The crystal structures of the α-alums rubidium chromium bis(sulfate) dodecahydrate, RbCr(SO
4)
2·12H
2O, and caesium chromium bis[tetraoxoselenate(VI)] dodecahydrate, CsCr(SeO
4)
2·12H
2O, have been determined by X-ray diffraction at 293 and 12 K. The metal atoms lie on
sites and the anions lie on threefold rotation axes. The accurate and extensive data sets lead to much more precise determinations than are available from earlier work, particularly at 12 K. The changes in the atomic displacement parameters between 293 and 12 K correspond to the respective predominances of intermolecular and intramolecular vibrational effects.
Supporting information
Single crystals of the alums were obtained by recrystallization from aqueous solution.
Room temperature and the very low temperature data sets were collected on a locally assembled Huber 512 goniometer equipped with a Displex 202D cryogenic refrigerator (Hendricksen et al., 1986; Larsen, 1995).
Selected bond lengths and angles are given in Tables 1–8. The temperature evolution of thermal motion is illustrated for the hexaaquachromium(III) and selenate molecular ions CsCr(SeO4)2.12H2O in Figure 1. Lists of calculated and observed structure factors are given in the supplementary material.
The correction for the absorption by the beryllium shield was performed by PROFIT (Streltsov & Zavodnik, 1989) program.
Data collection: local diffractometer control software for (Ia), (Ib), (IIa); Local diffractometer control software for (IIb). Cell refinement: local diffractometer control software for (Ia), (Ib), (IIa); Local diffractometer control software for (IIb). For all compounds, data reduction: PROFIT (Streltsov & Zavodnik, 1989). Program(s) used to solve structure: SHELXS97 (Sheldrick, 1990) for (Ia), (IIa), (IIb); SHELXS86 (Sheldrick, 1990) for (Ib). For all compounds, program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Sheldrick, 1983). Software used to prepare material for publication: SHELXTL for (Ia), (Ib), (IIa); SHELXTL (Sheldrick, 1983) for (IIb).
(Ia) Chromium alpha-Alums
top
Crystal data top
RbCr(SO4)2·12H2O | Melting point: not measured K |
Mr = 545.78 | Mo Kα radiation, λ = 0.71073 Å |
Cubic, Pa3 | Cell parameters from 14 reflections |
Hall symbol: -P 2ac 2ab 3 | θ = 16.9–17.6° |
a = 12.296 (2) Å | µ = 3.53 mm−1 |
V = 1859.1 (5) Å3 | T = 293 K |
Z = 4 | Cube, pink |
F(000) = 1108 | 0.46 × 0.46 × 0.44 mm |
Dx = 1.950 Mg m−3 | |
Data collection top
Huber 512 goniometer diffractometer | 444 reflections with I > 2σ(I) |
Radiation source: normal-focus sealed tube | Rint = 0.027 |
None monochromator | θmax = 25.0°, θmin = 2.9° |
ω–2θ scan | h = 0→14 |
Absorption correction: gaussian (Xtal 3.4; Hall et al., 1994) | k = 0→14 |
Tmin = 0.360, Tmax = 0.420 | l = −14→0 |
1655 measured reflections | 3 standard reflections every 100 reflections |
557 independent reflections | intensity decay: 0.5% |
Refinement top
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.032 | All H-atom parameters refined |
wR(F2) = 0.080 | w = 1/[σ2(Fo2) + (0.0299P)2 + 4.4211P] where P = (Fo2 + 2Fc2)/3 |
S = 1.05 | (Δ/σ)max < 0.001 |
557 reflections | Δρmax = 0.63 e Å−3 |
55 parameters | Δρmin = −0.24 e Å−3 |
4 restraints | Extinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.0249 (15) |
Crystal data top
RbCr(SO4)2·12H2O | Z = 4 |
Mr = 545.78 | Mo Kα radiation |
Cubic, Pa3 | µ = 3.53 mm−1 |
a = 12.296 (2) Å | T = 293 K |
V = 1859.1 (5) Å3 | 0.46 × 0.46 × 0.44 mm |
Data collection top
Huber 512 goniometer diffractometer | 444 reflections with I > 2σ(I) |
Absorption correction: gaussian (Xtal 3.4; Hall et al., 1994) | Rint = 0.027 |
Tmin = 0.360, Tmax = 0.420 | 3 standard reflections every 100 reflections |
1655 measured reflections | intensity decay: 0.5% |
557 independent reflections | |
Refinement top
R[F2 > 2σ(F2)] = 0.032 | 4 restraints |
wR(F2) = 0.080 | All H-atom parameters refined |
S = 1.05 | Δρmax = 0.63 e Å−3 |
557 reflections | Δρmin = −0.24 e Å−3 |
55 parameters | |
Special details top
Experimental. no special details |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top | x | y | z | Uiso*/Ueq | |
Rb | 0.0000 | 0.0000 | 0.0000 | 0.0453 (4) | |
Cr | 0.5000 | 0.5000 | 0.5000 | 0.0177 (4) | |
S1 | 0.18670 (7) | 0.18670 (7) | 0.18670 (7) | 0.0246 (4) | |
O1 | 0.2544 (3) | 0.2544 (3) | 0.2544 (3) | 0.0682 (19) | |
O2 | 0.0761 (2) | 0.1827 (2) | 0.2308 (3) | 0.0554 (9) | |
O11 | −0.1429 (2) | 0.2004 (2) | 0.0477 (2) | 0.0381 (7) | |
O12 | 0.34142 (19) | 0.4891 (2) | 0.5125 (2) | 0.0280 (6) | |
H1 | −0.173 (3) | 0.212 (4) | 0.1056 (19) | 0.041 (13)* | |
H2 | −0.191 (3) | 0.218 (4) | 0.005 (3) | 0.067 (17)* | |
H3 | 0.308 (4) | 0.468 (4) | 0.566 (2) | 0.059 (15)* | |
H4 | 0.300 (3) | 0.480 (3) | 0.461 (2) | 0.040 (12)* | |
Atomic displacement parameters (Å2) top | U11 | U22 | U33 | U12 | U13 | U23 |
Rb | 0.0453 (4) | 0.0453 (4) | 0.0453 (4) | 0.0107 (3) | 0.0107 (3) | 0.0107 (3) |
Cr | 0.0177 (4) | 0.0177 (4) | 0.0177 (4) | −0.0003 (3) | −0.0003 (3) | −0.0003 (3) |
S1 | 0.0246 (4) | 0.0246 (4) | 0.0246 (4) | 0.0038 (4) | 0.0038 (4) | 0.0038 (4) |
O1 | 0.0682 (19) | 0.0682 (19) | 0.0682 (19) | −0.0160 (17) | −0.0160 (17) | −0.0160 (17) |
O2 | 0.0444 (17) | 0.0446 (17) | 0.077 (2) | 0.0111 (14) | 0.0302 (16) | 0.0234 (16) |
O11 | 0.0334 (15) | 0.0408 (16) | 0.0400 (16) | −0.0049 (13) | −0.0003 (13) | 0.0070 (13) |
O12 | 0.0200 (12) | 0.0379 (15) | 0.0260 (14) | −0.0038 (10) | −0.0002 (10) | 0.0010 (11) |
Geometric parameters (Å, º) top
Rb—O11i | 3.082 (3) | Cr—O12vi | 1.960 (2) |
Rb—O11ii | 3.082 (3) | Cr—O12 | 1.960 (2) |
Rb—O11iii | 3.082 (3) | Cr—O12v | 1.960 (2) |
Rb—O11 | 3.082 (3) | Cr—O12vii | 1.960 (2) |
Rb—O11iv | 3.082 (3) | Cr—O12viii | 1.960 (2) |
Rb—O11v | 3.082 (3) | Cr—O12ii | 1.960 (2) |
Rb—S1 | 3.9762 (16) | S1—O1 | 1.442 (6) |
Rb—S1i | 3.9762 (16) | S1—O2v | 1.465 (3) |
Rb—O2v | 3.739 (4) | S1—O2ii | 1.465 (3) |
Rb—O2ii | 3.739 (4) | S1—O2 | 1.465 (3) |
Rb—O2iii | 3.739 (4) | O11—H1 | 0.813 (10) |
Rb—O2 | 3.739 (4) | O11—H2 | 0.814 (10) |
Rb—O2i | 3.739 (4) | O12—H3 | 0.822 (10) |
Rb—O2iv | 3.739 (4) | O12—H4 | 0.820 (10) |
| | | |
O11—Rb—O11iv | 65.68 (4) | O11i—Rb—O2iv | 96.79 (7) |
O11—Rb—O11v | 114.32 (4) | O11ii—Rb—O2iv | 108.18 (7) |
O11i—Rb—O11ii | 65.68 (4) | O11iii—Rb—O2iv | 71.82 (7) |
O11i—Rb—O11iii | 114.32 (4) | O11—Rb—O2iv | 83.21 (7) |
O11ii—Rb—O11iii | 180.00 (11) | O11iv—Rb—O2iv | 61.17 (7) |
O11i—Rb—O11 | 180.00 (8) | O11v—Rb—O2iv | 118.83 (7) |
O11ii—Rb—O11 | 114.32 (4) | O2v—Rb—O2iv | 180.00 (11) |
O11iii—Rb—O11 | 65.68 (4) | O2ii—Rb—O2iv | 142.79 (7) |
O11i—Rb—O11iv | 114.32 (4) | O2iii—Rb—O2iv | 37.21 (7) |
O11ii—Rb—O11iv | 65.68 (4) | O2—Rb—O2iv | 142.79 (7) |
O11iii—Rb—O11iv | 114.32 (4) | O2i—Rb—O2iv | 37.21 (7) |
O11i—Rb—O11v | 65.68 (4) | O11i—Rb—S1 | 104.03 (5) |
O11ii—Rb—O11v | 114.32 (4) | O11ii—Rb—S1 | 75.97 (5) |
O11iii—Rb—O11v | 65.68 (4) | O11iii—Rb—S1 | 104.03 (5) |
O11iv—Rb—O11v | 180.0 | O11—Rb—S1 | 75.97 (5) |
O11—Rb—O2 | 61.17 (7) | O11iv—Rb—S1 | 104.03 (5) |
O11i—Rb—O2v | 83.21 (7) | O11v—Rb—S1 | 75.97 (5) |
O11ii—Rb—O2v | 71.82 (7) | O11i—Rb—S1i | 75.97 (5) |
O11iii—Rb—O2v | 108.18 (7) | O11ii—Rb—S1i | 104.03 (5) |
O11—Rb—O2v | 96.79 (7) | O11iii—Rb—S1i | 75.97 (5) |
O11iv—Rb—O2v | 118.83 (7) | O11—Rb—S1i | 104.03 (5) |
O11v—Rb—O2v | 61.17 (7) | O11iv—Rb—S1i | 75.97 (5) |
O11i—Rb—O2ii | 108.18 (7) | O11v—Rb—S1i | 104.03 (5) |
O11ii—Rb—O2ii | 61.17 (7) | S1—Rb—S1i | 180.00 (4) |
O11iii—Rb—O2ii | 118.83 (7) | O12—Cr—O12viii | 89.13 (10) |
O11—Rb—O2ii | 71.82 (7) | O12—Cr—O12v | 90.87 (10) |
O11iv—Rb—O2ii | 83.21 (7) | O12vi—Cr—O12 | 180.0 |
O11v—Rb—O2ii | 96.79 (7) | O12vi—Cr—O12v | 89.13 (10) |
O2v—Rb—O2ii | 37.21 (7) | O12vi—Cr—O12vii | 90.87 (10) |
O11i—Rb—O2iii | 71.82 (7) | O12—Cr—O12vii | 89.13 (10) |
O11ii—Rb—O2iii | 118.83 (7) | O12v—Cr—O12vii | 89.13 (10) |
O11iii—Rb—O2iii | 61.17 (7) | O12vi—Cr—O12viii | 90.87 (10) |
O11—Rb—O2iii | 108.18 (7) | O12v—Cr—O12viii | 180.0 |
O11iv—Rb—O2iii | 96.79 (7) | O12vii—Cr—O12viii | 90.87 (10) |
O11v—Rb—O2iii | 83.21 (7) | O12vi—Cr—O12ii | 89.13 (10) |
O2v—Rb—O2iii | 142.79 (7) | O12—Cr—O12ii | 90.87 (10) |
O2ii—Rb—O2iii | 180.00 (7) | O12v—Cr—O12ii | 90.87 (10) |
O11i—Rb—O2 | 118.83 (7) | O12vii—Cr—O12ii | 180.0 |
O11ii—Rb—O2 | 96.79 (7) | O12viii—Cr—O12ii | 89.13 (10) |
O11iii—Rb—O2 | 83.21 (7) | O1—S1—O2 | 109.97 (15) |
O11iv—Rb—O2 | 108.18 (7) | O2—S1—O2v | 108.96 (15) |
O11v—Rb—O2 | 71.82 (7) | O1—S1—O2v | 109.97 (15) |
O2—Rb—O2v | 37.21 (7) | O1—S1—O2ii | 109.97 (15) |
O2—Rb—O2ii | 37.21 (7) | O2v—S1—O2ii | 108.96 (15) |
O2iii—Rb—O2 | 142.79 (7) | O2—S1—O2ii | 108.96 (15) |
O11i—Rb—O2i | 61.17 (7) | O1—S1—Rb | 180.00 (15) |
O11ii—Rb—O2i | 83.21 (7) | O2v—S1—Rb | 70.03 (15) |
O11iii—Rb—O2i | 96.79 (7) | O2ii—S1—Rb | 70.03 (15) |
O11—Rb—O2i | 118.83 (7) | O2—S1—Rb | 70.03 (15) |
O11iv—Rb—O2i | 71.82 (7) | Rb—O11—H1 | 124 (3) |
O11v—Rb—O2i | 108.18 (7) | Rb—O11—H2 | 120 (4) |
O2v—Rb—O2i | 142.79 (7) | H1—O11—H2 | 101 (5) |
O2ii—Rb—O2i | 142.79 (7) | Cr—O12—H3 | 126 (4) |
O2iii—Rb—O2i | 37.21 (7) | Cr—O12—H4 | 124 (3) |
O2—Rb—O2i | 180.00 (12) | H3—O12—H4 | 106 (5) |
Symmetry codes: (i) −x, −y, −z; (ii) y, z, x; (iii) −y, −z, −x; (iv) −z, −x, −y; (v) z, x, y; (vi) −x+1, −y+1, −z+1; (vii) −y+1, −z+1, −x+1; (viii) −z+1, −x+1, −y+1. |
Hydrogen-bond geometry (Å, º) top
D—H···A | D—H | H···A | D···A | D—H···A |
O11—H1···O1ix | 0.81 (1) | 2.01 (1) | 2.821 (4) | 175 (4) |
O11—H2···O2x | 0.81 (1) | 1.96 (1) | 2.763 (4) | 171 (5) |
O12—H3···O2xi | 0.82 (1) | 1.80 (1) | 2.621 (4) | 178 (5) |
O12—H4···O11xii | 0.82 (1) | 1.80 (1) | 2.620 (4) | 174 (4) |
Symmetry codes: (ix) x−1/2, y, −z+1/2; (x) y−1/2, −z+1/2, −x; (xi) z, −x+1/2, y+1/2; (xii) y, −z+1/2, x+1/2. |
(Ib) Chromium alpha-Alums
top
Crystal data top
RbCr(SO4)2·12H2O | Melting point: not measured K |
Mr = 545.78 | Mo Kα radiation, λ = 0.71073 Å |
Cubic, Pa3 | Cell parameters from 14 reflections |
Hall symbol: -P 2ac 2ab 3 | θ = 16.9–17.6° |
a = 12.241 (2) Å | µ = 3.58 mm−1 |
V = 1834.2 (5) Å3 | T = 12 K |
Z = 4 | Cube, pink |
F(000) = 1108 | 0.46 × 0.46 × 0.44 mm |
Dx = 1.976 Mg m−3 | |
Data collection top
Huber 512 goniometer diffractometer | 812 reflections with I > 2σ(I) |
Radiation source: normal-focus sealed tube | Rint = 0.019 |
None monochromator | θmax = 30.0°, θmin = 2.9° |
ω–2θ scan | h = −7→17 |
Absorption correction: gaussian (Xtal 3.4; Hall et al., 1994) | k = −7→17 |
Tmin = 0.340, Tmax = 0.403 | l = −7→17 |
4175 measured reflections | 3 standard reflections every 100 reflections |
905 independent reflections | intensity decay: 0.5% |
Refinement top
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.019 | All H-atom parameters refined |
wR(F2) = 0.045 | w = 1/[σ2(Fo2) + (0.0167P)2 + 1.4261P] where P = (Fo2 + 2Fc2)/3 |
S = 1.09 | (Δ/σ)max < 0.001 |
905 reflections | Δρmax = 0.38 e Å−3 |
55 parameters | Δρmin = −0.52 e Å−3 |
0 restraints | Extinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.0119 (4) |
Crystal data top
RbCr(SO4)2·12H2O | Z = 4 |
Mr = 545.78 | Mo Kα radiation |
Cubic, Pa3 | µ = 3.58 mm−1 |
a = 12.241 (2) Å | T = 12 K |
V = 1834.2 (5) Å3 | 0.46 × 0.46 × 0.44 mm |
Data collection top
Huber 512 goniometer diffractometer | 812 reflections with I > 2σ(I) |
Absorption correction: gaussian (Xtal 3.4; Hall et al., 1994) | Rint = 0.019 |
Tmin = 0.340, Tmax = 0.403 | 3 standard reflections every 100 reflections |
4175 measured reflections | intensity decay: 0.5% |
905 independent reflections | |
Refinement top
R[F2 > 2σ(F2)] = 0.019 | 0 restraints |
wR(F2) = 0.045 | All H-atom parameters refined |
S = 1.09 | Δρmax = 0.38 e Å−3 |
905 reflections | Δρmin = −0.52 e Å−3 |
55 parameters | |
Special details top
Experimental. The correction for the absorption by the beryllium shield was performed by PROFIT (Streltsov & Zavodnik, 1989) program. |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top | x | y | z | Uiso*/Ueq | |
Rb | 0.0000 | 0.0000 | 0.0000 | 0.00633 (10) | |
Cr | 0.5000 | 0.5000 | 0.5000 | 0.00326 (11) | |
S1 | 0.18551 (2) | 0.18551 (2) | 0.18551 (2) | 0.00419 (12) | |
O1 | 0.25528 (7) | 0.25528 (7) | 0.25528 (7) | 0.0089 (3) | |
O2 | 0.07270 (7) | 0.18407 (8) | 0.22894 (8) | 0.00765 (19) | |
O11 | −0.14175 (8) | 0.19772 (8) | 0.04938 (9) | 0.0080 (2) | |
O12 | 0.34010 (8) | 0.49132 (8) | 0.51150 (8) | 0.00650 (19) | |
H1 | −0.1628 (19) | 0.2029 (18) | 0.109 (2) | 0.029 (6)* | |
H2 | −0.1850 (18) | 0.2115 (17) | 0.0076 (16) | 0.018 (5)* | |
H3 | 0.312 (2) | 0.4720 (19) | 0.568 (2) | 0.038 (7)* | |
H4 | 0.301 (2) | 0.4783 (19) | 0.458 (2) | 0.036 (7)* | |
Atomic displacement parameters (Å2) top | U11 | U22 | U33 | U12 | U13 | U23 |
Rb | 0.00633 (10) | 0.00633 (10) | 0.00633 (10) | 0.00195 (6) | 0.00195 (6) | 0.00195 (6) |
Cr | 0.00326 (11) | 0.00326 (11) | 0.00326 (11) | −0.00002 (9) | −0.00002 (9) | −0.00002 (9) |
S1 | 0.00419 (12) | 0.00419 (12) | 0.00419 (12) | 0.00038 (10) | 0.00038 (10) | 0.00038 (10) |
O1 | 0.0089 (3) | 0.0089 (3) | 0.0089 (3) | −0.0021 (3) | −0.0021 (3) | −0.0021 (3) |
O2 | 0.0052 (4) | 0.0080 (4) | 0.0098 (4) | 0.0008 (3) | 0.0034 (3) | 0.0017 (3) |
O11 | 0.0073 (4) | 0.0100 (4) | 0.0067 (4) | 0.0003 (3) | −0.0005 (4) | 0.0010 (3) |
O12 | 0.0040 (4) | 0.0095 (4) | 0.0059 (4) | −0.0013 (3) | 0.0000 (3) | 0.0006 (3) |
Geometric parameters (Å, º) top
Rb—O11i | 3.039 (1) | Cr—O12vi | 1.965 (1) |
Rb—O11 | 3.039 (1) | Cr—O12ii | 1.965 (1) |
Rb—O11ii | 3.039 (1) | Cr—O12vii | 1.965 (1) |
Rb—O11iii | 3.039 (1) | Cr—O12viii | 1.965 (1) |
Rb—O11iv | 3.039 (1) | Cr—O12 | 1.965 (1) |
Rb—O11v | 3.039 (1) | S1—O1 | 1.479 (2) |
Rb—O2v | 3.704 (1) | S1—O2v | 1.4798 (9) |
Rb—O2i | 3.704 (1) | S1—O2ii | 1.4798 (9) |
Rb—O2ii | 3.704 (1) | S1—O2 | 1.4798 (9) |
Rb—O2iv | 3.704 (1) | O11—H1 | 0.78 (3) |
Rb—O2 | 3.704 (1) | O11—H2 | 0.76 (2) |
Rb—O2iii | 3.704 (1) | O12—H3 | 0.81 (3) |
Cr—O12v | 1.965 (1) | O12—H4 | 0.83 (3) |
| | | |
O11—Rb—O11iv | 65.798 (15) | O11iv—Rb—O2 | 107.64 (2) |
O11—Rb—O11v | 114.202 (15) | O11v—Rb—O2 | 72.36 (2) |
O11i—Rb—O11 | 180.00 (4) | O2—Rb—O2v | 38.00 (2) |
O11i—Rb—O11ii | 65.798 (15) | O2i—Rb—O2 | 180.00 (3) |
O11—Rb—O11ii | 114.202 (15) | O2ii—Rb—O2 | 38.00 (2) |
O11i—Rb—O11iii | 114.202 (15) | O2iv—Rb—O2 | 142.00 (2) |
O11—Rb—O11iii | 65.798 (15) | O11i—Rb—O2iii | 72.36 (2) |
O11ii—Rb—O11iii | 180.00 (4) | O11—Rb—O2iii | 107.64 (2) |
O11i—Rb—O11iv | 114.202 (15) | O11ii—Rb—O2iii | 119.85 (2) |
O11ii—Rb—O11iv | 65.798 (15) | O11iii—Rb—O2iii | 60.15 (2) |
O11iii—Rb—O11iv | 114.202 (15) | O11iv—Rb—O2iii | 96.87 (2) |
O11i—Rb—O11v | 65.798 (15) | O11v—Rb—O2iii | 83.13 (2) |
O11ii—Rb—O11v | 114.203 (15) | O2v—Rb—O2iii | 142.00 (2) |
O11iii—Rb—O11v | 65.798 (15) | O2i—Rb—O2iii | 38.00 (2) |
O11iv—Rb—O11v | 180.0 | O2ii—Rb—O2iii | 180.00 (3) |
O11—Rb—O2 | 60.15 (2) | O2iv—Rb—O2iii | 38.00 (2) |
O11i—Rb—O2v | 83.13 (2) | O2—Rb—O2iii | 142.00 (2) |
O11—Rb—O2v | 96.87 (2) | O12—Cr—O12viii | 88.78 (4) |
O11ii—Rb—O2v | 72.36 (2) | O12—Cr—O12v | 91.22 (4) |
O11iii—Rb—O2v | 107.64 (2) | O12v—Cr—O12vi | 88.78 (4) |
O11iv—Rb—O2v | 119.85 (2) | O12v—Cr—O12ii | 91.22 (4) |
O11v—Rb—O2v | 60.15 (2) | O12vi—Cr—O12ii | 180.0 |
O11i—Rb—O2i | 60.15 (2) | O12v—Cr—O12vii | 88.78 (4) |
O11—Rb—O2i | 119.85 (2) | O12vi—Cr—O12vii | 91.22 (4) |
O11ii—Rb—O2i | 83.13 (2) | O12ii—Cr—O12vii | 88.78 (4) |
O11iii—Rb—O2i | 96.87 (2) | O12v—Cr—O12viii | 180.0 |
O11iv—Rb—O2i | 72.36 (2) | O12vi—Cr—O12viii | 91.22 (4) |
O11v—Rb—O2i | 107.64 (2) | O12ii—Cr—O12viii | 88.78 (4) |
O2v—Rb—O2i | 142.00 (2) | O12vii—Cr—O12viii | 91.22 (4) |
O11i—Rb—O2ii | 107.64 (2) | O12vi—Cr—O12 | 88.78 (4) |
O11—Rb—O2ii | 72.36 (2) | O12ii—Cr—O12 | 91.22 (4) |
O11ii—Rb—O2ii | 60.15 (2) | O12vii—Cr—O12 | 180.0 |
O11iii—Rb—O2ii | 119.85 (2) | O1—S1—O2 | 109.77 (4) |
O11iv—Rb—O2ii | 83.13 (2) | O1—S1—O2v | 109.77 (4) |
O11v—Rb—O2ii | 96.87 (2) | O1—S1—O2ii | 109.77 (4) |
O2v—Rb—O2ii | 38.00 (2) | O2v—S1—O2ii | 109.17 (4) |
O2i—Rb—O2ii | 142.00 (2) | O2v—S1—O2 | 109.17 (4) |
O11i—Rb—O2iv | 96.87 (2) | O2ii—S1—O2 | 109.17 (4) |
O11—Rb—O2iv | 83.13 (2) | O1—S1—Rb | 180.00 (5) |
O11ii—Rb—O2iv | 107.64 (2) | O2v—S1—Rb | 70.23 (4) |
O11iii—Rb—O2iv | 72.36 (2) | O2ii—S1—Rb | 70.23 (4) |
O11iv—Rb—O2iv | 60.15 (2) | O2—S1—Rb | 70.23 (4) |
O11v—Rb—O2iv | 119.85 (2) | S1—O2—Rb | 87.69 (4) |
O2v—Rb—O2iv | 180.00 (2) | Rb—O11—H1 | 116.2 (17) |
O2i—Rb—O2iv | 38.00 (2) | Rb—O11—H2 | 116.3 (16) |
O2ii—Rb—O2iv | 142.00 (2) | H1—O11—H2 | 113 (2) |
O11i—Rb—O2 | 119.85 (2) | Cr—O12—H3 | 119.7 (17) |
O11ii—Rb—O2 | 96.87 (2) | Cr—O12—H4 | 122.3 (17) |
O11iii—Rb—O2 | 83.13 (2) | H3—O12—H4 | 112 (2) |
Symmetry codes: (i) −x, −y, −z; (ii) y, z, x; (iii) −y, −z, −x; (iv) −z, −x, −y; (v) z, x, y; (vi) −y+1, −z+1, −x+1; (vii) −x+1, −y+1, −z+1; (viii) −z+1, −x+1, −y+1. |
Hydrogen-bond geometry (Å, º) top
D—H···A | D—H | H···A | D···A | D—H···A |
O11—H1···O1ix | 0.78 (3) | 2.04 (3) | 2.7933 (15) | 162 (2) |
O11—H2···O2x | 0.76 (2) | 2.02 (2) | 2.7541 (15) | 166 (2) |
O12—H3···O2xi | 0.81 (3) | 1.83 (3) | 2.6321 (14) | 171 (2) |
O12—H4···O11xii | 0.83 (3) | 1.79 (3) | 2.6087 (14) | 171 (3) |
Symmetry codes: (ix) x−1/2, y, −z+1/2; (x) y−1/2, −z+1/2, −x; (xi) z, −x+1/2, y+1/2; (xii) y, −z+1/2, x+1/2. |
(IIa) Chromium alpha-Alums
top
Crystal data top
CsCr(SeO4)2·12H2O | Melting point: not measured K |
Mr = 687.02 | Mo Kα radiation, λ = 0.71073 Å |
Cubic, Pa3 | Cell parameters from 14 reflections |
Hall symbol: -P 2ac 2ab 3 | θ = 16.4–17.1° |
a = 12.585 (1) Å | µ = 6.11 mm−1 |
V = 1993.2 (3) Å3 | T = 293 K |
Z = 4 | Prism, dark violet |
F(000) = 1324 | 0.65 × 0.64 × 0.63 mm |
Dx = 2.289 Mg m−3 | |
Data collection top
Huber 512 goniometer diffractometer | 549 reflections with I > 2σ(I) |
Radiation source: normal-focus sealed tube | Rint = 0.020 |
None monochromator | θmax = 25.0°, θmin = 2.8° |
ω–2θ scan | h = 0→14 |
Absorption correction: gaussian (Xtal 3.4; Hall et al., 1994) | k = 0→14 |
Tmin = 0.138, Tmax = 0.189 | l = −14→0 |
1751 measured reflections | 3 standard reflections every 100 reflections |
589 independent reflections | intensity decay: 0.5% |
Refinement top
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.020 | All H-atom parameters refined |
wR(F2) = 0.044 | w = 1/[σ2(Fo2) + (0.0194P)2 + 0.7907P] where P = (Fo2 + 2Fc2)/3 |
S = 1.26 | (Δ/σ)max < 0.001 |
589 reflections | Δρmax = 0.26 e Å−3 |
55 parameters | Δρmin = −0.54 e Å−3 |
4 restraints | Extinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.0166 (6) |
Crystal data top
CsCr(SeO4)2·12H2O | Z = 4 |
Mr = 687.02 | Mo Kα radiation |
Cubic, Pa3 | µ = 6.11 mm−1 |
a = 12.585 (1) Å | T = 293 K |
V = 1993.2 (3) Å3 | 0.65 × 0.64 × 0.63 mm |
Data collection top
Huber 512 goniometer diffractometer | 549 reflections with I > 2σ(I) |
Absorption correction: gaussian (Xtal 3.4; Hall et al., 1994) | Rint = 0.020 |
Tmin = 0.138, Tmax = 0.189 | 3 standard reflections every 100 reflections |
1751 measured reflections | intensity decay: 0.5% |
589 independent reflections | |
Refinement top
R[F2 > 2σ(F2)] = 0.020 | 4 restraints |
wR(F2) = 0.044 | All H-atom parameters refined |
S = 1.26 | Δρmax = 0.26 e Å−3 |
589 reflections | Δρmin = −0.54 e Å−3 |
55 parameters | |
Special details top
Experimental. no special details |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top | x | y | z | Uiso*/Ueq | |
Cs | 0.0000 | 0.0000 | 0.0000 | 0.03787 (19) | |
Cr | 0.5000 | 0.5000 | 0.5000 | 0.0181 (2) | |
Se | 0.184457 (19) | 0.184457 (19) | 0.184457 (19) | 0.02265 (18) | |
O1 | 0.25909 (17) | 0.25909 (17) | 0.25909 (17) | 0.0503 (11) | |
O2 | 0.06434 (16) | 0.17811 (15) | 0.23339 (17) | 0.0416 (5) | |
O11 | −0.14271 (16) | 0.20834 (16) | 0.04678 (18) | 0.0367 (5) | |
O12 | 0.34454 (15) | 0.49205 (15) | 0.50984 (14) | 0.0271 (4) | |
H1 | −0.167 (3) | 0.213 (3) | 0.1063 (15) | 0.062 (12)* | |
H2 | −0.194 (2) | 0.218 (4) | 0.009 (3) | 0.072 (14)* | |
H3 | 0.314 (2) | 0.474 (3) | 0.5640 (16) | 0.049 (10)* | |
H4 | 0.305 (2) | 0.475 (3) | 0.461 (2) | 0.059 (12)* | |
Atomic displacement parameters (Å2) top | U11 | U22 | U33 | U12 | U13 | U23 |
Cs | 0.03787 (19) | 0.03787 (19) | 0.03787 (19) | 0.00343 (11) | 0.00343 (11) | 0.00343 (11) |
Cr | 0.0181 (2) | 0.0181 (2) | 0.0181 (2) | −0.00016 (19) | −0.00016 (19) | −0.00016 (19) |
Se | 0.02265 (18) | 0.02265 (18) | 0.02265 (18) | 0.00290 (9) | 0.00290 (9) | 0.00290 (9) |
O1 | 0.0503 (11) | 0.0503 (11) | 0.0503 (11) | −0.0106 (10) | −0.0106 (10) | −0.0106 (10) |
O2 | 0.0329 (11) | 0.0363 (11) | 0.0555 (12) | 0.0057 (8) | 0.0217 (10) | 0.0145 (9) |
O11 | 0.0311 (10) | 0.0406 (11) | 0.0385 (12) | −0.0043 (9) | −0.0003 (10) | 0.0069 (10) |
O12 | 0.0195 (9) | 0.0380 (11) | 0.0237 (10) | −0.0034 (7) | 0.0015 (7) | 0.0004 (8) |
Geometric parameters (Å, º) top
Cs—O11i | 3.232 (2) | Cr—O12v | 1.963 (2) |
Cs—O11ii | 3.232 (2) | Cr—O12iii | 1.963 (2) |
Cs—O11iii | 3.232 (2) | Cr—O12vii | 1.963 (2) |
Cs—O11 | 3.232 (2) | Cr—O12 | 1.963 (2) |
Cs—O11iv | 3.232 (2) | Cr—O12viii | 1.963 (2) |
Cs—O11v | 3.232 (2) | Se—O1 | 1.627 (4) |
Cs—O2ii | 3.782 (2) | Se—O2 | 1.634 (2) |
Cs—O2 | 3.782 (2) | Se—O2v | 1.634 (2) |
Cs—O2v | 3.782 (2) | Se—O2iii | 1.634 (2) |
Cs—O2iv | 3.782 (2) | O11—H1 | 0.81 (1) |
Cs—O2iii | 3.782 (2) | O11—H2 | 0.82 (1) |
Cs—O2i | 3.782 (2) | O12—H3 | 0.82 (1) |
Cr—O12vi | 1.963 (2) | O12—H4 | 0.82 (1) |
| | | |
O11—Cs—O11ii | 66.16 (3) | O11iv—Cs—O2i | 70.15 (5) |
O11—Cs—O11iii | 113.84 (3) | O11v—Cs—O2i | 120.21 (5) |
O11i—Cs—O11ii | 113.84 (3) | O2—Cs—O2iii | 41.13 (5) |
O11i—Cs—O11iii | 66.16 (3) | O2ii—Cs—O2iv | 41.13 (5) |
O11ii—Cs—O11iii | 180.00 (6) | O2—Cs—O2iv | 180.00 (4) |
O11i—Cs—O11 | 66.16 (3) | O2v—Cs—O2iv | 138.87 (5) |
O11i—Cs—O11iv | 113.84 (3) | O2v—Cs—O2iii | 41.13 (5) |
O11ii—Cs—O11iv | 113.84 (3) | O2iv—Cs—O2iii | 138.87 (5) |
O11iii—Cs—O11iv | 66.16 (3) | O2ii—Cs—O2i | 41.13 (5) |
O11—Cs—O11iv | 180.0 | O2—Cs—O2i | 138.87 (5) |
O11i—Cs—O11v | 180.00 (8) | O2v—Cs—O2i | 180.0 |
O11ii—Cs—O11v | 66.16 (3) | O2iv—Cs—O2i | 41.13 (5) |
O11iii—Cs—O11v | 113.84 (3) | O2iii—Cs—O2i | 138.87 (5) |
O11—Cs—O11v | 113.84 (3) | O2ii—Cs—O2iii | 180.00 (5) |
O11iv—Cs—O11v | 66.16 (3) | O2ii—Cs—O2v | 138.87 (5) |
O11—Cs—O2 | 59.79 (5) | O2—Cs—O2v | 41.13 (5) |
O11i—Cs—O2ii | 70.15 (5) | O2ii—Cs—O2 | 138.87 (5) |
O11ii—Cs—O2ii | 59.79 (5) | O12—Cr—O12vi | 89.13 (8) |
O11iii—Cs—O2ii | 120.21 (5) | O12—Cr—O12iii | 90.87 (8) |
O11—Cs—O2ii | 81.38 (5) | O12vi—Cr—O12v | 89.13 (8) |
O11iv—Cs—O2ii | 98.62 (5) | O12vi—Cr—O12iii | 180.0 |
O11v—Cs—O2ii | 109.85 (5) | O12v—Cr—O12iii | 90.87 (8) |
O11i—Cs—O2 | 81.38 (5) | O12vi—Cr—O12vii | 90.87 (8) |
O11ii—Cs—O2 | 109.85 (5) | O12v—Cr—O12vii | 180.0 |
O11iii—Cs—O2 | 70.15 (5) | O12iii—Cr—O12vii | 89.13 (8) |
O11iv—Cs—O2 | 120.21 (5) | O12v—Cr—O12 | 90.87 (8) |
O11v—Cs—O2 | 98.62 (5) | O12vii—Cr—O12 | 89.13 (8) |
O11i—Cs—O2v | 120.21 (5) | O12vi—Cr—O12viii | 90.87 (8) |
O11ii—Cs—O2v | 81.38 (5) | O12v—Cr—O12viii | 89.13 (8) |
O11iii—Cs—O2v | 98.62 (5) | O12iii—Cr—O12viii | 89.13 (8) |
O11—Cs—O2v | 70.15 (5) | O12vii—Cr—O12viii | 90.87 (8) |
O11iv—Cs—O2v | 109.85 (5) | O12—Cr—O12viii | 180.00 (11) |
O11v—Cs—O2v | 59.79 (5) | O1—Se—O2 | 110.16 (8) |
O11i—Cs—O2iv | 98.62 (5) | O2—Se—O2iii | 108.77 (8) |
O11ii—Cs—O2iv | 70.15 (5) | O1—Se—O2v | 110.16 (8) |
O11iii—Cs—O2iv | 109.85 (5) | O2—Se—O2v | 108.77 (8) |
O11—Cs—O2iv | 120.21 (5) | O1—Se—O2iii | 110.16 (8) |
O11iv—Cs—O2iv | 59.79 (5) | O2v—Se—O2iii | 108.77 (8) |
O11v—Cs—O2iv | 81.38 (5) | O1—Se—Cs | 180.00 (6) |
O11i—Cs—O2iii | 109.85 (5) | O2—Se—Cs | 69.84 (8) |
O11ii—Cs—O2iii | 120.21 (5) | O2v—Se—Cs | 69.84 (8) |
O11iii—Cs—O2iii | 59.79 (5) | O2iii—Se—Cs | 69.84 (8) |
O11—Cs—O2iii | 98.62 (5) | Se—O2—Cs | 86.24 (8) |
O11iv—Cs—O2iii | 81.38 (5) | Cs—O11—H1 | 116 (3) |
O11v—Cs—O2iii | 70.15 (5) | Cs—O11—H2 | 117 (3) |
O11i—Cs—O2i | 59.79 (5) | H1—O11—H2 | 104 (4) |
O11ii—Cs—O2i | 98.62 (5) | Cr—O12—H3 | 123 (2) |
O11iii—Cs—O2i | 81.38 (5) | Cr—O12—H4 | 125 (3) |
O11—Cs—O2i | 109.85 (5) | H3—O12—H4 | 105 (3) |
Symmetry codes: (i) −y, −z, −x; (ii) −z, −x, −y; (iii) z, x, y; (iv) −x, −y, −z; (v) y, z, x; (vi) −z+1, −x+1, −y+1; (vii) −y+1, −z+1, −x+1; (viii) −x+1, −y+1, −z+1. |
Hydrogen-bond geometry (Å, º) top
D—H···A | D—H | H···A | D···A | D—H···A |
O11—H1···O1ix | 0.81 (1) | 2.02 (1) | 2.811 (3) | 166 (4) |
O11—H2···O2x | 0.82 (1) | 1.95 (1) | 2.753 (3) | 169 (4) |
O12—H3···O2xi | 0.82 (1) | 1.82 (1) | 2.635 (3) | 175 (3) |
O12—H4···O11xii | 0.82 (1) | 1.80 (1) | 2.620 (3) | 173 (4) |
Symmetry codes: (ix) x−1/2, y, −z+1/2; (x) y−1/2, −z+1/2, −x; (xi) z, −x+1/2, y+1/2; (xii) y, −z+1/2, x+1/2. |
(IIb) Chromium alpha-Alums
top
Crystal data top
CsCr(SeO4)2·12H2O | Melting point: not measured K |
Mr = 687.02 | Mo Kα radiation, λ = 0.71073 Å |
Cubic, Pa3 | Cell parameters from 14 reflections |
Hall symbol: -P 2ac 2ab 3 | θ = 16.5–17.2° |
a = 12.522 (3) Å | µ = 6.20 mm−1 |
V = 1963.5 (8) Å3 | T = 12 K |
Z = 4 | Prism, dark violet |
F(000) = 1324 | 0.65 × 0.64 × 0.63 mm |
Dx = 2.324 Mg m−3 | |
Data collection top
Huber 512 goniometer diffractometer | 916 reflections with I > 2σ(I) |
Radiation source: normal-focus sealed tube | Rint = 0.033 |
None monochromator | θmax = 30.0°, θmin = 2.8° |
ω–2θ scan | h = −7→17 |
Absorption correction: gaussian Xtal 3.4 (Hall, King & Stewart, 1994) | k = −7→17 |
Tmin = 0.132, Tmax = 0.188 | l = −7→17 |
4443 measured reflections | 3 standard reflections every 100 reflections |
963 independent reflections | intensity decay: 0.5% |
Refinement top
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.019 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.042 | w = 1/[σ2(Fo2) + (0.0122P)2 + 2.1334P] where P = (Fo2 + 2Fc2)/3 |
S = 1.31 | (Δ/σ)max = 0.001 |
963 reflections | Δρmax = 0.46 e Å−3 |
55 parameters | Δρmin = −0.45 e Å−3 |
4 restraints | Extinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.0092 (3) |
Crystal data top
CsCr(SeO4)2·12H2O | Z = 4 |
Mr = 687.02 | Mo Kα radiation |
Cubic, Pa3 | µ = 6.20 mm−1 |
a = 12.522 (3) Å | T = 12 K |
V = 1963.5 (8) Å3 | 0.65 × 0.64 × 0.63 mm |
Data collection top
Huber 512 goniometer diffractometer | 916 reflections with I > 2σ(I) |
Absorption correction: gaussian Xtal 3.4 (Hall, King & Stewart, 1994) | Rint = 0.033 |
Tmin = 0.132, Tmax = 0.188 | 3 standard reflections every 100 reflections |
4443 measured reflections | intensity decay: 0.5% |
963 independent reflections | |
Refinement top
R[F2 > 2σ(F2)] = 0.019 | 4 restraints |
wR(F2) = 0.042 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.31 | Δρmax = 0.46 e Å−3 |
963 reflections | Δρmin = −0.45 e Å−3 |
55 parameters | |
Special details top
Experimental. The correction for the absorption by the beryllium shield was performed by PROFIT (Streltsov & Zavodnik, 1989) program. |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top | x | y | z | Uiso*/Ueq | |
Cs | 0.0000 | 0.0000 | 0.0000 | 0.00401 (8) | |
Cr | 0.5000 | 0.5000 | 0.5000 | 0.00283 (13) | |
Se | 0.182558 (13) | 0.182558 (13) | 0.182558 (13) | 0.00297 (9) | |
O1 | 0.25820 (10) | 0.25820 (10) | 0.25820 (10) | 0.0077 (4) | |
O2 | 0.06066 (10) | 0.17818 (11) | 0.23076 (10) | 0.0066 (2) | |
O11 | −0.14282 (11) | 0.20648 (11) | 0.04845 (11) | 0.0074 (2) | |
O12 | 0.34334 (11) | 0.49408 (11) | 0.50842 (11) | 0.0060 (2) | |
H1 | −0.164 (3) | 0.208 (4) | 0.1128 (14) | 0.069 (15)* | |
H2 | −0.1937 (18) | 0.221 (3) | 0.007 (2) | 0.024 (8)* | |
H3 | 0.313 (2) | 0.478 (3) | 0.5664 (15) | 0.033 (9)* | |
H4 | 0.299 (2) | 0.483 (3) | 0.458 (2) | 0.033 (9)* | |
Atomic displacement parameters (Å2) top | U11 | U22 | U33 | U12 | U13 | U23 |
Cs | 0.00401 (8) | 0.00401 (8) | 0.00401 (8) | 0.00036 (5) | 0.00036 (5) | 0.00036 (5) |
Cr | 0.00283 (13) | 0.00283 (13) | 0.00283 (13) | −0.00016 (13) | −0.00016 (13) | −0.00016 (13) |
Se | 0.00297 (9) | 0.00297 (9) | 0.00297 (9) | 0.00020 (6) | 0.00020 (6) | 0.00020 (6) |
O1 | 0.0077 (4) | 0.0077 (4) | 0.0077 (4) | −0.0016 (4) | −0.0016 (4) | −0.0016 (4) |
O2 | 0.0042 (5) | 0.0070 (5) | 0.0087 (6) | 0.0007 (5) | 0.0034 (5) | 0.0015 (5) |
O11 | 0.0060 (5) | 0.0090 (6) | 0.0073 (6) | −0.0001 (5) | −0.0002 (5) | 0.0010 (5) |
O12 | 0.0041 (6) | 0.0089 (6) | 0.0049 (6) | −0.0009 (4) | −0.0002 (4) | 0.0002 (5) |
Geometric parameters (Å, º) top
Cs—O11i | 3.202 (2) | Cr—O12ii | 1.966 (1) |
Cs—O11ii | 3.202 (2) | Cr—O12vi | 1.966 (1) |
Cs—O11iii | 3.202 (2) | Cr—O12vii | 1.966 (1) |
Cs—O11 | 3.202 (2) | Cr—O12viii | 1.966 (1) |
Cs—O11iv | 3.202 (2) | Cr—O12i | 1.966 (1) |
Cs—O11v | 3.202 (2) | Se—O1 | 1.641 (2) |
Cs—O2iii | 3.729 (2) | Se—O2 | 1.642 (1) |
Cs—O2iv | 3.729 (2) | Se—O2i | 1.642 (1) |
Cs—O2v | 3.729 (2) | Se—O2ii | 1.642 (1) |
Cs—O2 | 3.729 (2) | O11—H1 | 0.849 (10) |
Cs—O2i | 3.729 (2) | O11—H2 | 0.844 (10) |
Cs—O2ii | 3.729 (2) | O12—H3 | 0.844 (10) |
Cr—O12 | 1.966 (1) | O12—H4 | 0.849 (10) |
| | | |
O11—Cs—O11iv | 66.18 (2) | O11iv—Cs—O2ii | 121.08 (3) |
O11—Cs—O11ii | 113.82 (2) | O11v—Cs—O2ii | 81.08 (3) |
O11i—Cs—O11ii | 113.82 (2) | O2—Cs—O2ii | 41.98 (3) |
O11i—Cs—O11iii | 180.00 (5) | O2iii—Cs—O2v | 41.98 (3) |
O11ii—Cs—O11iii | 66.18 (2) | O2iv—Cs—O2v | 41.98 (3) |
O11i—Cs—O11 | 113.82 (2) | O2i—Cs—O2ii | 41.98 (3) |
O11iii—Cs—O11 | 66.18 (2) | O2iii—Cs—O2iv | 41.98 (3) |
O11i—Cs—O11iv | 66.18 (2) | O2iii—Cs—O2ii | 138.02 (3) |
O11ii—Cs—O11iv | 180.00 (4) | O2iv—Cs—O2ii | 180.00 (4) |
O11iii—Cs—O11iv | 113.82 (2) | O2v—Cs—O2ii | 138.02 (3) |
O11i—Cs—O11v | 66.18 (2) | O2iii—Cs—O2i | 180.00 (3) |
O11ii—Cs—O11v | 66.18 (2) | O2iv—Cs—O2i | 138.02 (3) |
O11iii—Cs—O11v | 113.82 (2) | O2v—Cs—O2i | 138.02 (3) |
O11—Cs—O11v | 180.00 (4) | O2—Cs—O2i | 41.98 (3) |
O11iv—Cs—O11v | 113.82 (2) | O2iii—Cs—O2 | 138.02 (3) |
O11—Cs—O2 | 58.92 (3) | O2iv—Cs—O2 | 138.02 (3) |
O11i—Cs—O2iii | 121.08 (3) | O2v—Cs—O2 | 180.0 |
O11ii—Cs—O2iii | 81.08 (3) | O12—Cr—O12viii | 88.97 (5) |
O11iii—Cs—O2iii | 58.92 (3) | O12—Cr—O12ii | 91.03 (5) |
O11—Cs—O2iii | 109.28 (3) | O12—Cr—O12vi | 88.97 (5) |
O11iv—Cs—O2iii | 98.92 (3) | O12ii—Cr—O12vi | 88.97 (5) |
O11v—Cs—O2iii | 70.72 (3) | O12—Cr—O12vii | 180.0 |
O11i—Cs—O2iv | 109.28 (3) | O12ii—Cr—O12vii | 88.97 (5) |
O11ii—Cs—O2iv | 121.08 (3) | O12vi—Cr—O12vii | 91.03 (5) |
O11iii—Cs—O2iv | 70.72 (3) | O12ii—Cr—O12viii | 180.0 |
O11—Cs—O2iv | 81.08 (3) | O12vi—Cr—O12viii | 91.03 (5) |
O11iv—Cs—O2iv | 58.92 (3) | O12vii—Cr—O12viii | 91.03 (5) |
O11v—Cs—O2iv | 98.92 (3) | O12—Cr—O12i | 91.03 (5) |
O11i—Cs—O2v | 81.08 (3) | O12ii—Cr—O12i | 91.03 (5) |
O11ii—Cs—O2v | 109.28 (3) | O12vi—Cr—O12i | 180.0 |
O11iii—Cs—O2v | 98.92 (3) | O12vii—Cr—O12i | 88.97 (5) |
O11—Cs—O2v | 121.08 (3) | O12viii—Cr—O12i | 88.97 (5) |
O11iv—Cs—O2v | 70.72 (3) | O1—Se—O2 | 110.10 (5) |
O11v—Cs—O2v | 58.92 (3) | O1—Se—O2ii | 110.10 (5) |
O11i—Cs—O2 | 98.92 (3) | O1—Se—O2i | 110.10 (5) |
O11ii—Cs—O2 | 70.72 (3) | O2—Se—O2i | 108.83 (5) |
O11iii—Cs—O2 | 81.08 (3) | O2—Se—O2ii | 108.83 (5) |
O11iv—Cs—O2 | 109.28 (3) | O2i—Se—O2ii | 108.83 (5) |
O11v—Cs—O2 | 121.08 (3) | O1—Se—Cs | 180.00 (4) |
O11i—Cs—O2i | 58.92 (3) | O2—Se—Cs | 69.90 (5) |
O11ii—Cs—O2i | 98.92 (3) | O2i—Se—Cs | 69.90 (5) |
O11iii—Cs—O2i | 121.08 (3) | O2ii—Se—Cs | 69.90 (5) |
O11—Cs—O2i | 70.72 (3) | Se—O2—Cs | 85.67 (5) |
O11iv—Cs—O2i | 81.08 (3) | Cs—O11—H1 | 112 (3) |
O11v—Cs—O2i | 109.28 (3) | Cs—O11—H2 | 119 (2) |
O11i—Cs—O2ii | 70.72 (3) | H1—O11—H2 | 110 (4) |
O11ii—Cs—O2ii | 58.92 (3) | Cr—O12—H3 | 120 (2) |
O11iii—Cs—O2ii | 109.28 (3) | Cr—O12—H4 | 128 (2) |
O11—Cs—O2ii | 98.92 (3) | H3—O12—H4 | 108 (3) |
Symmetry codes: (i) y, z, x; (ii) z, x, y; (iii) −y, −z, −x; (iv) −z, −x, −y; (v) −x, −y, −z; (vi) −y+1, −z+1, −x+1; (vii) −x+1, −y+1, −z+1; (viii) −z+1, −x+1, −y+1. |
Hydrogen-bond geometry (Å, º) top
D—H···A | D—H | H···A | D···A | D—H···A |
O11—H1···O1ix | 0.85 (1) | 1.99 (2) | 2.796 (2) | 158 (4) |
O11—H2···O2x | 0.84 (1) | 1.91 (1) | 2.740 (2) | 167 (3) |
O12—H3···O2xi | 0.84 (1) | 1.80 (1) | 2.641 (2) | 171 (3) |
O12—H4···O11xii | 0.85 (1) | 1.76 (1) | 2.609 (2) | 176 (3) |
Symmetry codes: (ix) x−1/2, y, −z+1/2; (x) y−1/2, −z+1/2, −x; (xi) z, −x+1/2, y+1/2; (xii) y, −z+1/2, x+1/2. |
Experimental details
| (Ia) | (Ib) | (IIa) | (IIb) |
Crystal data |
Chemical formula | RbCr(SO4)2·12H2O | RbCr(SO4)2·12H2O | CsCr(SeO4)2·12H2O | CsCr(SeO4)2·12H2O |
Mr | 545.78 | 545.78 | 687.02 | 687.02 |
Crystal system, space group | Cubic, Pa3 | Cubic, Pa3 | Cubic, Pa3 | Cubic, Pa3 |
Temperature (K) | 293 | 12 | 293 | 12 |
a (Å) | 12.296 (2) | 12.241 (2) | 12.585 (1) | 12.522 (3) |
V (Å3) | 1859.1 (5) | 1834.2 (5) | 1993.2 (3) | 1963.5 (8) |
Z | 4 | 4 | 4 | 4 |
Radiation type | Mo Kα | Mo Kα | Mo Kα | Mo Kα |
µ (mm−1) | 3.53 | 3.58 | 6.11 | 6.20 |
Crystal size (mm) | 0.46 × 0.46 × 0.44 | 0.46 × 0.46 × 0.44 | 0.65 × 0.64 × 0.63 | 0.65 × 0.64 × 0.63 |
|
Data collection |
Diffractometer | Huber 512 goniometer diffractometer | Huber 512 goniometer diffractometer | Huber 512 goniometer diffractometer | Huber 512 goniometer diffractometer |
Absorption correction | Gaussian (Xtal 3.4; Hall et al., 1994) | Gaussian (Xtal 3.4; Hall et al., 1994) | Gaussian (Xtal 3.4; Hall et al., 1994) | Gaussian Xtal 3.4 (Hall, King & Stewart, 1994) |
Tmin, Tmax | 0.360, 0.420 | 0.340, 0.403 | 0.138, 0.189 | 0.132, 0.188 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 1655, 557, 444 | 4175, 905, 812 | 1751, 589, 549 | 4443, 963, 916 |
Rint | 0.027 | 0.019 | 0.020 | 0.033 |
(sin θ/λ)max (Å−1) | 0.595 | 0.704 | 0.595 | 0.703 |
|
Refinement |
R[F2 > 2σ(F2)], wR(F2), S | 0.032, 0.080, 1.05 | 0.019, 0.045, 1.09 | 0.020, 0.044, 1.26 | 0.019, 0.042, 1.31 |
No. of reflections | 557 | 905 | 589 | 963 |
No. of parameters | 55 | 55 | 55 | 55 |
No. of restraints | 4 | 0 | 4 | 4 |
H-atom treatment | All H-atom parameters refined | All H-atom parameters refined | All H-atom parameters refined | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.63, −0.24 | 0.38, −0.52 | 0.26, −0.54 | 0.46, −0.45 |
Selected geometric parameters (Å, º) for (Ia) topRb—O11 | 3.082 (3) | S1—O1 | 1.442 (6) |
Rb—O2 | 3.739 (4) | S1—O2 | 1.465 (3) |
Cr—O12 | 1.960 (2) | | |
| | | |
O11—Rb—O11i | 65.68 (4) | O12—Cr—O12iii | 89.13 (10) |
O11—Rb—O11ii | 114.32 (4) | O12—Cr—O12ii | 90.87 (10) |
O11—Rb—O2 | 61.17 (7) | O1—S1—O2 | 109.97 (15) |
O2—Rb—O2ii | 37.21 (7) | O2—S1—O2ii | 108.96 (15) |
Symmetry codes: (i) −z, −x, −y; (ii) z, x, y; (iii) −z+1, −x+1, −y+1. |
Hydrogen-bond geometry (Å, º) for (Ia) top
D—H···A | D—H | H···A | D···A | D—H···A |
O11—H1···O1iv | 0.813 (10) | 2.011 (12) | 2.821 (4) | 175 (4) |
O11—H2···O2v | 0.814 (10) | 1.956 (14) | 2.763 (4) | 171 (5) |
O12—H3···O2vi | 0.822 (10) | 1.800 (11) | 2.621 (4) | 178 (5) |
O12—H4···O11vii | 0.820 (10) | 1.803 (12) | 2.620 (4) | 174 (4) |
Symmetry codes: (iv) x−1/2, y, −z+1/2; (v) y−1/2, −z+1/2, −x; (vi) z, −x+1/2, y+1/2; (vii) y, −z+1/2, x+1/2. |
Selected geometric parameters (Å, º) for (Ib) topRb—O11 | 3.039 (1) | S1—O1 | 1.479 (2) |
Rb—O2 | 3.704 (1) | S1—O2 | 1.4798 (9) |
Cr—O12 | 1.965 (1) | | |
| | | |
O11—Rb—O11i | 65.798 (15) | O12—Cr—O12iii | 88.78 (4) |
O11—Rb—O11ii | 114.202 (15) | O12—Cr—O12ii | 91.22 (4) |
O11—Rb—O2 | 60.15 (2) | O1—S1—O2 | 109.77 (4) |
O2—Rb—O2ii | 38.00 (2) | O1—S1—O2ii | 109.77 (4) |
Symmetry codes: (i) −z, −x, −y; (ii) z, x, y; (iii) −z+1, −x+1, −y+1. |
Hydrogen-bond geometry (Å, º) for (Ib) top
D—H···A | D—H | H···A | D···A | D—H···A |
O11—H1···O1iv | 0.78 (3) | 2.04 (3) | 2.7933 (15) | 162 (2) |
O11—H2···O2v | 0.76 (2) | 2.02 (2) | 2.7541 (15) | 166 (2) |
O12—H3···O2vi | 0.81 (3) | 1.83 (3) | 2.6321 (14) | 171 (2) |
O12—H4···O11vii | 0.83 (3) | 1.79 (3) | 2.6087 (14) | 171 (3) |
Symmetry codes: (iv) x−1/2, y, −z+1/2; (v) y−1/2, −z+1/2, −x; (vi) z, −x+1/2, y+1/2; (vii) y, −z+1/2, x+1/2. |
Selected geometric parameters (Å, º) for (IIa) topCs—O11 | 3.232 (2) | Se—O1 | 1.627 (4) |
Cs—O2 | 3.782 (2) | Se—O2 | 1.634 (2) |
Cr—O12 | 1.963 (2) | | |
| | | |
O11—Cs—O11i | 66.16 (3) | O12—Cr—O12iii | 89.13 (8) |
O11—Cs—O11ii | 113.84 (3) | O12—Cr—O12ii | 90.87 (8) |
O11—Cs—O2 | 59.79 (5) | O1—Se—O2 | 110.16 (8) |
O2—Cs—O2ii | 41.13 (5) | O2—Se—O2ii | 108.77 (8) |
Symmetry codes: (i) −z, −x, −y; (ii) z, x, y; (iii) −z+1, −x+1, −y+1. |
Hydrogen-bond geometry (Å, º) for (IIa) top
D—H···A | D—H | H···A | D···A | D—H···A |
O11—H1···O1iv | 0.811 (10) | 2.018 (14) | 2.811 (3) | 166 (4) |
O11—H2···O2v | 0.815 (10) | 1.949 (14) | 2.753 (3) | 169 (4) |
O12—H3···O2vi | 0.817 (10) | 1.821 (11) | 2.635 (3) | 175 (3) |
O12—H4···O11vii | 0.822 (10) | 1.803 (12) | 2.620 (3) | 173 (4) |
Symmetry codes: (iv) x−1/2, y, −z+1/2; (v) y−1/2, −z+1/2, −x; (vi) z, −x+1/2, y+1/2; (vii) y, −z+1/2, x+1/2. |
Selected geometric parameters (Å, º) for (IIb) topCs—O11 | 3.202 (2) | Se—O1 | 1.641 (2) |
Cs—O2 | 3.729 (2) | Se—O2 | 1.642 (1) |
Cr—O12 | 1.966 (1) | | |
| | | |
O11—Cs—O11i | 66.18 (2) | O12—Cr—O12iii | 88.97 (5) |
O11—Cs—O11ii | 113.82 (2) | O12—Cr—O12ii | 91.03 (5) |
O11—Cs—O2 | 58.92 (3) | O1—Se—O2 | 110.10 (5) |
O2—Cs—O2ii | 41.98 (3) | O1—Se—O2ii | 110.10 (5) |
Symmetry codes: (i) −z, −x, −y; (ii) z, x, y; (iii) −z+1, −x+1, −y+1. |
Hydrogen-bond geometry (Å, º) for (IIb) top
D—H···A | D—H | H···A | D···A | D—H···A |
O11—H1···O1iv | 0.849 (10) | 1.99 (2) | 2.796 (2) | 158 (4) |
O11—H2···O2v | 0.844 (10) | 1.910 (12) | 2.740 (2) | 167 (3) |
O12—H3···O2vi | 0.844 (10) | 1.804 (11) | 2.641 (2) | 171 (3) |
O12—H4···O11vii | 0.849 (10) | 1.761 (10) | 2.609 (2) | 176 (3) |
Symmetry codes: (iv) x−1/2, y, −z+1/2; (v) y−1/2, −z+1/2, −x; (vi) z, −x+1/2, y+1/2; (vii) y, −z+1/2, x+1/2. |
The alums, MIMIII(XO4)2.12H2O, like Elpasolites and Tutton salts, have played a significant role in research in physics and chemistry. In particular, the systems have been invaluable for examination of metal ions in various well defined site symmetries in native and doped single crystals.
There are many previous structural studies of alums by X-ray diffraction at room temperature. They adopt the space group Pa-3 and occur in α-, β- and γ-forms. RbCr(SO4)2.12H2O has been studied only by film methods (Ledsham & Steeple, 1969) and CsCr(SeO4)2.12H2O somewhat more accurately (Armstrong et al., 1990). In these two studies the X—O and M—O bond length s.u.'s vary from 0.003–0.006 Å. Lower temperatures are of considerable interest to spectroscopic studies such as those of Tregenna-Piggott & Best (1996) and Tregenna-Piggott et al. (1997), and some others we have in hand, and serve to improve the accuracy of the structural determination.
There have been a number of neutron diffraction studies of both α- and β-alums at 15 K which show no abnormal behaviour or phase change resulting from the lowering in temperature There is increased accuracy, not only in hydrogen, but also non-hydrogen, parameters compared to room temperature X-ray studies (Best & Forsyth, 1990a,b, 1991; Best et al., 1993).
We have determined by X-ray diffraction at 293 and at 12 K the crystal structures of two α-alums of interest. The results illustrate the much improved accuracy, involving a factor mostly much greater than two in s.u.'s for non-hydrogen atoms which result from the lower temperature of the measurements. The crystal geometries are all typical of alums. The angle between the Cr—O bond and the unit cell axis varies from 4.6 to 6.1°, the O11—MI—O11' angle varies from 65.7 to 66.2°, and the water molecules are twisted well out of the CrO4 planes by an average value of 21 (3)° (Figures 1a and 1 b). These are distinct from the angles near 0°, and 60° observed for β-alums (Beattie et al., 1981).
The Cr—O bond lengths we observe apparently lengthen, due to reduced libration, from 1.960 (2) to 1.966 (1) Å as we lower the temperature from 293 to 12 K. This length agrees with that in the neutron determination of CsCr(SO4)2.12H2O of 1.961 (2) (Best & Fosyth, 1990b). Of the alums measured at low temperatures, the distortions of the CrO6 fragments from the octahedral stereochemistry that we observe in our compounds at 12 K are greater than the average observed by neutron diffraction.
The atomic displacement parameters at 12 K (Figure 1 b) show no evidence of intermolecular effects. It is well known that zero-point motion, such as we are seeing here, is dominated by intramolecular vibrational modes (Willis & Pryor, 1975). Thus, we can make the predictions which follow. (1) For Cr, S or Se, and Rb or Cs we should see relatively small (0.006–0.008 Å2) and isotropic thermal ellipsoids. (2) The O principal axes should be aligned with local bonding symmetry. (3) Terminal atoms (O1—O2) should be relatively isotropic perpendicular to the bond, and because of the relative frequencies of bond stretching and bending, motion perpendicular to the bond should exceed that parallel to it (4). The O12 displacement out of the approximate Cr—OH2 plane should be longer than the plane motion. All these predictions are borne out by experiment. Since these motions are so small this is an excellent internal test of the reliability of the measured diffraction intensities and their interpretation. We note that these requirements are more stringent than the bond rigidity tests that are commonly used at higher temperatures. The thermal motion at 293 K is greatly increased from 12 K (Figure 1a).