—F4v2.527 (13)
Rb1—F1x3.127 (8)F6—F7v2.578 (17)
Rb1—O23.257 (9)F6—F72.578 (17)
Rb1—O2vi3.257 (9)F6—F5v2.618 (13)
Rb2—F8viii2.779 (18)F6—F8v2.626 (19)
Rb2—F8x2.779 (18)F6—F82.626 (19)
Rb2—F4xi2.827 (8)F7—F82.24 (3)
Rb2—F4v2.827 (8)F7—O32.59 (2)
Rb2—F1ix2.987 (10)F7—F7v3.04 (3)
Rb2—F1vii2.987 (10)F7—F7xviii3.05 (4)
Rb2—F2ix2.997 (11)F7—F4xviii3.08 (2)
Rb2—F2vii2.997 (11)F7—F8v3.48 (2)
Rb3—F2vi2.848 (8)F8—F8v2.33 (4)
Rb3—F2i2.848 (8)F8—O32.73 (3)
Rb3—F53.080 (8)O1—F2i2.738 (17)
Rb3—F5v3.080 (8)O1—F1i2.838 (17)
Rb3—F83.098 (14)O1—F5i3.017 (11)
Rb3—F8v3.098 (14)O2—F5v2.738 (14)
Rb3—O2xii3.156 (14)O2—F4v2.840 (15)
Rb3—F11xii3.248 (19)O2—F2xx3.135 (12)
Rb3—O13.307 (13)O2—F2vii3.135 (12)
Rb3—O1vi3.307 (13)O3—F7v2.59 (2)
Rb4—F1vi2.791 (9)O3—F8v2.73 (3)
Rb4—F1ix2.791 (9)F10—Rb1vi2.9962 (19)
Rb4—F7x2.852 (19)F10—Rb1iv2.9962 (19)
Rb4—F7v2.852 (19)F11—Rb3xxi3.248 (18)
Rb4—F4v2.938 (8)F11—Rb3xxii3.248 (18)
Rb4—F4x2.938 (8)F11—Rb3vii3.248 (18)
O1—W1—F1i104.0 (5)F5—W2—F5v87.8 (5)
O1—W1—F1104.0 (5)O2—W2—F6178.5 (6)
F1i—W1—F188.8 (5)F4—W2—F677.9 (3)
O1—W1—F296.8 (5)F4v—W2—F677.9 (3)
F1i—W1—F2159.1 (4)F5—W2—F681.2 (3)
F1—W1—F288.4 (4)F5v—W2—F681.2 (3)
O1—W1—F2i96.8 (5)F7—W3—F7v123.1 (18)
F1i—W1—F2i88.4 (4)F7—W3—O394.0 (7)
F1—W1—F2i159.1 (4)F7v—W3—O394.0 (7)
F2—W1—F2i86.9 (6)F7—W3—F877.9 (10)
O1—W1—F3174.9 (6)F7v—W3—F8155.3 (9)
F1i—W1—F379.5 (3)O3—W3—F897.4 (7)
F1—W1—F379.5 (3)F7—W3—F8v155.3 (9)
F2—W1—F379.6 (3)F7v—W3—F8v77.9 (10)
F2i—W1—F379.6 (3)O3—W3—F8v97.4 (7)
O2—W2—F4103.1 (4)F8—W3—F8v78.9 (12)
O2—W2—F4v103.1 (4)F7—W3—F685.0 (6)
F4—W2—F4v89.8 (6)F7v—W3—F685.0 (6)
O2—W2—F597.8 (4)O3—W3—F6177.8 (8)
F4—W2—F587.4 (3)F8—W3—F684.3 (6)
F4v—W2—F5159.0 (4)F8v—W3—F684.3 (6)
O2—W2—F5v97.8 (4)W1xvii—F3—W1180.0
F4—W2—F5v159.0 (4)W3—F6—W2165.1 (6)
F4v—W2—F5v87.4 (3)
Symmetry codes: (i) x+y+1, y, z; (ii) y, x+y, z+1; (iii) y+1, xy, z+1; (iv) y+1, xy, z; (v) x, xy, z; (vi) x+y+1, x+1, z; (vii) x+y+1, x+1, z1; (viii) x, xy, z1; (ix) x+1, x+y+1, z+1; (x) xy, x, z+1; (xi) xy, x, z; (xii) x, y, z+1; (xiii) y, xy, z; (xiv) xy, x, z+2; (xv) y, x, z+1; (xvi) xy, y, z+2; (xvii) x+1, y, z+2; (xviii) xy, y, z+1; (xix) x+1, y, z+1; (xx) x+y+1, y, z1; (xxi) y+1, xy, z1; (xxii) x, y, z1.

Experimental details

(I)(II)(III)(IV)
Crystal data
Chemical formula3(F9Nb2O2)·F·10(K)3(F9Nb2O2)·F·10(NH4)9(F9Nb2O2)·Cl·2(F)·30(Rb)3(F7Mo2O4)·F·10(Rb)
Mr1576.461325.566136.932040.34
Crystal system, space groupOrthorhombic, Pmn21Trigonal, P3m1Trigonal, P3m1Trigonal, P3m1
Temperature (K)223173223243
a, b, c (Å)20.1095 (6), 7.8045 (2), 11.4938 (4)20.3757 (4), 20.3757 (4), 8.0851 (3)20.4958 (4), 20.4958 (4), 8.1385 (2)20.2744 (2), 20.2744 (2), 8.0811 (1)
α, β, γ (°)90, 90, 9090, 90, 12090, 90, 12090, 90, 120
V3)1803.89 (9)2906.97 (13)2960.77 (11)2876.72 (5)
Z6999
Radiation typeMo KαMo KαMo KαMo Kα
µ (mm1)3.161.8814.1114.66
Crystal size (mm)0.32 × 0.28 × 0.180.25 × 0.25 × 0.250.30 × 0.28 × 0.260.38 × 0.29 × 0.20
Data collection
DiffractometerBruker P4
diffractometer
Bruker P4
diffractometer
Bruker P4
diffractometer
Bruker P4
diffractometer
Absorption correctionMulti-scan
SADABS v.2.03; Bruker 1999
Multi-scan
SADABS v.2.03; Bruker 1999
Multi-scan
SADABS v.2.03; Bruker 1999
Tmin, Tmax0.431, 0.6000.651, 0.6510.072, 0.158
No. of measured, independent and
observed [I > 2σ(I)] reflections
20107, 5975, 5889 34445, 3484, 3158 72081, 4318, 3800 65645, 4199, 3674
Rint0.0190.0250.0520.043
(sin θ/λ)max1)0.7440.7430.7870.787
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.093, 1.18 0.082, 0.224, 1.08 0.039, 0.104, 1.09 0.042, 0.119, 1.08
No. of reflections5889315838003674
No. of parameters239137139139
No. of restraints1000
w = 1/[σ2(Fo2) + (0.0447P)2 + 4.7059P]
where P = (Fo2 + 2Fc2)/3
w = 1/[σ2(Fo2) + (0.1002P)2 + 30.7776P]
where P = (Fo2 + 2Fc2)/3
w = 1/[σ2(Fo2) + (0.0445P)2 + 18.7832P]
where P = (Fo2 + 2Fc2)/3
w = 1/[σ2(Fo2) + (0.0671P)2 + 14.0018P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)1.37, 0.783.02, 2.192.56, 1.753.58, 1.75
Absolute structureFlack H D (1983), Acta Cryst. A39, 876-881???
Absolute structure parameter0.05 (6)???


(V)
Crystal data
Chemical formula3(F7W2O4)·F·10(Rb)
Mr2567.80
Crystal system, space groupTrigonal, P3m1
Temperature (K)203
a, b, c (Å)20.1457 (7), 20.1457 (7), 8.0951 (5)
α, β, γ (°)90, 90, 120
V3)2845.2 (2)
Z9
Radiation typeMo Kα
µ (mm1)31.01
Crystal size (mm)0.32 × 0.26 × 0.20
Data collection
DiffractometerBruker P4
diffractometer
Absorption correctionMulti-scan
SADABS v.2.03; Bruker 1999
Tmin, Tmax0.036, 0.063
No. of measured, independent and
observed [I > 2σ(I)] reflections
32262, 3254, 2724
Rint0.093
(sin θ/λ)max1)0.725
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.057, 0.150, 1.03
No. of reflections2724
No. of parameters137
No. of restraints0
w = 1/[σ2(Fo2) + (0.0713P)2 + 119.5815P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)6.92, 2.66
Absolute structure?
Absolute structure parameter?

Computer programs: Bruker Smart v5.054 (Bruker, 1998), Bruker SAINT v6.02a (Bruker, 2000), SHELXS97 (Sheldrick, 1990), Bruker SHELXTL v5.1 (Bruker, 1998), SHELXL97 (Sheldrick, 1997).

 

Follow Acta Cryst. B
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds