Download citation
Download citation
link to html
The crystal structures of the α-alums rubidium chromium bis(­sulfate) dodecahydrate, RbCr(SO4)2·12H2O, and caesium chromium bis[tetraoxoselenate(VI)] dodecahydrate, CsCr(SeO4)2·12H2O, have been determined by X-ray diffraction at 293 and 12 K. The metal atoms lie on {\overline 3} sites and the anions lie on threefold rotation axes. The accurate and extensive data sets lead to much more precise determinations than are available from earlier work, particularly at 12 K. The changes in the atomic displacement parameters between 293 and 12 K correspond to the respective predominances of intermolecular and intramolecular vibrational effects.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270100004960/br1280sup1.cif
Contains datablocks Ia, Ib, IIa, IIb, publ

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270100004960/br1280Iasup2.hkl
Contains datablock Ia

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270100004960/br1280Ibsup3.hkl
Contains datablock Ib

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270100004960/br1280IIasup4.hkl
Contains datablock IIa

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270100004960/br1280IIbsup5.hkl
Contains datablock IIb

Comment top

The alums, MIMIII(XO4)2.12H2O, like Elpasolites and Tutton salts, have played a significant role in research in physics and chemistry. In particular, the systems have been invaluable for examination of metal ions in various well defined site symmetries in native and doped single crystals.

There are many previous structural studies of alums by X-ray diffraction at room temperature. They adopt the space group Pa-3 and occur in α-, β- and γ-forms. RbCr(SO4)2.12H2O has been studied only by film methods (Ledsham & Steeple, 1969) and CsCr(SeO4)2.12H2O somewhat more accurately (Armstrong et al., 1990). In these two studies the X—O and M—O bond length s.u.'s vary from 0.003–0.006 Å. Lower temperatures are of considerable interest to spectroscopic studies such as those of Tregenna-Piggott & Best (1996) and Tregenna-Piggott et al. (1997), and some others we have in hand, and serve to improve the accuracy of the structural determination.

There have been a number of neutron diffraction studies of both α- and β-alums at 15 K which show no abnormal behaviour or phase change resulting from the lowering in temperature There is increased accuracy, not only in hydrogen, but also non-hydrogen, parameters compared to room temperature X-ray studies (Best & Forsyth, 1990a,b, 1991; Best et al., 1993).

We have determined by X-ray diffraction at 293 and at 12 K the crystal structures of two α-alums of interest. The results illustrate the much improved accuracy, involving a factor mostly much greater than two in s.u.'s for non-hydrogen atoms which result from the lower temperature of the measurements. The crystal geometries are all typical of alums. The angle between the Cr—O bond and the unit cell axis varies from 4.6 to 6.1°, the O11—MI—O11' angle varies from 65.7 to 66.2°, and the water molecules are twisted well out of the CrO4 planes by an average value of 21 (3)° (Figures 1a and 1 b). These are distinct from the angles near 0°, and 60° observed for β-alums (Beattie et al., 1981).

The Cr—O bond lengths we observe apparently lengthen, due to reduced libration, from 1.960 (2) to 1.966 (1) Å as we lower the temperature from 293 to 12 K. This length agrees with that in the neutron determination of CsCr(SO4)2.12H2O of 1.961 (2) (Best & Fosyth, 1990b). Of the alums measured at low temperatures, the distortions of the CrO6 fragments from the octahedral stereochemistry that we observe in our compounds at 12 K are greater than the average observed by neutron diffraction.

The atomic displacement parameters at 12 K (Figure 1 b) show no evidence of intermolecular effects. It is well known that zero-point motion, such as we are seeing here, is dominated by intramolecular vibrational modes (Willis & Pryor, 1975). Thus, we can make the predictions which follow. (1) For Cr, S or Se, and Rb or Cs we should see relatively small (0.006–0.008 Å2) and isotropic thermal ellipsoids. (2) The O principal axes should be aligned with local bonding symmetry. (3) Terminal atoms (O1—O2) should be relatively isotropic perpendicular to the bond, and because of the relative frequencies of bond stretching and bending, motion perpendicular to the bond should exceed that parallel to it (4). The O12 displacement out of the approximate Cr—OH2 plane should be longer than the plane motion. All these predictions are borne out by experiment. Since these motions are so small this is an excellent internal test of the reliability of the measured diffraction intensities and their interpretation. We note that these requirements are more stringent than the bond rigidity tests that are commonly used at higher temperatures. The thermal motion at 293 K is greatly increased from 12 K (Figure 1a).

Experimental top

Single crystals of the alums were obtained by recrystallization from aqueous solution.

Refinement top

Room temperature and the very low temperature data sets were collected on a locally assembled Huber 512 goniometer equipped with a Displex 202D cryogenic refrigerator (Hendricksen et al., 1986; Larsen, 1995).

Selected bond lengths and angles are given in Tables 1–8. The temperature evolution of thermal motion is illustrated for the hexaaquachromium(III) and selenate molecular ions CsCr(SeO4)2.12H2O in Figure 1. Lists of calculated and observed structure factors are given in the supplementary material.

The correction for the absorption by the beryllium shield was performed by PROFIT (Streltsov & Zavodnik, 1989) program.

Computing details top

Data collection: local diffractometer control software for (Ia), (Ib), (IIa); Local diffractometer control software for (IIb). Cell refinement: local diffractometer control software for (Ia), (Ib), (IIa); Local diffractometer control software for (IIb). For all compounds, data reduction: PROFIT (Streltsov & Zavodnik, 1989). Program(s) used to solve structure: SHELXS97 (Sheldrick, 1990) for (Ia), (IIa), (IIb); SHELXS86 (Sheldrick, 1990) for (Ib). For all compounds, program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Sheldrick, 1983). Software used to prepare material for publication: SHELXTL for (Ia), (Ib), (IIa); SHELXTL (Sheldrick, 1983) for (IIb).

Figures top
[Figure 1] Fig. 1. Environments of the atoms in (a) RbCr(SO4)2.12H2O at 293 K and (b) CsCr(SeO4)2.12H2O at 12 K. Displacement ellipsoids are shown at the 50% probability level.
(Ia) Chromium alpha-Alums top
Crystal data top
RbCr(SO4)2·12H2OMelting point: not measured K
Mr = 545.78Mo Kα radiation, λ = 0.71073 Å
Cubic, Pa3Cell parameters from 14 reflections
Hall symbol: -P 2ac 2ab 3θ = 16.9–17.6°
a = 12.296 (2) ŵ = 3.53 mm1
V = 1859.1 (5) Å3T = 293 K
Z = 4Cube, pink
F(000) = 11080.46 × 0.46 × 0.44 mm
Dx = 1.950 Mg m3
Data collection top
Huber 512 goniometer
diffractometer
444 reflections with I > 2σ(I)
Radiation source: normal-focus sealed tubeRint = 0.027
None monochromatorθmax = 25.0°, θmin = 2.9°
ω–2θ scanh = 014
Absorption correction: gaussian
(Xtal 3.4; Hall et al., 1994)
k = 014
Tmin = 0.360, Tmax = 0.420l = 140
1655 measured reflections3 standard reflections every 100 reflections
557 independent reflections intensity decay: 0.5%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.032All H-atom parameters refined
wR(F2) = 0.080 w = 1/[σ2(Fo2) + (0.0299P)2 + 4.4211P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
557 reflectionsΔρmax = 0.63 e Å3
55 parametersΔρmin = 0.24 e Å3
4 restraintsExtinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0249 (15)
Crystal data top
RbCr(SO4)2·12H2OZ = 4
Mr = 545.78Mo Kα radiation
Cubic, Pa3µ = 3.53 mm1
a = 12.296 (2) ÅT = 293 K
V = 1859.1 (5) Å30.46 × 0.46 × 0.44 mm
Data collection top
Huber 512 goniometer
diffractometer
444 reflections with I > 2σ(I)
Absorption correction: gaussian
(Xtal 3.4; Hall et al., 1994)
Rint = 0.027
Tmin = 0.360, Tmax = 0.4203 standard reflections every 100 reflections
1655 measured reflections intensity decay: 0.5%
557 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0324 restraints
wR(F2) = 0.080All H-atom parameters refined
S = 1.05Δρmax = 0.63 e Å3
557 reflectionsΔρmin = 0.24 e Å3
55 parameters
Special details top

Experimental. no special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Rb0.00000.00000.00000.0453 (4)
Cr0.50000.50000.50000.0177 (4)
S10.18670 (7)0.18670 (7)0.18670 (7)0.0246 (4)
O10.2544 (3)0.2544 (3)0.2544 (3)0.0682 (19)
O20.0761 (2)0.1827 (2)0.2308 (3)0.0554 (9)
O110.1429 (2)0.2004 (2)0.0477 (2)0.0381 (7)
O120.34142 (19)0.4891 (2)0.5125 (2)0.0280 (6)
H10.173 (3)0.212 (4)0.1056 (19)0.041 (13)*
H20.191 (3)0.218 (4)0.005 (3)0.067 (17)*
H30.308 (4)0.468 (4)0.566 (2)0.059 (15)*
H40.300 (3)0.480 (3)0.461 (2)0.040 (12)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Rb0.0453 (4)0.0453 (4)0.0453 (4)0.0107 (3)0.0107 (3)0.0107 (3)
Cr0.0177 (4)0.0177 (4)0.0177 (4)0.0003 (3)0.0003 (3)0.0003 (3)
S10.0246 (4)0.0246 (4)0.0246 (4)0.0038 (4)0.0038 (4)0.0038 (4)
O10.0682 (19)0.0682 (19)0.0682 (19)0.0160 (17)0.0160 (17)0.0160 (17)
O20.0444 (17)0.0446 (17)0.077 (2)0.0111 (14)0.0302 (16)0.0234 (16)
O110.0334 (15)0.0408 (16)0.0400 (16)0.0049 (13)0.0003 (13)0.0070 (13)
O120.0200 (12)0.0379 (15)0.0260 (14)0.0038 (10)0.0002 (10)0.0010 (11)
Geometric parameters (Å, º) top
Rb—O11i3.082 (3)Cr—O12vi1.960 (2)
Rb—O11ii3.082 (3)Cr—O121.960 (2)
Rb—O11iii3.082 (3)Cr—O12v1.960 (2)
Rb—O113.082 (3)Cr—O12vii1.960 (2)
Rb—O11iv3.082 (3)Cr—O12viii1.960 (2)
Rb—O11v3.082 (3)Cr—O12ii1.960 (2)
Rb—S13.9762 (16)S1—O11.442 (6)
Rb—S1i3.9762 (16)S1—O2v1.465 (3)
Rb—O2v3.739 (4)S1—O2ii1.465 (3)
Rb—O2ii3.739 (4)S1—O21.465 (3)
Rb—O2iii3.739 (4)O11—H10.813 (10)
Rb—O23.739 (4)O11—H20.814 (10)
Rb—O2i3.739 (4)O12—H30.822 (10)
Rb—O2iv3.739 (4)O12—H40.820 (10)
O11—Rb—O11iv65.68 (4)O11i—Rb—O2iv96.79 (7)
O11—Rb—O11v114.32 (4)O11ii—Rb—O2iv108.18 (7)
O11i—Rb—O11ii65.68 (4)O11iii—Rb—O2iv71.82 (7)
O11i—Rb—O11iii114.32 (4)O11—Rb—O2iv83.21 (7)
O11ii—Rb—O11iii180.00 (11)O11iv—Rb—O2iv61.17 (7)
O11i—Rb—O11180.00 (8)O11v—Rb—O2iv118.83 (7)
O11ii—Rb—O11114.32 (4)O2v—Rb—O2iv180.00 (11)
O11iii—Rb—O1165.68 (4)O2ii—Rb—O2iv142.79 (7)
O11i—Rb—O11iv114.32 (4)O2iii—Rb—O2iv37.21 (7)
O11ii—Rb—O11iv65.68 (4)O2—Rb—O2iv142.79 (7)
O11iii—Rb—O11iv114.32 (4)O2i—Rb—O2iv37.21 (7)
O11i—Rb—O11v65.68 (4)O11i—Rb—S1104.03 (5)
O11ii—Rb—O11v114.32 (4)O11ii—Rb—S175.97 (5)
O11iii—Rb—O11v65.68 (4)O11iii—Rb—S1104.03 (5)
O11iv—Rb—O11v180.0O11—Rb—S175.97 (5)
O11—Rb—O261.17 (7)O11iv—Rb—S1104.03 (5)
O11i—Rb—O2v83.21 (7)O11v—Rb—S175.97 (5)
O11ii—Rb—O2v71.82 (7)O11i—Rb—S1i75.97 (5)
O11iii—Rb—O2v108.18 (7)O11ii—Rb—S1i104.03 (5)
O11—Rb—O2v96.79 (7)O11iii—Rb—S1i75.97 (5)
O11iv—Rb—O2v118.83 (7)O11—Rb—S1i104.03 (5)
O11v—Rb—O2v61.17 (7)O11iv—Rb—S1i75.97 (5)
O11i—Rb—O2ii108.18 (7)O11v—Rb—S1i104.03 (5)
O11ii—Rb—O2ii61.17 (7)S1—Rb—S1i180.00 (4)
O11iii—Rb—O2ii118.83 (7)O12—Cr—O12viii89.13 (10)
O11—Rb—O2ii71.82 (7)O12—Cr—O12v90.87 (10)
O11iv—Rb—O2ii83.21 (7)O12vi—Cr—O12180.0
O11v—Rb—O2ii96.79 (7)O12vi—Cr—O12v89.13 (10)
O2v—Rb—O2ii37.21 (7)O12vi—Cr—O12vii90.87 (10)
O11i—Rb—O2iii71.82 (7)O12—Cr—O12vii89.13 (10)
O11ii—Rb—O2iii118.83 (7)O12v—Cr—O12vii89.13 (10)
O11iii—Rb—O2iii61.17 (7)O12vi—Cr—O12viii90.87 (10)
O11—Rb—O2iii108.18 (7)O12v—Cr—O12viii180.0
O11iv—Rb—O2iii96.79 (7)O12vii—Cr—O12viii90.87 (10)
O11v—Rb—O2iii83.21 (7)O12vi—Cr—O12ii89.13 (10)
O2v—Rb—O2iii142.79 (7)O12—Cr—O12ii90.87 (10)
O2ii—Rb—O2iii180.00 (7)O12v—Cr—O12ii90.87 (10)
O11i—Rb—O2118.83 (7)O12vii—Cr—O12ii180.0
O11ii—Rb—O296.79 (7)O12viii—Cr—O12ii89.13 (10)
O11iii—Rb—O283.21 (7)O1—S1—O2109.97 (15)
O11iv—Rb—O2108.18 (7)O2—S1—O2v108.96 (15)
O11v—Rb—O271.82 (7)O1—S1—O2v109.97 (15)
O2—Rb—O2v37.21 (7)O1—S1—O2ii109.97 (15)
O2—Rb—O2ii37.21 (7)O2v—S1—O2ii108.96 (15)
O2iii—Rb—O2142.79 (7)O2—S1—O2ii108.96 (15)
O11i—Rb—O2i61.17 (7)O1—S1—Rb180.00 (15)
O11ii—Rb—O2i83.21 (7)O2v—S1—Rb70.03 (15)
O11iii—Rb—O2i96.79 (7)O2ii—S1—Rb70.03 (15)
O11—Rb—O2i118.83 (7)O2—S1—Rb70.03 (15)
O11iv—Rb—O2i71.82 (7)Rb—O11—H1124 (3)
O11v—Rb—O2i108.18 (7)Rb—O11—H2120 (4)
O2v—Rb—O2i142.79 (7)H1—O11—H2101 (5)
O2ii—Rb—O2i142.79 (7)Cr—O12—H3126 (4)
O2iii—Rb—O2i37.21 (7)Cr—O12—H4124 (3)
O2—Rb—O2i180.00 (12)H3—O12—H4106 (5)
Symmetry codes: (i) x, y, z; (ii) y, z, x; (iii) y, z, x; (iv) z, x, y; (v) z, x, y; (vi) x+1, y+1, z+1; (vii) y+1, z+1, x+1; (viii) z+1, x+1, y+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O11—H1···O1ix0.81 (1)2.01 (1)2.821 (4)175 (4)
O11—H2···O2x0.81 (1)1.96 (1)2.763 (4)171 (5)
O12—H3···O2xi0.82 (1)1.80 (1)2.621 (4)178 (5)
O12—H4···O11xii0.82 (1)1.80 (1)2.620 (4)174 (4)
Symmetry codes: (ix) x1/2, y, z+1/2; (x) y1/2, z+1/2, x; (xi) z, x+1/2, y+1/2; (xii) y, z+1/2, x+1/2.
(Ib) Chromium alpha-Alums top
Crystal data top
RbCr(SO4)2·12H2OMelting point: not measured K
Mr = 545.78Mo Kα radiation, λ = 0.71073 Å
Cubic, Pa3Cell parameters from 14 reflections
Hall symbol: -P 2ac 2ab 3θ = 16.9–17.6°
a = 12.241 (2) ŵ = 3.58 mm1
V = 1834.2 (5) Å3T = 12 K
Z = 4Cube, pink
F(000) = 11080.46 × 0.46 × 0.44 mm
Dx = 1.976 Mg m3
Data collection top
Huber 512 goniometer
diffractometer
812 reflections with I > 2σ(I)
Radiation source: normal-focus sealed tubeRint = 0.019
None monochromatorθmax = 30.0°, θmin = 2.9°
ω–2θ scanh = 717
Absorption correction: gaussian
(Xtal 3.4; Hall et al., 1994)
k = 717
Tmin = 0.340, Tmax = 0.403l = 717
4175 measured reflections3 standard reflections every 100 reflections
905 independent reflections intensity decay: 0.5%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.019All H-atom parameters refined
wR(F2) = 0.045 w = 1/[σ2(Fo2) + (0.0167P)2 + 1.4261P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max < 0.001
905 reflectionsΔρmax = 0.38 e Å3
55 parametersΔρmin = 0.52 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0119 (4)
Crystal data top
RbCr(SO4)2·12H2OZ = 4
Mr = 545.78Mo Kα radiation
Cubic, Pa3µ = 3.58 mm1
a = 12.241 (2) ÅT = 12 K
V = 1834.2 (5) Å30.46 × 0.46 × 0.44 mm
Data collection top
Huber 512 goniometer
diffractometer
812 reflections with I > 2σ(I)
Absorption correction: gaussian
(Xtal 3.4; Hall et al., 1994)
Rint = 0.019
Tmin = 0.340, Tmax = 0.4033 standard reflections every 100 reflections
4175 measured reflections intensity decay: 0.5%
905 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0190 restraints
wR(F2) = 0.045All H-atom parameters refined
S = 1.09Δρmax = 0.38 e Å3
905 reflectionsΔρmin = 0.52 e Å3
55 parameters
Special details top

Experimental. The correction for the absorption by the beryllium shield was performed by PROFIT (Streltsov & Zavodnik, 1989) program.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Rb0.00000.00000.00000.00633 (10)
Cr0.50000.50000.50000.00326 (11)
S10.18551 (2)0.18551 (2)0.18551 (2)0.00419 (12)
O10.25528 (7)0.25528 (7)0.25528 (7)0.0089 (3)
O20.07270 (7)0.18407 (8)0.22894 (8)0.00765 (19)
O110.14175 (8)0.19772 (8)0.04938 (9)0.0080 (2)
O120.34010 (8)0.49132 (8)0.51150 (8)0.00650 (19)
H10.1628 (19)0.2029 (18)0.109 (2)0.029 (6)*
H20.1850 (18)0.2115 (17)0.0076 (16)0.018 (5)*
H30.312 (2)0.4720 (19)0.568 (2)0.038 (7)*
H40.301 (2)0.4783 (19)0.458 (2)0.036 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Rb0.00633 (10)0.00633 (10)0.00633 (10)0.00195 (6)0.00195 (6)0.00195 (6)
Cr0.00326 (11)0.00326 (11)0.00326 (11)0.00002 (9)0.00002 (9)0.00002 (9)
S10.00419 (12)0.00419 (12)0.00419 (12)0.00038 (10)0.00038 (10)0.00038 (10)
O10.0089 (3)0.0089 (3)0.0089 (3)0.0021 (3)0.0021 (3)0.0021 (3)
O20.0052 (4)0.0080 (4)0.0098 (4)0.0008 (3)0.0034 (3)0.0017 (3)
O110.0073 (4)0.0100 (4)0.0067 (4)0.0003 (3)0.0005 (4)0.0010 (3)
O120.0040 (4)0.0095 (4)0.0059 (4)0.0013 (3)0.0000 (3)0.0006 (3)
Geometric parameters (Å, º) top
Rb—O11i3.039 (1)Cr—O12vi1.965 (1)
Rb—O113.039 (1)Cr—O12ii1.965 (1)
Rb—O11ii3.039 (1)Cr—O12vii1.965 (1)
Rb—O11iii3.039 (1)Cr—O12viii1.965 (1)
Rb—O11iv3.039 (1)Cr—O121.965 (1)
Rb—O11v3.039 (1)S1—O11.479 (2)
Rb—O2v3.704 (1)S1—O2v1.4798 (9)
Rb—O2i3.704 (1)S1—O2ii1.4798 (9)
Rb—O2ii3.704 (1)S1—O21.4798 (9)
Rb—O2iv3.704 (1)O11—H10.78 (3)
Rb—O23.704 (1)O11—H20.76 (2)
Rb—O2iii3.704 (1)O12—H30.81 (3)
Cr—O12v1.965 (1)O12—H40.83 (3)
O11—Rb—O11iv65.798 (15)O11iv—Rb—O2107.64 (2)
O11—Rb—O11v114.202 (15)O11v—Rb—O272.36 (2)
O11i—Rb—O11180.00 (4)O2—Rb—O2v38.00 (2)
O11i—Rb—O11ii65.798 (15)O2i—Rb—O2180.00 (3)
O11—Rb—O11ii114.202 (15)O2ii—Rb—O238.00 (2)
O11i—Rb—O11iii114.202 (15)O2iv—Rb—O2142.00 (2)
O11—Rb—O11iii65.798 (15)O11i—Rb—O2iii72.36 (2)
O11ii—Rb—O11iii180.00 (4)O11—Rb—O2iii107.64 (2)
O11i—Rb—O11iv114.202 (15)O11ii—Rb—O2iii119.85 (2)
O11ii—Rb—O11iv65.798 (15)O11iii—Rb—O2iii60.15 (2)
O11iii—Rb—O11iv114.202 (15)O11iv—Rb—O2iii96.87 (2)
O11i—Rb—O11v65.798 (15)O11v—Rb—O2iii83.13 (2)
O11ii—Rb—O11v114.203 (15)O2v—Rb—O2iii142.00 (2)
O11iii—Rb—O11v65.798 (15)O2i—Rb—O2iii38.00 (2)
O11iv—Rb—O11v180.0O2ii—Rb—O2iii180.00 (3)
O11—Rb—O260.15 (2)O2iv—Rb—O2iii38.00 (2)
O11i—Rb—O2v83.13 (2)O2—Rb—O2iii142.00 (2)
O11—Rb—O2v96.87 (2)O12—Cr—O12viii88.78 (4)
O11ii—Rb—O2v72.36 (2)O12—Cr—O12v91.22 (4)
O11iii—Rb—O2v107.64 (2)O12v—Cr—O12vi88.78 (4)
O11iv—Rb—O2v119.85 (2)O12v—Cr—O12ii91.22 (4)
O11v—Rb—O2v60.15 (2)O12vi—Cr—O12ii180.0
O11i—Rb—O2i60.15 (2)O12v—Cr—O12vii88.78 (4)
O11—Rb—O2i119.85 (2)O12vi—Cr—O12vii91.22 (4)
O11ii—Rb—O2i83.13 (2)O12ii—Cr—O12vii88.78 (4)
O11iii—Rb—O2i96.87 (2)O12v—Cr—O12viii180.0
O11iv—Rb—O2i72.36 (2)O12vi—Cr—O12viii91.22 (4)
O11v—Rb—O2i107.64 (2)O12ii—Cr—O12viii88.78 (4)
O2v—Rb—O2i142.00 (2)O12vii—Cr—O12viii91.22 (4)
O11i—Rb—O2ii107.64 (2)O12vi—Cr—O1288.78 (4)
O11—Rb—O2ii72.36 (2)O12ii—Cr—O1291.22 (4)
O11ii—Rb—O2ii60.15 (2)O12vii—Cr—O12180.0
O11iii—Rb—O2ii119.85 (2)O1—S1—O2109.77 (4)
O11iv—Rb—O2ii83.13 (2)O1—S1—O2v109.77 (4)
O11v—Rb—O2ii96.87 (2)O1—S1—O2ii109.77 (4)
O2v—Rb—O2ii38.00 (2)O2v—S1—O2ii109.17 (4)
O2i—Rb—O2ii142.00 (2)O2v—S1—O2109.17 (4)
O11i—Rb—O2iv96.87 (2)O2ii—S1—O2109.17 (4)
O11—Rb—O2iv83.13 (2)O1—S1—Rb180.00 (5)
O11ii—Rb—O2iv107.64 (2)O2v—S1—Rb70.23 (4)
O11iii—Rb—O2iv72.36 (2)O2ii—S1—Rb70.23 (4)
O11iv—Rb—O2iv60.15 (2)O2—S1—Rb70.23 (4)
O11v—Rb—O2iv119.85 (2)S1—O2—Rb87.69 (4)
O2v—Rb—O2iv180.00 (2)Rb—O11—H1116.2 (17)
O2i—Rb—O2iv38.00 (2)Rb—O11—H2116.3 (16)
O2ii—Rb—O2iv142.00 (2)H1—O11—H2113 (2)
O11i—Rb—O2119.85 (2)Cr—O12—H3119.7 (17)
O11ii—Rb—O296.87 (2)Cr—O12—H4122.3 (17)
O11iii—Rb—O283.13 (2)H3—O12—H4112 (2)
Symmetry codes: (i) x, y, z; (ii) y, z, x; (iii) y, z, x; (iv) z, x, y; (v) z, x, y; (vi) y+1, z+1, x+1; (vii) x+1, y+1, z+1; (viii) z+1, x+1, y+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O11—H1···O1ix0.78 (3)2.04 (3)2.7933 (15)162 (2)
O11—H2···O2x0.76 (2)2.02 (2)2.7541 (15)166 (2)
O12—H3···O2xi0.81 (3)1.83 (3)2.6321 (14)171 (2)
O12—H4···O11xii0.83 (3)1.79 (3)2.6087 (14)171 (3)
Symmetry codes: (ix) x1/2, y, z+1/2; (x) y1/2, z+1/2, x; (xi) z, x+1/2, y+1/2; (xii) y, z+1/2, x+1/2.
(IIa) Chromium alpha-Alums top
Crystal data top
CsCr(SeO4)2·12H2OMelting point: not measured K
Mr = 687.02Mo Kα radiation, λ = 0.71073 Å
Cubic, Pa3Cell parameters from 14 reflections
Hall symbol: -P 2ac 2ab 3θ = 16.4–17.1°
a = 12.585 (1) ŵ = 6.11 mm1
V = 1993.2 (3) Å3T = 293 K
Z = 4Prism, dark violet
F(000) = 13240.65 × 0.64 × 0.63 mm
Dx = 2.289 Mg m3
Data collection top
Huber 512 goniometer
diffractometer
549 reflections with I > 2σ(I)
Radiation source: normal-focus sealed tubeRint = 0.020
None monochromatorθmax = 25.0°, θmin = 2.8°
ω–2θ scanh = 014
Absorption correction: gaussian
(Xtal 3.4; Hall et al., 1994)
k = 014
Tmin = 0.138, Tmax = 0.189l = 140
1751 measured reflections3 standard reflections every 100 reflections
589 independent reflections intensity decay: 0.5%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.020All H-atom parameters refined
wR(F2) = 0.044 w = 1/[σ2(Fo2) + (0.0194P)2 + 0.7907P]
where P = (Fo2 + 2Fc2)/3
S = 1.26(Δ/σ)max < 0.001
589 reflectionsΔρmax = 0.26 e Å3
55 parametersΔρmin = 0.54 e Å3
4 restraintsExtinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0166 (6)
Crystal data top
CsCr(SeO4)2·12H2OZ = 4
Mr = 687.02Mo Kα radiation
Cubic, Pa3µ = 6.11 mm1
a = 12.585 (1) ÅT = 293 K
V = 1993.2 (3) Å30.65 × 0.64 × 0.63 mm
Data collection top
Huber 512 goniometer
diffractometer
549 reflections with I > 2σ(I)
Absorption correction: gaussian
(Xtal 3.4; Hall et al., 1994)
Rint = 0.020
Tmin = 0.138, Tmax = 0.1893 standard reflections every 100 reflections
1751 measured reflections intensity decay: 0.5%
589 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0204 restraints
wR(F2) = 0.044All H-atom parameters refined
S = 1.26Δρmax = 0.26 e Å3
589 reflectionsΔρmin = 0.54 e Å3
55 parameters
Special details top

Experimental. no special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cs0.00000.00000.00000.03787 (19)
Cr0.50000.50000.50000.0181 (2)
Se0.184457 (19)0.184457 (19)0.184457 (19)0.02265 (18)
O10.25909 (17)0.25909 (17)0.25909 (17)0.0503 (11)
O20.06434 (16)0.17811 (15)0.23339 (17)0.0416 (5)
O110.14271 (16)0.20834 (16)0.04678 (18)0.0367 (5)
O120.34454 (15)0.49205 (15)0.50984 (14)0.0271 (4)
H10.167 (3)0.213 (3)0.1063 (15)0.062 (12)*
H20.194 (2)0.218 (4)0.009 (3)0.072 (14)*
H30.314 (2)0.474 (3)0.5640 (16)0.049 (10)*
H40.305 (2)0.475 (3)0.461 (2)0.059 (12)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cs0.03787 (19)0.03787 (19)0.03787 (19)0.00343 (11)0.00343 (11)0.00343 (11)
Cr0.0181 (2)0.0181 (2)0.0181 (2)0.00016 (19)0.00016 (19)0.00016 (19)
Se0.02265 (18)0.02265 (18)0.02265 (18)0.00290 (9)0.00290 (9)0.00290 (9)
O10.0503 (11)0.0503 (11)0.0503 (11)0.0106 (10)0.0106 (10)0.0106 (10)
O20.0329 (11)0.0363 (11)0.0555 (12)0.0057 (8)0.0217 (10)0.0145 (9)
O110.0311 (10)0.0406 (11)0.0385 (12)0.0043 (9)0.0003 (10)0.0069 (10)
O120.0195 (9)0.0380 (11)0.0237 (10)0.0034 (7)0.0015 (7)0.0004 (8)
Geometric parameters (Å, º) top
Cs—O11i3.232 (2)Cr—O12v1.963 (2)
Cs—O11ii3.232 (2)Cr—O12iii1.963 (2)
Cs—O11iii3.232 (2)Cr—O12vii1.963 (2)
Cs—O113.232 (2)Cr—O121.963 (2)
Cs—O11iv3.232 (2)Cr—O12viii1.963 (2)
Cs—O11v3.232 (2)Se—O11.627 (4)
Cs—O2ii3.782 (2)Se—O21.634 (2)
Cs—O23.782 (2)Se—O2v1.634 (2)
Cs—O2v3.782 (2)Se—O2iii1.634 (2)
Cs—O2iv3.782 (2)O11—H10.81 (1)
Cs—O2iii3.782 (2)O11—H20.82 (1)
Cs—O2i3.782 (2)O12—H30.82 (1)
Cr—O12vi1.963 (2)O12—H40.82 (1)
O11—Cs—O11ii66.16 (3)O11iv—Cs—O2i70.15 (5)
O11—Cs—O11iii113.84 (3)O11v—Cs—O2i120.21 (5)
O11i—Cs—O11ii113.84 (3)O2—Cs—O2iii41.13 (5)
O11i—Cs—O11iii66.16 (3)O2ii—Cs—O2iv41.13 (5)
O11ii—Cs—O11iii180.00 (6)O2—Cs—O2iv180.00 (4)
O11i—Cs—O1166.16 (3)O2v—Cs—O2iv138.87 (5)
O11i—Cs—O11iv113.84 (3)O2v—Cs—O2iii41.13 (5)
O11ii—Cs—O11iv113.84 (3)O2iv—Cs—O2iii138.87 (5)
O11iii—Cs—O11iv66.16 (3)O2ii—Cs—O2i41.13 (5)
O11—Cs—O11iv180.0O2—Cs—O2i138.87 (5)
O11i—Cs—O11v180.00 (8)O2v—Cs—O2i180.0
O11ii—Cs—O11v66.16 (3)O2iv—Cs—O2i41.13 (5)
O11iii—Cs—O11v113.84 (3)O2iii—Cs—O2i138.87 (5)
O11—Cs—O11v113.84 (3)O2ii—Cs—O2iii180.00 (5)
O11iv—Cs—O11v66.16 (3)O2ii—Cs—O2v138.87 (5)
O11—Cs—O259.79 (5)O2—Cs—O2v41.13 (5)
O11i—Cs—O2ii70.15 (5)O2ii—Cs—O2138.87 (5)
O11ii—Cs—O2ii59.79 (5)O12—Cr—O12vi89.13 (8)
O11iii—Cs—O2ii120.21 (5)O12—Cr—O12iii90.87 (8)
O11—Cs—O2ii81.38 (5)O12vi—Cr—O12v89.13 (8)
O11iv—Cs—O2ii98.62 (5)O12vi—Cr—O12iii180.0
O11v—Cs—O2ii109.85 (5)O12v—Cr—O12iii90.87 (8)
O11i—Cs—O281.38 (5)O12vi—Cr—O12vii90.87 (8)
O11ii—Cs—O2109.85 (5)O12v—Cr—O12vii180.0
O11iii—Cs—O270.15 (5)O12iii—Cr—O12vii89.13 (8)
O11iv—Cs—O2120.21 (5)O12v—Cr—O1290.87 (8)
O11v—Cs—O298.62 (5)O12vii—Cr—O1289.13 (8)
O11i—Cs—O2v120.21 (5)O12vi—Cr—O12viii90.87 (8)
O11ii—Cs—O2v81.38 (5)O12v—Cr—O12viii89.13 (8)
O11iii—Cs—O2v98.62 (5)O12iii—Cr—O12viii89.13 (8)
O11—Cs—O2v70.15 (5)O12vii—Cr—O12viii90.87 (8)
O11iv—Cs—O2v109.85 (5)O12—Cr—O12viii180.00 (11)
O11v—Cs—O2v59.79 (5)O1—Se—O2110.16 (8)
O11i—Cs—O2iv98.62 (5)O2—Se—O2iii108.77 (8)
O11ii—Cs—O2iv70.15 (5)O1—Se—O2v110.16 (8)
O11iii—Cs—O2iv109.85 (5)O2—Se—O2v108.77 (8)
O11—Cs—O2iv120.21 (5)O1—Se—O2iii110.16 (8)
O11iv—Cs—O2iv59.79 (5)O2v—Se—O2iii108.77 (8)
O11v—Cs—O2iv81.38 (5)O1—Se—Cs180.00 (6)
O11i—Cs—O2iii109.85 (5)O2—Se—Cs69.84 (8)
O11ii—Cs—O2iii120.21 (5)O2v—Se—Cs69.84 (8)
O11iii—Cs—O2iii59.79 (5)O2iii—Se—Cs69.84 (8)
O11—Cs—O2iii98.62 (5)Se—O2—Cs86.24 (8)
O11iv—Cs—O2iii81.38 (5)Cs—O11—H1116 (3)
O11v—Cs—O2iii70.15 (5)Cs—O11—H2117 (3)
O11i—Cs—O2i59.79 (5)H1—O11—H2104 (4)
O11ii—Cs—O2i98.62 (5)Cr—O12—H3123 (2)
O11iii—Cs—O2i81.38 (5)Cr—O12—H4125 (3)
O11—Cs—O2i109.85 (5)H3—O12—H4105 (3)
Symmetry codes: (i) y, z, x; (ii) z, x, y; (iii) z, x, y; (iv) x, y, z; (v) y, z, x; (vi) z+1, x+1, y+1; (vii) y+1, z+1, x+1; (viii) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O11—H1···O1ix0.81 (1)2.02 (1)2.811 (3)166 (4)
O11—H2···O2x0.82 (1)1.95 (1)2.753 (3)169 (4)
O12—H3···O2xi0.82 (1)1.82 (1)2.635 (3)175 (3)
O12—H4···O11xii0.82 (1)1.80 (1)2.620 (3)173 (4)
Symmetry codes: (ix) x1/2, y, z+1/2; (x) y1/2, z+1/2, x; (xi) z, x+1/2, y+1/2; (xii) y, z+1/2, x+1/2.
(IIb) Chromium alpha-Alums top
Crystal data top
CsCr(SeO4)2·12H2OMelting point: not measured K
Mr = 687.02Mo Kα radiation, λ = 0.71073 Å
Cubic, Pa3Cell parameters from 14 reflections
Hall symbol: -P 2ac 2ab 3θ = 16.5–17.2°
a = 12.522 (3) ŵ = 6.20 mm1
V = 1963.5 (8) Å3T = 12 K
Z = 4Prism, dark violet
F(000) = 13240.65 × 0.64 × 0.63 mm
Dx = 2.324 Mg m3
Data collection top
Huber 512 goniometer
diffractometer
916 reflections with I > 2σ(I)
Radiation source: normal-focus sealed tubeRint = 0.033
None monochromatorθmax = 30.0°, θmin = 2.8°
ω–2θ scanh = 717
Absorption correction: gaussian
Xtal 3.4 (Hall, King & Stewart, 1994)
k = 717
Tmin = 0.132, Tmax = 0.188l = 717
4443 measured reflections3 standard reflections every 100 reflections
963 independent reflections intensity decay: 0.5%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.019H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.042 w = 1/[σ2(Fo2) + (0.0122P)2 + 2.1334P]
where P = (Fo2 + 2Fc2)/3
S = 1.31(Δ/σ)max = 0.001
963 reflectionsΔρmax = 0.46 e Å3
55 parametersΔρmin = 0.45 e Å3
4 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0092 (3)
Crystal data top
CsCr(SeO4)2·12H2OZ = 4
Mr = 687.02Mo Kα radiation
Cubic, Pa3µ = 6.20 mm1
a = 12.522 (3) ÅT = 12 K
V = 1963.5 (8) Å30.65 × 0.64 × 0.63 mm
Data collection top
Huber 512 goniometer
diffractometer
916 reflections with I > 2σ(I)
Absorption correction: gaussian
Xtal 3.4 (Hall, King & Stewart, 1994)
Rint = 0.033
Tmin = 0.132, Tmax = 0.1883 standard reflections every 100 reflections
4443 measured reflections intensity decay: 0.5%
963 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0194 restraints
wR(F2) = 0.042H atoms treated by a mixture of independent and constrained refinement
S = 1.31Δρmax = 0.46 e Å3
963 reflectionsΔρmin = 0.45 e Å3
55 parameters
Special details top

Experimental. The correction for the absorption by the beryllium shield was performed by PROFIT (Streltsov & Zavodnik, 1989) program.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cs0.00000.00000.00000.00401 (8)
Cr0.50000.50000.50000.00283 (13)
Se0.182558 (13)0.182558 (13)0.182558 (13)0.00297 (9)
O10.25820 (10)0.25820 (10)0.25820 (10)0.0077 (4)
O20.06066 (10)0.17818 (11)0.23076 (10)0.0066 (2)
O110.14282 (11)0.20648 (11)0.04845 (11)0.0074 (2)
O120.34334 (11)0.49408 (11)0.50842 (11)0.0060 (2)
H10.164 (3)0.208 (4)0.1128 (14)0.069 (15)*
H20.1937 (18)0.221 (3)0.007 (2)0.024 (8)*
H30.313 (2)0.478 (3)0.5664 (15)0.033 (9)*
H40.299 (2)0.483 (3)0.458 (2)0.033 (9)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cs0.00401 (8)0.00401 (8)0.00401 (8)0.00036 (5)0.00036 (5)0.00036 (5)
Cr0.00283 (13)0.00283 (13)0.00283 (13)0.00016 (13)0.00016 (13)0.00016 (13)
Se0.00297 (9)0.00297 (9)0.00297 (9)0.00020 (6)0.00020 (6)0.00020 (6)
O10.0077 (4)0.0077 (4)0.0077 (4)0.0016 (4)0.0016 (4)0.0016 (4)
O20.0042 (5)0.0070 (5)0.0087 (6)0.0007 (5)0.0034 (5)0.0015 (5)
O110.0060 (5)0.0090 (6)0.0073 (6)0.0001 (5)0.0002 (5)0.0010 (5)
O120.0041 (6)0.0089 (6)0.0049 (6)0.0009 (4)0.0002 (4)0.0002 (5)
Geometric parameters (Å, º) top
Cs—O11i3.202 (2)Cr—O12ii1.966 (1)
Cs—O11ii3.202 (2)Cr—O12vi1.966 (1)
Cs—O11iii3.202 (2)Cr—O12vii1.966 (1)
Cs—O113.202 (2)Cr—O12viii1.966 (1)
Cs—O11iv3.202 (2)Cr—O12i1.966 (1)
Cs—O11v3.202 (2)Se—O11.641 (2)
Cs—O2iii3.729 (2)Se—O21.642 (1)
Cs—O2iv3.729 (2)Se—O2i1.642 (1)
Cs—O2v3.729 (2)Se—O2ii1.642 (1)
Cs—O23.729 (2)O11—H10.849 (10)
Cs—O2i3.729 (2)O11—H20.844 (10)
Cs—O2ii3.729 (2)O12—H30.844 (10)
Cr—O121.966 (1)O12—H40.849 (10)
O11—Cs—O11iv66.18 (2)O11iv—Cs—O2ii121.08 (3)
O11—Cs—O11ii113.82 (2)O11v—Cs—O2ii81.08 (3)
O11i—Cs—O11ii113.82 (2)O2—Cs—O2ii41.98 (3)
O11i—Cs—O11iii180.00 (5)O2iii—Cs—O2v41.98 (3)
O11ii—Cs—O11iii66.18 (2)O2iv—Cs—O2v41.98 (3)
O11i—Cs—O11113.82 (2)O2i—Cs—O2ii41.98 (3)
O11iii—Cs—O1166.18 (2)O2iii—Cs—O2iv41.98 (3)
O11i—Cs—O11iv66.18 (2)O2iii—Cs—O2ii138.02 (3)
O11ii—Cs—O11iv180.00 (4)O2iv—Cs—O2ii180.00 (4)
O11iii—Cs—O11iv113.82 (2)O2v—Cs—O2ii138.02 (3)
O11i—Cs—O11v66.18 (2)O2iii—Cs—O2i180.00 (3)
O11ii—Cs—O11v66.18 (2)O2iv—Cs—O2i138.02 (3)
O11iii—Cs—O11v113.82 (2)O2v—Cs—O2i138.02 (3)
O11—Cs—O11v180.00 (4)O2—Cs—O2i41.98 (3)
O11iv—Cs—O11v113.82 (2)O2iii—Cs—O2138.02 (3)
O11—Cs—O258.92 (3)O2iv—Cs—O2138.02 (3)
O11i—Cs—O2iii121.08 (3)O2v—Cs—O2180.0
O11ii—Cs—O2iii81.08 (3)O12—Cr—O12viii88.97 (5)
O11iii—Cs—O2iii58.92 (3)O12—Cr—O12ii91.03 (5)
O11—Cs—O2iii109.28 (3)O12—Cr—O12vi88.97 (5)
O11iv—Cs—O2iii98.92 (3)O12ii—Cr—O12vi88.97 (5)
O11v—Cs—O2iii70.72 (3)O12—Cr—O12vii180.0
O11i—Cs—O2iv109.28 (3)O12ii—Cr—O12vii88.97 (5)
O11ii—Cs—O2iv121.08 (3)O12vi—Cr—O12vii91.03 (5)
O11iii—Cs—O2iv70.72 (3)O12ii—Cr—O12viii180.0
O11—Cs—O2iv81.08 (3)O12vi—Cr—O12viii91.03 (5)
O11iv—Cs—O2iv58.92 (3)O12vii—Cr—O12viii91.03 (5)
O11v—Cs—O2iv98.92 (3)O12—Cr—O12i91.03 (5)
O11i—Cs—O2v81.08 (3)O12ii—Cr—O12i91.03 (5)
O11ii—Cs—O2v109.28 (3)O12vi—Cr—O12i180.0
O11iii—Cs—O2v98.92 (3)O12vii—Cr—O12i88.97 (5)
O11—Cs—O2v121.08 (3)O12viii—Cr—O12i88.97 (5)
O11iv—Cs—O2v70.72 (3)O1—Se—O2110.10 (5)
O11v—Cs—O2v58.92 (3)O1—Se—O2ii110.10 (5)
O11i—Cs—O298.92 (3)O1—Se—O2i110.10 (5)
O11ii—Cs—O270.72 (3)O2—Se—O2i108.83 (5)
O11iii—Cs—O281.08 (3)O2—Se—O2ii108.83 (5)
O11iv—Cs—O2109.28 (3)O2i—Se—O2ii108.83 (5)
O11v—Cs—O2121.08 (3)O1—Se—Cs180.00 (4)
O11i—Cs—O2i58.92 (3)O2—Se—Cs69.90 (5)
O11ii—Cs—O2i98.92 (3)O2i—Se—Cs69.90 (5)
O11iii—Cs—O2i121.08 (3)O2ii—Se—Cs69.90 (5)
O11—Cs—O2i70.72 (3)Se—O2—Cs85.67 (5)
O11iv—Cs—O2i81.08 (3)Cs—O11—H1112 (3)
O11v—Cs—O2i109.28 (3)Cs—O11—H2119 (2)
O11i—Cs—O2ii70.72 (3)H1—O11—H2110 (4)
O11ii—Cs—O2ii58.92 (3)Cr—O12—H3120 (2)
O11iii—Cs—O2ii109.28 (3)Cr—O12—H4128 (2)
O11—Cs—O2ii98.92 (3)H3—O12—H4108 (3)
Symmetry codes: (i) y, z, x; (ii) z, x, y; (iii) y, z, x; (iv) z, x, y; (v) x, y, z; (vi) y+1, z+1, x+1; (vii) x+1, y+1, z+1; (viii) z+1, x+1, y+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O11—H1···O1ix0.85 (1)1.99 (2)2.796 (2)158 (4)
O11—H2···O2x0.84 (1)1.91 (1)2.740 (2)167 (3)
O12—H3···O2xi0.84 (1)1.80 (1)2.641 (2)171 (3)
O12—H4···O11xii0.85 (1)1.76 (1)2.609 (2)176 (3)
Symmetry codes: (ix) x1/2, y, z+1/2; (x) y1/2, z+1/2, x; (xi) z, x+1/2, y+1/2; (xii) y, z+1/2, x+1/2.

Experimental details

(Ia)(Ib)(IIa)(IIb)
Crystal data
Chemical formulaRbCr(SO4)2·12H2ORbCr(SO4)2·12H2OCsCr(SeO4)2·12H2OCsCr(SeO4)2·12H2O
Mr545.78545.78687.02687.02
Crystal system, space groupCubic, Pa3Cubic, Pa3Cubic, Pa3Cubic, Pa3
Temperature (K)2931229312
a (Å)12.296 (2) 12.241 (2) 12.585 (1) 12.522 (3)
V3)1859.1 (5)1834.2 (5)1993.2 (3)1963.5 (8)
Z4444
Radiation typeMo KαMo KαMo KαMo Kα
µ (mm1)3.533.586.116.20
Crystal size (mm)0.46 × 0.46 × 0.440.46 × 0.46 × 0.440.65 × 0.64 × 0.630.65 × 0.64 × 0.63
Data collection
DiffractometerHuber 512 goniometer
diffractometer
Huber 512 goniometer
diffractometer
Huber 512 goniometer
diffractometer
Huber 512 goniometer
diffractometer
Absorption correctionGaussian
(Xtal 3.4; Hall et al., 1994)
Gaussian
(Xtal 3.4; Hall et al., 1994)
Gaussian
(Xtal 3.4; Hall et al., 1994)
Gaussian
Xtal 3.4 (Hall, King & Stewart, 1994)
Tmin, Tmax0.360, 0.4200.340, 0.4030.138, 0.1890.132, 0.188
No. of measured, independent and
observed [I > 2σ(I)] reflections
1655, 557, 444 4175, 905, 812 1751, 589, 549 4443, 963, 916
Rint0.0270.0190.0200.033
(sin θ/λ)max1)0.5950.7040.5950.703
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.080, 1.05 0.019, 0.045, 1.09 0.020, 0.044, 1.26 0.019, 0.042, 1.31
No. of reflections557905589963
No. of parameters55555555
No. of restraints4044
H-atom treatmentAll H-atom parameters refinedAll H-atom parameters refinedAll H-atom parameters refinedH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.63, 0.240.38, 0.520.26, 0.540.46, 0.45

Computer programs: local diffractometer control software, Local diffractometer control software, PROFIT (Streltsov & Zavodnik, 1989), SHELXS97 (Sheldrick, 1990), SHELXS86 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997), SHELXTL (Sheldrick, 1983), SHELXTL.

Selected geometric parameters (Å, º) for (Ia) top
Rb—O113.082 (3)S1—O11.442 (6)
Rb—O23.739 (4)S1—O21.465 (3)
Cr—O121.960 (2)
O11—Rb—O11i65.68 (4)O12—Cr—O12iii89.13 (10)
O11—Rb—O11ii114.32 (4)O12—Cr—O12ii90.87 (10)
O11—Rb—O261.17 (7)O1—S1—O2109.97 (15)
O2—Rb—O2ii37.21 (7)O2—S1—O2ii108.96 (15)
Symmetry codes: (i) z, x, y; (ii) z, x, y; (iii) z+1, x+1, y+1.
Hydrogen-bond geometry (Å, º) for (Ia) top
D—H···AD—HH···AD···AD—H···A
O11—H1···O1iv0.813 (10)2.011 (12)2.821 (4)175 (4)
O11—H2···O2v0.814 (10)1.956 (14)2.763 (4)171 (5)
O12—H3···O2vi0.822 (10)1.800 (11)2.621 (4)178 (5)
O12—H4···O11vii0.820 (10)1.803 (12)2.620 (4)174 (4)
Symmetry codes: (iv) x1/2, y, z+1/2; (v) y1/2, z+1/2, x; (vi) z, x+1/2, y+1/2; (vii) y, z+1/2, x+1/2.
Selected geometric parameters (Å, º) for (Ib) top
Rb—O113.039 (1)S1—O11.479 (2)
Rb—O23.704 (1)S1—O21.4798 (9)
Cr—O121.965 (1)
O11—Rb—O11i65.798 (15)O12—Cr—O12iii88.78 (4)
O11—Rb—O11ii114.202 (15)O12—Cr—O12ii91.22 (4)
O11—Rb—O260.15 (2)O1—S1—O2109.77 (4)
O2—Rb—O2ii38.00 (2)O1—S1—O2ii109.77 (4)
Symmetry codes: (i) z, x, y; (ii) z, x, y; (iii) z+1, x+1, y+1.
Hydrogen-bond geometry (Å, º) for (Ib) top
D—H···AD—HH···AD···AD—H···A
O11—H1···O1iv0.78 (3)2.04 (3)2.7933 (15)162 (2)
O11—H2···O2v0.76 (2)2.02 (2)2.7541 (15)166 (2)
O12—H3···O2vi0.81 (3)1.83 (3)2.6321 (14)171 (2)
O12—H4···O11vii0.83 (3)1.79 (3)2.6087 (14)171 (3)
Symmetry codes: (iv) x1/2, y, z+1/2; (v) y1/2, z+1/2, x; (vi) z, x+1/2, y+1/2; (vii) y, z+1/2, x+1/2.
Selected geometric parameters (Å, º) for (IIa) top
Cs—O113.232 (2)Se—O11.627 (4)
Cs—O23.782 (2)Se—O21.634 (2)
Cr—O121.963 (2)
O11—Cs—O11i66.16 (3)O12—Cr—O12iii89.13 (8)
O11—Cs—O11ii113.84 (3)O12—Cr—O12ii90.87 (8)
O11—Cs—O259.79 (5)O1—Se—O2110.16 (8)
O2—Cs—O2ii41.13 (5)O2—Se—O2ii108.77 (8)
Symmetry codes: (i) z, x, y; (ii) z, x, y; (iii) z+1, x+1, y+1.
Hydrogen-bond geometry (Å, º) for (IIa) top
D—H···AD—HH···AD···AD—H···A
O11—H1···O1iv0.811 (10)2.018 (14)2.811 (3)166 (4)
O11—H2···O2v0.815 (10)1.949 (14)2.753 (3)169 (4)
O12—H3···O2vi0.817 (10)1.821 (11)2.635 (3)175 (3)
O12—H4···O11vii0.822 (10)1.803 (12)2.620 (3)173 (4)
Symmetry codes: (iv) x1/2, y, z+1/2; (v) y1/2, z+1/2, x; (vi) z, x+1/2, y+1/2; (vii) y, z+1/2, x+1/2.
Selected geometric parameters (Å, º) for (IIb) top
Cs—O113.202 (2)Se—O11.641 (2)
Cs—O23.729 (2)Se—O21.642 (1)
Cr—O121.966 (1)
O11—Cs—O11i66.18 (2)O12—Cr—O12iii88.97 (5)
O11—Cs—O11ii113.82 (2)O12—Cr—O12ii91.03 (5)
O11—Cs—O258.92 (3)O1—Se—O2110.10 (5)
O2—Cs—O2ii41.98 (3)O1—Se—O2ii110.10 (5)
Symmetry codes: (i) z, x, y; (ii) z, x, y; (iii) z+1, x+1, y+1.
Hydrogen-bond geometry (Å, º) for (IIb) top
D—H···AD—HH···AD···AD—H···A
O11—H1···O1iv0.849 (10)1.99 (2)2.796 (2)158 (4)
O11—H2···O2v0.844 (10)1.910 (12)2.740 (2)167 (3)
O12—H3···O2vi0.844 (10)1.804 (11)2.641 (2)171 (3)
O12—H4···O11vii0.849 (10)1.761 (10)2.609 (2)176 (3)
Symmetry codes: (iv) x1/2, y, z+1/2; (v) y1/2, z+1/2, x; (vi) z, x+1/2, y+1/2; (vii) y, z+1/2, x+1/2.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds