Download citation
Download citation
link to html
A new iron hydrogen phosphate, heptairon bis­(phosphate) tetrakis­(hydrogen­phosphate), Fe7(PO4)2(HPO4)4, has been prepared hydro­thermally and characterized by single-crystal X-ray diffraction. The compound has one Fe atom on an inversion centre and is isostructural with Mn7(PO4)2(HPO4)4 and Co7(PO4)2(HPO4)4. The structure is based on a framework of edge- and corner-sharing FeO6, Fe5 and PO4 polyhedra, isotypic with that found in the mixed-valence iron phosphate Fe7(PO4)6. The Fe atoms in the title compound are purely in the divalent state, just like the Co atoms in Co7(PO4)2(HPO4)4, the necessary charge balance being maintained by the addition of H atoms in the form of bridging Fe-OH-P groups.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270102009873/br1377sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270102009873/br1377Isup2.hkl
Contains datablock I

CCDC reference: 195608

Comment top

Microporous materials containing transition metal elements are a focus of contemporary research due to their novel potential catalytic, electrical, optical and magnetic properties, which are not accessible to the main group elements (Cheetham et al., 1999). Hydrothermal and solvothermal methods have been used to synthesize many novel transition metal phosphates with open-framework structures, such as iron (Martin et al., 1994), cobalt (Cowley & Chipindale, 1999; Feng et al., 1997), nickel (Guillou et al., 1999; Escobal, Pizarro, Mesa, Arriotua & Rojo, 2000), manganese (Escobal, Pizarro, Mesa, Lezama et al., 2000; Fernandez et al., 2001) and molybdenum phosphates (Haushalter & Mundi, 1992). The frameworks of transition metal phosphates can be controlled by introducing organic templates to form one-dimensional (chain), two-dimensional (layered) and three-dimensional structures. Among these compounds, the iron phosphates are of interest because of their rich crystal chemistry and practical applications (Lii et al., 1998).

The title iron phosphate, Fe7(PO4)2(HPO4)4, was synthesized by the hydrothermal method in the presence of ethylene glycol and imidazole. It is isostructural with Mn7(PO4)2(HPO4)4 (Riou et al., 1987) and Co7(PO4)2(HPO4)4 (Lightfoot & Cheetham, 1988). However, the method used to synthesize Mn7(PO4)2(HPO4)4 and Co7(PO4)2(HPO4)4, carried out with iron-containing starting materials, gave Fe6IIFeIII(PO4)3(HPO4)3 instead of Fe7(PO4)2(HPO4)4 (Lightfoot & Cheetham, 1986).

As shown in Fig. 1, the crystal structure of the title compound consists of Fe—O polyhedra and PO4 tetrahedra sharing edges or corners to form a three-dimensional open-framework. Of the four independent Fe atoms (Fig. 2), Fe1 is located at a crystallographic inversion centre and has an almost regular octahedral coordination environment, while atoms Fe2 and Fe4 display distorted octahedral coordination environments. Atom Fe3 is surrounded by five O atoms, to give a geometry which is best described as distorted trigonal-bipyramidal. The results of a bond-strength bond-length calculation (Brown & Shannon, 1973) suggest that all Fe atoms should be divalant, the valence sums for the four metal sites being 1.89, 2.22, 1.94 and 2.28, respectively.

All the phosphate groups in the title compound are almost tetrahedral. The P—O bond lengths are distributed in the range 1.508–1.565 Å. The P1—O4 and P3—O11 bond lengths of 1.559 (4) and 1.565 (5) Å, respectively, are significantly longer than the remaining P—O bond, which involves bridging Fe—HO—P groups. Although the shortest distance between O atoms is 2.477 Å, between O10 and O11, hydrogen bonds are expected to be formed between O11—H···O3 and O4—H···O7, if the angles between the respective atoms are considered (Table 2).

Experimental top

FeCl2 (0.8 g), H2O (6 ml) and ethylene glycol (EG; 11 ml), H3PO4 (0.8 ml, 85% wt), and imidazole (1.0 g) were placed, respectively, in a beaker with stirring; a homogeneous mixture was obtained. The mixture was hydrothermally treated in a Teflon-lined autoclave at 440 K for 6 d. The resulting single crystals were collected by filtration, washed with distilled water and dried in air at ambient temperature. Experiment proved that EG is necessary for the formation of crystals of good habit. EG has a higher viscosity than water, which may baffle the convection currents and help obtain a large good quality single-crystal (Lii et al., 1998).

Refinement top

The H atoms were placed in geometric positions, with O—H = 0.85 Å. Is this added text OK?

Computing details top

Data collection: XSCANS (Bruker, 1997); cell refinement: XSCANS; data reduction: XSCANS; program(s) used to solve structure: SHELXTL (Sheldrick, 1997); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. A view of the packing plot for Fe7(PO4)2(HPO4)4 along the a direction, with dashed lines indicating hydrogen bonds.
[Figure 2] Fig. 2. A view of the structure of Fe7(PO4)2(HPO4)4 with 50% probability displacement ellipsoids, showing the atomic numbering scheme. The H atoms have been omitted for clarity.
Heptairon tetrakis(hydrogenphosphate) bis(phosphate) top
Crystal data top
H4Fe7O24P6Z = 1
Mr = 964.80F(000) = 468
Triclinic, P1Dx = 3.723 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.528 (3) ÅCell parameters from 25 reflections
b = 7.956 (4) Åθ = 5.9–11.4°
c = 9.501 (4) ŵ = 6.43 mm1
α = 104.03 (4)°T = 293 K
β = 109.17 (2)°Prism, black
γ = 101.66 (3)°0.2 × 0.1 × 0.1 mm
V = 430.3 (3) Å3
Data collection top
Bruker P4
diffractometer
1537 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.040
Graphite monochromatorθmax = 27.5°, θmin = 2.4°
ω scansh = 18
Absorption correction: ψ scan
(North et al., 1968)
k = 99
Tmin = 0.282, Tmax = 0.526l = 1212
2420 measured reflections3 standard reflections every 100 reflections
1921 independent reflections intensity decay: none
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.106H-atom parameters not refined
S = 1.03 w = 1/[σ2(Fo2) + (0.001P)2 + 6.4359P]
where P = (Fo2 + 2Fc2)/3
1849 reflections(Δ/σ)max = 0.003
169 parametersΔρmax = 1.22 e Å3
0 restraintsΔρmin = 0.94 e Å3
Crystal data top
H4Fe7O24P6γ = 101.66 (3)°
Mr = 964.80V = 430.3 (3) Å3
Triclinic, P1Z = 1
a = 6.528 (3) ÅMo Kα radiation
b = 7.956 (4) ŵ = 6.43 mm1
c = 9.501 (4) ÅT = 293 K
α = 104.03 (4)°0.2 × 0.1 × 0.1 mm
β = 109.17 (2)°
Data collection top
Bruker P4
diffractometer
1537 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.040
Tmin = 0.282, Tmax = 0.5263 standard reflections every 100 reflections
2420 measured reflections intensity decay: none
1921 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.106H-atom parameters not refined
S = 1.03Δρmax = 1.22 e Å3
1849 reflectionsΔρmin = 0.94 e Å3
169 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Fe10.00000.00000.00000.0134 (3)
Fe20.38733 (15)0.45498 (11)0.11196 (10)0.0120 (2)
Fe30.27718 (15)0.18673 (11)0.28076 (11)0.0138 (2)
Fe40.04910 (15)0.28480 (12)0.51589 (11)0.0145 (2)
P10.2285 (3)0.1448 (2)0.22284 (18)0.0103 (3)
P20.0853 (3)0.5817 (2)0.17233 (18)0.0107 (3)
P30.5879 (3)0.2307 (2)0.62669 (19)0.0125 (3)
O10.0196 (7)0.1730 (6)0.3368 (5)0.0134 (9)
O20.2267 (7)0.1886 (5)0.0558 (5)0.0129 (8)
O30.5509 (7)0.7509 (6)0.2279 (5)0.0128 (8)
O40.2098 (8)0.0608 (6)0.7238 (5)0.0169 (9)
H4A0.16300.09840.78760.020*
O50.3000 (7)0.5378 (6)0.0860 (5)0.0136 (9)
O60.0557 (8)0.5458 (6)0.3451 (5)0.0153 (9)
O70.1098 (8)0.2181 (6)0.0941 (6)0.0196 (10)
O80.1257 (7)0.5392 (6)0.1668 (5)0.0143 (9)
O90.3767 (8)0.2100 (6)0.5082 (5)0.0173 (9)
O100.4774 (8)0.3805 (6)0.3099 (6)0.0233 (10)
O110.2701 (8)0.2904 (7)0.5300 (6)0.0234 (10)
H11A0.32850.25700.45150.028*
O120.2687 (7)0.0514 (6)0.2394 (5)0.0151 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe10.0128 (6)0.0119 (6)0.0149 (6)0.0031 (5)0.0053 (5)0.0042 (5)
Fe20.0128 (4)0.0119 (4)0.0110 (4)0.0043 (3)0.0046 (3)0.0032 (3)
Fe30.0141 (4)0.0107 (4)0.0174 (5)0.0043 (3)0.0071 (4)0.0046 (3)
Fe40.0150 (4)0.0137 (4)0.0129 (4)0.0031 (3)0.0037 (4)0.0050 (3)
P10.0094 (7)0.0100 (7)0.0103 (7)0.0023 (5)0.0037 (6)0.0024 (5)
P20.0104 (7)0.0108 (7)0.0121 (7)0.0038 (5)0.0053 (6)0.0043 (6)
P30.0101 (7)0.0121 (7)0.0118 (7)0.0027 (5)0.0016 (6)0.0024 (6)
O10.011 (2)0.016 (2)0.013 (2)0.0029 (16)0.0041 (17)0.0055 (17)
O20.012 (2)0.0114 (19)0.016 (2)0.0001 (15)0.0089 (17)0.0026 (16)
O30.010 (2)0.015 (2)0.013 (2)0.0037 (16)0.0048 (17)0.0041 (16)
O40.019 (2)0.014 (2)0.018 (2)0.0048 (17)0.0089 (19)0.0040 (18)
O50.015 (2)0.0128 (19)0.011 (2)0.0031 (16)0.0032 (17)0.0033 (16)
O60.019 (2)0.015 (2)0.014 (2)0.0064 (17)0.0061 (18)0.0074 (17)
O70.020 (2)0.012 (2)0.026 (3)0.0043 (17)0.011 (2)0.0016 (18)
O80.012 (2)0.014 (2)0.015 (2)0.0020 (16)0.0054 (17)0.0037 (17)
O90.016 (2)0.024 (2)0.011 (2)0.0095 (18)0.0035 (18)0.0039 (18)
O100.020 (2)0.022 (2)0.025 (3)0.0034 (19)0.002 (2)0.014 (2)
O110.019 (2)0.032 (3)0.017 (2)0.013 (2)0.004 (2)0.005 (2)
O120.016 (2)0.014 (2)0.011 (2)0.0027 (17)0.0020 (17)0.0035 (16)
Geometric parameters (Å, º) top
Fe1—O72.121 (5)P1—O21.545 (4)
Fe1—O22.174 (4)P1—O4iv1.557 (4)
Fe1—O122.248 (4)P2—O51.530 (4)
Fe2—O102.047 (5)P2—O61.535 (5)
Fe2—O52.085 (4)P2—O7v1.536 (5)
Fe2—O22.121 (4)P2—O8ii1.537 (4)
Fe2—O82.125 (4)P3—O10vi1.509 (5)
Fe2—O5i2.126 (5)P3—O12vii1.526 (4)
Fe2—O32.202 (4)P3—O91.536 (5)
Fe3—O122.033 (4)P3—O11viii1.567 (5)
Fe3—O8ii2.046 (4)O3—P1i1.532 (4)
Fe3—O92.108 (5)O3—Fe3ii2.126 (4)
Fe3—O3ii2.126 (4)O4—P1iv1.557 (4)
Fe3—O12.187 (4)O5—Fe2i2.126 (5)
Fe4—O12.069 (4)O6—Fe4iii2.100 (4)
Fe4—O42.087 (5)O7—P2ix1.536 (5)
Fe4—O6iii2.100 (4)O8—P2ii1.537 (4)
Fe4—O62.115 (5)O8—Fe3ii2.046 (4)
Fe4—O112.124 (5)O10—P3x1.509 (5)
Fe4—O92.132 (5)O11—P3xi1.567 (5)
P1—O3i1.532 (4)O12—P3vii1.526 (4)
P1—O11.534 (4)
O7xii—Fe1—O7180.0O11—Fe4—O9165.75 (19)
O7—Fe1—O291.31 (17)O3i—P1—O1111.2 (2)
O7—Fe1—O2xii88.69 (17)O3i—P1—O2114.2 (2)
O2—Fe1—O2xii180.0O1—P1—O2110.2 (2)
O7—Fe1—O1291.16 (18)O3i—P1—O4iv106.9 (2)
O2—Fe1—O1287.35 (16)O1—P1—O4iv108.8 (2)
O7—Fe1—O12xii88.84 (18)O2—P1—O4iv105.3 (2)
O2—Fe1—O12xii92.65 (16)O5—P2—O6108.0 (2)
O12—Fe1—O12xii180.0O5—P2—O7v109.9 (3)
O10—Fe2—O5178.53 (18)O6—P2—O7v110.2 (3)
O10—Fe2—O297.14 (19)O5—P2—O8ii110.8 (2)
O5—Fe2—O284.33 (17)O6—P2—O8ii109.3 (2)
O10—Fe2—O889.75 (19)O7v—P2—O8ii108.6 (3)
O5—Fe2—O889.95 (17)O10vi—P3—O12vii111.2 (3)
O2—Fe2—O8105.93 (17)O10vi—P3—O9111.2 (3)
O10—Fe2—O5i94.42 (19)O12vii—P3—O9111.6 (3)
O5—Fe2—O5i85.42 (17)O10vi—P3—O11viii107.4 (3)
O2—Fe2—O5i91.33 (17)O12vii—P3—O11viii109.5 (3)
O8—Fe2—O5i161.61 (17)O9—P3—O11viii105.7 (3)
O10—Fe2—O398.10 (18)P1—O1—Fe4137.1 (3)
O5—Fe2—O380.43 (17)P1—O1—Fe3121.6 (2)
O2—Fe2—O3164.22 (17)Fe4—O1—Fe398.34 (18)
O8—Fe2—O378.23 (16)P1—O2—Fe2121.2 (2)
O5i—Fe2—O383.45 (16)P1—O2—Fe1121.3 (2)
O12—Fe3—O8ii139.30 (18)Fe2—O2—Fe1116.2 (2)
O12—Fe3—O9123.63 (18)P1i—O3—Fe3ii137.2 (3)
O8ii—Fe3—O994.01 (18)P1i—O3—Fe2123.8 (2)
O12—Fe3—O3ii105.10 (18)Fe3ii—O3—Fe297.46 (17)
O8ii—Fe3—O3ii81.74 (17)P1iv—O4—Fe4137.5 (3)
O9—Fe3—O3ii98.00 (17)P2—O5—Fe2130.4 (3)
O12—Fe3—O185.19 (17)P2—O5—Fe2i135.0 (3)
O8ii—Fe3—O189.19 (17)Fe2—O5—Fe2i94.58 (17)
O9—Fe3—O177.31 (17)P2—O6—Fe4iii132.5 (3)
O3ii—Fe3—O1169.52 (16)P2—O6—Fe4124.9 (2)
O1—Fe4—O4104.60 (18)Fe4iii—O6—Fe4101.85 (19)
O1—Fe4—O6iii166.02 (17)P2ix—O7—Fe1155.3 (3)
O4—Fe4—O6iii88.49 (18)P2ii—O8—Fe3ii127.3 (3)
O1—Fe4—O689.64 (17)P2ii—O8—Fe2127.1 (3)
O4—Fe4—O6163.75 (18)Fe3ii—O8—Fe2102.52 (18)
O6iii—Fe4—O678.15 (19)P3—O9—Fe3136.6 (3)
O1—Fe4—O1192.02 (19)P3—O9—Fe4122.3 (3)
O4—Fe4—O1189.63 (19)Fe3—O9—Fe498.88 (18)
O6iii—Fe4—O1183.04 (19)P3x—O10—Fe2142.7 (3)
O6—Fe4—O1197.80 (18)P3xi—O11—Fe4150.2 (3)
O1—Fe4—O979.42 (17)P3vii—O12—Fe3119.0 (3)
O4—Fe4—O981.65 (18)P3vii—O12—Fe1129.7 (3)
O6iii—Fe4—O9107.82 (18)Fe3—O12—Fe1110.78 (19)
O6—Fe4—O993.55 (18)
Symmetry codes: (i) x+1, y+1, z; (ii) x, y+1, z; (iii) x, y+1, z1; (iv) x, y, z1; (v) x, y+1, z; (vi) x1, y, z1; (vii) x1, y, z1; (viii) x1, y, z; (ix) x, y1, z; (x) x+1, y, z+1; (xi) x+1, y, z; (xii) x, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4A···O7iv0.851.712.539 (7)164
O11—H11A···O3i0.852.032.850 (7)162
Symmetry codes: (i) x+1, y+1, z; (iv) x, y, z1.

Experimental details

Crystal data
Chemical formulaH4Fe7O24P6
Mr964.80
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)6.528 (3), 7.956 (4), 9.501 (4)
α, β, γ (°)104.03 (4), 109.17 (2), 101.66 (3)
V3)430.3 (3)
Z1
Radiation typeMo Kα
µ (mm1)6.43
Crystal size (mm)0.2 × 0.1 × 0.1
Data collection
DiffractometerBruker P4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.282, 0.526
No. of measured, independent and
observed [I > 2σ(I)] reflections
2420, 1921, 1537
Rint0.040
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.106, 1.03
No. of reflections1849
No. of parameters169
H-atom treatmentH-atom parameters not refined
Δρmax, Δρmin (e Å3)1.22, 0.94

Computer programs: XSCANS (Bruker, 1997), XSCANS, SHELXTL (Sheldrick, 1997), SHELXTL.

Selected bond lengths (Å) top
Fe1—O72.121 (5)Fe3—O8ii2.046 (4)
Fe1—O22.174 (4)Fe3—O92.108 (5)
Fe1—O122.248 (4)Fe3—O3ii2.126 (4)
Fe2—O102.047 (5)Fe3—O12.187 (4)
Fe2—O52.085 (4)Fe4—O12.069 (4)
Fe2—O22.121 (4)Fe4—O42.087 (5)
Fe2—O82.125 (4)Fe4—O6iii2.100 (4)
Fe2—O5i2.126 (5)Fe4—O62.115 (5)
Fe2—O32.202 (4)Fe4—O112.124 (5)
Fe3—O122.033 (4)Fe4—O92.132 (5)
Symmetry codes: (i) x+1, y+1, z; (ii) x, y+1, z; (iii) x, y+1, z1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4A···O7iv0.851.712.539 (7)163.5
O11—H11A···O3i0.852.032.850 (7)161.6
Symmetry codes: (i) x+1, y+1, z; (iv) x, y, z1.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds