Download citation
Download citation
link to html
A single crystal of KVTeO5, potassium vanadium tellurite, has been grown. The present structure determination has been conducted together with the refinement of the NaVTeO5 homologue, sodium vanadium tellurite, for the sake of precise comparison. The network consists of [VTeO5]n ribbons built up by VO4 tetrahedra linking centrosymmetric Te2O6 groups and stacked along the [010] direction; the alkali cations are intercalated in between. The TeIV atom exhibits a typical one-sided coordination number (CN) of 4, completed by a lone pair, which forms a distorted triangular bipyramid with the four O atoms.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270102011708/br1380sup1.cif
Contains datablocks I, II, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270102011708/br1380Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270102011708/br1380IIsup3.hkl
Contains datablock II

Comment top

The study of TeO2—V2O5M2O systems, with M = Li, Na, K, Rb, Cs or Ag, has revealed some interesting new compounds with original crystal structures, such as Te2V2O9 and the MVTeO5 family (Chase & Philips, 1964; Darriet et al., 1969, 1972, 1973; Darriet, 1973; Alves Weill, 2000). These compounds can also be obtained in glassy forms which exhibit interesting electronic properties, varying from purely electronic conductivity (Te2V2O9) to ionic conductivity as the M2O proportion increases (Dhawan et al., 1982; Lebrun et al., 1989; Jayasinghe et al., 1997; Montani et al., 2000). The structural relationship between the crystalline and amorphous states of these compounds, together with the solid-state chemistry involved, calls for further investigation to relate such basic aspects with the electronic behaviour.

The series with M = Na, K and Ag was chosen in order to appreciate the role of the size (M = K) or atomic number (M = Ag) of the cation on the structural features, compared with the M = Na compound, and to act as good probes to mark the radial distribution functions (RDF) obtained via wide-angle X-ray scattering (WAXS) analysis on glassy samples. In order to better understand the RDF of the glassy structures, we report the structure of KVTeO5, and, for the isostructural NaVTeO5, a redetermination which provides a more accurate description of its geometry than that supplied by Darriet et al. (1972).

The projection of the MVTeO5 structure onto the (100) plane (Fig. 1) shows that the TeIV atom exhibits a typical one-sided coordination (coordination number of 4), completed by a lone pair (E), to form a distorted triangular bipyramid. Two of these polyhedra share the O5—O5ii centrosymmetric edge [symmetry code: (ii) ?], building [Te2O6] groups which are connected to each other by VO4 tetrahedra to form [VTeO5]n ribbons developed along the [101] direction and stacked along [010]. The M atoms are bonded to eight O atoms, to build bicapped triangular prisms which share O2/O3/O5 faces to make an infinite zigzag string along [001]. These strings share corners, with [VO4] and [Te2O6] groups strengthening the atomic network.

While the KVTeO5 crystal structure is clearly analogous to the Na homologue, the bigger size of K compared to Na induces an increase of the a and b cell parameters while c remains almost unchanged. This reflects the relatively rigid nature of the ribbons, meaning that all the expansion occurs in the space between the ribbons.

A bond-valence analysis shows that, while the bond-valence sum around Na is satisfactory (0.94), that around K is large (1.35), indicating that the space available for the cation is too small for K, even allowing for the expansion of the cell. The global instability index (Salinas-Sanchez et al., 1992) is consequently larger for K (0.17) than for Na (0.15), indicating that the K crystals are approaching the stability limit (1/5).

In both structures, while the O atoms can be separated into different categories according to their chemical equivalence (nature and number of bonded elements), the lengths of the bonds are different in each group and the differences also depend on the nature of the M element. For example, despite O1 and O4 being equivalent (one bond to Te, V and M cations), the V—O1 bond is longer than V—O4. In this case, the main reason can be traced to the trigonal-bipyramidal bonding around Te, which causes the axial bond to O4 to be longer than the equatorial bond to O1. This difference is more pronounced in the Na than in the K crystal, but in both cases, the difference in V—O bond lengths is not fully compensated, since O1 appears overbonded and, at least in the case of the K crystal, O4 appears underbonded.

Such facts clearly show that increasing the size of the M cation leads to a separation of the ribbons up to a limit, reached in the case of the K crystal, above which a slight distortion is necessary to compensate. The pressure effect induced by the large K size might then be responsible for the shortening of the V—O bonds, therefore decreasing the difference between chemically equivalent O atoms but increasing the distortion of the Te2O6 groups. Such facts are of paramount importance to elaborate the model necessary for the simulation of the medium-range order of the glassy forms.

Experimental top

MVTeO5compounds with M = K or Na were obtained by direct synthesis in air at 723 K and 773 K, respectively, from carefully mixed and ground stoichiometric mixtures according to the reaction MVO3 + TeO2 MVTeO5. The MVO3 metavanadates were synthesized by reaction of the corresponding carbonates with vanadic oxide, V2O5, at 773 K according to the reaction M2CO3 + V2O5 2MVO3 + CO2. The alkali carbonates and vanadium and tellurium oxides were purchased from Aldrich at 99.9% purity. To obtain single crystals, KVTeO5 was melted at 773 K and cooled down to 723 K at a rate of 5 K h-1, while a melting temperature of 823 K was needed for the Na compound. The density of the crystals was determined by helium pycnometry using an Accupyc 1330 Micromeritics pycnometer.

Computing details top

For both compounds, data collection: COLLECT (Nonius, 1998); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997); data reduction: DENZO-SMN; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPIII (Burnett & Johnson, 1996); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. The projection of the MVTeO5crystal structure onto the (100) plane. Displacement ellipsoids are drawn at the 50% probability level.
(I) potassium vanadium tellurite top
Crystal data top
KO5TeVF(000) = 536
Mr = 297.64Dx = 4.010 Mg m3
Dm = 4.00 (1) Mg m3
Dm measured by helium pycnometry
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3558 reflections
a = 6.3870 (3) Åθ = 1.0–35.0°
b = 11.6150 (8) ŵ = 8.58 mm1
c = 6.8840 (3) ÅT = 293 K
β = 105.100 (3)°Block, colourless
V = 493.06 (5) Å30.06 × 0.06 × 0.05 mm
Z = 4
Data collection top
Nonius KappaCCD area-detector
diffractometer
1726 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.036
Graphite monochromatorθmax = 35.0°, θmin = 3.3°
ψ and ω scansh = 1010
3494 measured reflectionsk = 1816
2137 independent reflectionsl = 1011
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0163P)2 + 0.1396P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.033(Δ/σ)max = 0.001
wR(F2) = 0.063Δρmax = 1.97 e Å3
S = 1.04Δρmin = 1.78 e Å3
2137 reflectionsExtinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
74 parametersExtinction coefficient: 0.0199 (8)
0 restraints
Crystal data top
KO5TeVV = 493.06 (5) Å3
Mr = 297.64Z = 4
Monoclinic, P21/cMo Kα radiation
a = 6.3870 (3) ŵ = 8.58 mm1
b = 11.6150 (8) ÅT = 293 K
c = 6.8840 (3) Å0.06 × 0.06 × 0.05 mm
β = 105.100 (3)°
Data collection top
Nonius KappaCCD area-detector
diffractometer
1726 reflections with I > 2σ(I)
3494 measured reflectionsRint = 0.036
2137 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.03374 parameters
wR(F2) = 0.0630 restraints
S = 1.04Δρmax = 1.97 e Å3
2137 reflectionsΔρmin = 1.78 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Te0.75746 (3)0.551830 (19)0.39923 (3)0.01096 (8)
V0.33917 (8)0.37967 (5)0.09575 (7)0.01085 (12)
K0.82118 (12)0.18937 (7)0.33511 (11)0.01857 (17)
O10.1900 (4)0.4532 (2)0.1372 (3)0.0142 (5)
O20.5186 (4)0.2930 (2)0.0463 (4)0.0211 (6)
O30.1618 (4)0.3042 (2)0.1764 (3)0.0183 (5)
O40.4607 (4)0.4850 (2)0.2839 (3)0.0154 (5)
O50.8792 (3)0.4093 (2)0.4900 (3)0.0141 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Te0.01030 (12)0.01243 (13)0.00965 (12)0.00054 (7)0.00169 (8)0.00056 (7)
V0.0099 (2)0.0130 (3)0.0095 (2)0.00094 (19)0.00219 (19)0.0002 (2)
K0.0145 (3)0.0225 (4)0.0173 (3)0.0026 (3)0.0019 (3)0.0039 (3)
O10.0144 (11)0.0185 (13)0.0097 (9)0.0023 (9)0.0032 (8)0.0029 (9)
O20.0190 (11)0.0249 (16)0.0189 (12)0.0071 (11)0.0043 (9)0.0005 (10)
O30.0157 (10)0.0243 (15)0.0142 (11)0.0041 (10)0.0023 (9)0.0032 (10)
O40.0132 (11)0.0170 (13)0.0146 (10)0.0012 (10)0.0009 (9)0.0039 (9)
O50.0114 (10)0.0133 (12)0.0163 (10)0.0020 (9)0.0013 (8)0.0033 (9)
Geometric parameters (Å, º) top
Te—O51.866 (2)K—O5vii2.748 (2)
Te—O1i1.920 (2)K—O52.756 (3)
Te—O42.010 (2)K—O3viii2.756 (2)
Te—O5ii2.291 (2)K—O1viii2.844 (3)
Te—Kiii3.8287 (8)K—O4ix2.963 (3)
Te—Kiv3.9632 (8)K—O3x2.990 (2)
Te—Kv4.0474 (8)K—Vviii3.4227 (8)
Te—Kii4.1302 (8)K—Kvii3.7190 (7)
V—O21.627 (3)K—Kv3.7191 (7)
V—O31.640 (2)O1—Tei1.920 (2)
V—O41.803 (2)O1—Kvi2.845 (3)
V—O11.847 (2)O2—Kvii2.712 (3)
V—Kvi3.4227 (18)O3—Kvi2.756 (2)
V—K3.7994 (19)O3—Kxi2.990 (2)
V—Kiv3.8038 (11)O4—Kiv2.963 (3)
V—Kvii4.0272 (9)O5—Teii2.291 (2)
K—O22.671 (2)O5—Kv2.748 (2)
K—O2v2.712 (3)
O5—Te—O1i97.36 (10)O5vii—K—O4ix68.65 (7)
O5—Te—O493.27 (10)O5—K—O4ix149.36 (7)
O1i—Te—O489.70 (10)O3viii—K—O4ix123.05 (8)
O5—Te—O5ii76.46 (11)O1viii—K—O4ix89.15 (7)
O1i—Te—O5ii84.77 (9)O2—K—O3x88.92 (7)
O4—Te—O5ii167.57 (10)O2v—K—O3x148.22 (8)
O5—Te—Kiii103.53 (7)O5vii—K—O3x66.13 (7)
O4—Te—Kiii133.51 (7)O5—K—O3x71.99 (7)
O5—Te—Kiv139.18 (7)O3viii—K—O3x79.14 (7)
O1i—Te—Kiv90.15 (7)O1viii—K—O3x67.39 (7)
O5ii—Te—Kiv144.33 (7)O4ix—K—O3x134.73 (7)
Kiii—Te—Kiv110.10 (2)O2—K—Vviii155.35 (6)
O1i—Te—Kv131.85 (7)O2v—K—Vviii117.59 (5)
O4—Te—Kv85.86 (7)O5vii—K—Vviii91.49 (5)
O5ii—Te—Kv89.55 (6)O5—K—Vviii90.01 (5)
Kiii—Te—Kv130.936 (11)O3viii—K—Vviii28.23 (5)
Kiv—Te—Kv118.933 (12)O1viii—K—Vviii32.65 (5)
O5—Te—Kii109.32 (7)O4ix—K—Vviii113.07 (5)
O1i—Te—Kii100.65 (7)O3x—K—Vviii66.44 (5)
O4—Te—Kii153.45 (7)O2—K—Kvii46.75 (6)
Kiii—Te—Kii55.559 (11)O2v—K—Kvii129.75 (6)
Kiv—Te—Kii108.532 (9)O5vii—K—Kvii47.57 (5)
Kv—Te—Kii104.325 (8)O5—K—Kvii88.54 (6)
O2—V—O3109.06 (13)O3viii—K—Kvii126.04 (6)
O2—V—O4112.01 (12)O1viii—K—Kvii94.76 (5)
O3—V—O4109.02 (12)O4ix—K—Kvii101.19 (5)
O2—V—O1109.68 (12)O3x—K—Kvii46.97 (5)
O3—V—O1107.17 (11)Vviii—K—Kvii109.930 (15)
O4—V—O1109.77 (11)O2—K—Kv110.10 (6)
O2—V—Kvi112.51 (9)O2v—K—Kv45.85 (5)
O3—V—Kvi52.65 (8)O5vii—K—Kv172.08 (5)
O4—V—Kvi135.39 (8)O5—K—Kv47.41 (5)
O1—V—Kvi56.19 (8)O3viii—K—Kv52.48 (5)
O2—V—K36.41 (9)O1viii—K—Kv110.98 (5)
O3—V—K95.47 (9)O4ix—K—Kv114.38 (5)
O4—V—K86.24 (8)O3x—K—Kv110.16 (5)
O1—V—K145.27 (8)Vviii—K—Kv80.596 (14)
Kvi—V—K130.874 (18)Kvii—K—Kv135.49 (5)
O2—V—Kiv147.00 (10)O2—K—V21.19 (5)
O3—V—Kiv103.37 (10)O2v—K—V65.07 (5)
O4—V—Kiv49.34 (8)O5vii—K—V98.29 (5)
O1—V—Kiv64.96 (8)O5—K—V68.93 (5)
Kvi—V—Kiv91.84 (2)O3viii—K—V136.41 (6)
K—V—Kiv135.240 (19)O1viii—K—V158.58 (5)
O2—V—Kvii28.53 (10)O4ix—K—V88.90 (5)
O3—V—Kvii136.07 (10)O3x—K—V99.59 (5)
O4—V—Kvii102.64 (8)Vviii—K—V157.97 (3)
O1—V—Kvii89.24 (8)Kvii—K—V64.76 (2)
Kvi—V—Kvii117.81 (2)Kv—K—V89.18 (2)
K—V—Kvii56.651 (15)V—O1—Tei128.66 (13)
Kiv—V—Kvii120.401 (19)V—O1—Kvi91.16 (9)
O2—K—O2v83.49 (7)Tei—O1—Kvi105.30 (10)
O2—K—O5vii77.22 (7)V—O2—K122.40 (12)
O2v—K—O5vii140.38 (8)V—O2—Kvii134.82 (15)
O2—K—O582.44 (7)K—O2—Kvii87.40 (7)
O2v—K—O576.43 (8)V—O3—Kvi99.12 (10)
O5vii—K—O5133.33 (8)V—O3—Kxi174.13 (14)
O2—K—O3viii151.59 (9)Kvi—O3—Kxi80.55 (6)
O2v—K—O3viii93.18 (7)V—O4—Te136.97 (14)
O5vii—K—O3viii119.61 (7)V—O4—Kiv103.17 (9)
O5—K—O3viii69.40 (7)Te—O4—Kiv104.01 (10)
O2—K—O1viii137.58 (8)Te—O5—Teii103.54 (11)
O2v—K—O1viii134.52 (8)Te—O5—Kv121.41 (11)
O5vii—K—O1viii61.29 (7)Teii—O5—Kv98.47 (7)
O5—K—O1viii119.22 (7)Te—O5—K133.68 (10)
O3viii—K—O1viii60.18 (7)Teii—O5—K109.50 (9)
O2—K—O4ix83.44 (7)Kv—O5—K85.02 (7)
O2v—K—O4ix75.05 (7)
Symmetry codes: (i) x+1, y+1, z; (ii) x+2, y+1, z+1; (iii) x+2, y+1/2, z+1/2; (iv) x+1, y+1/2, z+1/2; (v) x, y+1/2, z+1/2; (vi) x1, y+1/2, z1/2; (vii) x, y+1/2, z1/2; (viii) x+1, y+1/2, z+1/2; (ix) x+1, y1/2, z+1/2; (x) x+1, y, z; (xi) x1, y, z.
(II) sodium vanadium tellurite top
Crystal data top
NaO5TeVF(000) = 504
Mr = 281.53Dx = 4.206 Mg m3
Dm = 4.20 (1) Mg m3
Dm measured by helium pycnometry
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 7305 reflections
a = 5.8840 (2) Åθ = 1.0–27.5°
b = 11.3760 (3) ŵ = 8.67 mm1
c = 6.8190 (2) ÅT = 293 K
β = 103.0680 (17)°Block, colourless
V = 444.62 (2) Å30.08 × 0.08 × 0.07 mm
Z = 4
Data collection top
Nonius KappaCCD area-detector
diffractometer
979 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.067
Graphite monochromatorθmax = 27.5°, θmin = 3.6°
ψ and ω scansh = 77
4088 measured reflectionsk = 1414
1024 independent reflectionsl = 88
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.017P)2 + 1.1723P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.018(Δ/σ)max = 0.002
wR(F2) = 0.043Δρmax = 0.90 e Å3
S = 1.07Δρmin = 1.09 e Å3
1024 reflectionsExtinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
74 parametersExtinction coefficient: 0.0163 (8)
0 restraints
Crystal data top
NaO5TeVV = 444.62 (2) Å3
Mr = 281.53Z = 4
Monoclinic, P21/cMo Kα radiation
a = 5.8840 (2) ŵ = 8.67 mm1
b = 11.3760 (3) ÅT = 293 K
c = 6.8190 (2) Å0.08 × 0.08 × 0.07 mm
β = 103.0680 (17)°
Data collection top
Nonius KappaCCD area-detector
diffractometer
979 reflections with I > 2σ(I)
4088 measured reflectionsRint = 0.067
1024 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.01874 parameters
wR(F2) = 0.0430 restraints
S = 1.07Δρmax = 0.90 e Å3
1024 reflectionsΔρmin = 1.09 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Te0.75799 (3)0.559218 (16)0.40375 (3)0.00835 (10)
V0.32680 (9)0.37936 (4)0.08881 (7)0.00832 (13)
Na0.8195 (2)0.20668 (13)0.3155 (2)0.0223 (3)
O10.1655 (4)0.44580 (18)0.1457 (3)0.0126 (5)
O20.5392 (4)0.2979 (2)0.0440 (4)0.0166 (5)
O30.1399 (4)0.2948 (2)0.1701 (3)0.0155 (5)
O40.4374 (4)0.4882 (2)0.2754 (3)0.0134 (4)
O50.8750 (4)0.40734 (19)0.4818 (3)0.0116 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Te0.00878 (14)0.00925 (14)0.00638 (13)0.00040 (6)0.00037 (8)0.00001 (6)
V0.0086 (2)0.0093 (2)0.0065 (2)0.00068 (18)0.00040 (18)0.00037 (18)
Na0.0153 (6)0.0293 (8)0.0217 (7)0.0030 (6)0.0028 (5)0.0020 (6)
O10.0140 (11)0.0156 (11)0.0080 (10)0.0023 (8)0.0019 (9)0.0014 (8)
O20.0147 (11)0.0178 (11)0.0172 (12)0.0035 (9)0.0035 (9)0.0014 (9)
O30.0169 (11)0.0138 (11)0.0162 (11)0.0021 (9)0.0050 (9)0.0032 (9)
O40.0096 (10)0.0166 (11)0.0130 (11)0.0024 (9)0.0002 (8)0.0032 (9)
O50.0099 (10)0.0103 (10)0.0129 (10)0.0002 (8)0.0008 (8)0.0022 (8)
Geometric parameters (Å, º) top
Te—O51.891 (2)Na—O1vii2.642 (3)
Te—O1i1.913 (2)Na—O5viii2.703 (3)
Te—O42.057 (2)Na—O3vii2.709 (3)
Te—O5ii2.158 (2)Na—O4ix2.903 (3)
Te—Teii3.1558 (4)Na—Vvii3.2901 (15)
Te—Naiii3.5931 (14)Na—Naviii3.5491 (18)
V—O21.639 (2)Na—Nav3.5491 (18)
V—O31.649 (2)O1—Tei1.913 (2)
V—O41.789 (2)O1—Naiv2.642 (3)
V—O11.828 (2)O2—Naviii2.512 (3)
V—Naiv3.2901 (15)O3—Nax2.527 (3)
V—Na3.5535 (15)O3—Naiv2.709 (3)
Na—O22.418 (3)O4—Naxi2.902 (3)
Na—O2v2.512 (3)O5—Teii2.158 (2)
Na—O3vi2.527 (3)O5—Nav2.703 (3)
Na—O52.537 (3)
O5—Te—O1i94.88 (9)O2v—Na—Vvii106.33 (7)
O5—Te—O490.07 (9)O3vi—Na—Vvii71.25 (6)
O1i—Te—O488.89 (9)O5—Na—Vvii90.34 (6)
O5—Te—O5ii77.78 (10)O1vii—Na—Vvii33.71 (5)
O1i—Te—O5ii85.05 (9)O5viii—Na—Vvii93.86 (6)
O4—Te—O5ii165.88 (9)O3vii—Na—Vvii29.95 (5)
O1i—Te—Teii89.54 (7)O4ix—Na—Vvii103.19 (6)
O4—Te—Teii131.59 (6)O2—Na—Naviii45.02 (7)
O5—Te—Naiii107.54 (7)O2v—Na—Naviii138.08 (7)
O4—Te—Naiii131.34 (7)O3vi—Na—Naviii49.52 (6)
Teii—Te—Naiii74.23 (2)O5—Na—Naviii98.71 (8)
O2—V—O3109.11 (12)O1vii—Na—Naviii96.37 (6)
O2—V—O4110.71 (11)O5viii—Na—Naviii45.42 (5)
O3—V—O4109.14 (11)O3vii—Na—Naviii135.06 (6)
O2—V—O1109.72 (11)O4ix—Na—Naviii98.38 (6)
O3—V—O1106.36 (11)Vvii—Na—Naviii115.45 (3)
O4—V—O1111.68 (10)O2—Na—Nav117.93 (8)
O2—V—Naiv111.02 (9)O2v—Na—Nav42.90 (6)
O3—V—Naiv55.11 (9)O3vi—Na—Nav115.40 (8)
O4—V—Naiv138.26 (8)O5—Na—Nav49.36 (7)
O1—V—Naiv53.32 (8)O1vii—Na—Nav104.69 (6)
O2—V—Na35.62 (9)O5viii—Na—Nav165.57 (8)
O3—V—Na94.11 (9)O3vii—Na—Nav45.21 (5)
O4—V—Na86.76 (8)O4ix—Na—Nav109.26 (7)
O1—V—Na145.09 (8)Vvii—Na—Nav74.67 (3)
Naiv—V—Na128.933 (17)Naviii—Na—Nav147.75 (9)
O2—Na—O2v93.10 (9)O2—Na—V23.26 (6)
O2—Na—O3vi88.25 (9)O2v—Na—V72.29 (6)
O2v—Na—O3vi154.71 (10)O3vi—Na—V102.57 (7)
O2—Na—O587.28 (9)O5—Na—V72.96 (6)
O2v—Na—O577.16 (8)O1vii—Na—V160.20 (7)
O3vi—Na—O577.68 (8)O5viii—Na—V98.10 (6)
O2—Na—O1vii137.33 (10)O3vii—Na—V136.58 (7)
O2v—Na—O1vii121.56 (9)O4ix—Na—V92.65 (6)
O3vi—Na—O1vii70.93 (8)Vvii—Na—V163.20 (5)
O5—Na—O1vii121.85 (9)Naviii—Na—V66.78 (3)
O2—Na—O5viii75.67 (8)Nav—Na—V95.00 (4)
O2v—Na—O5viii137.17 (9)V—O1—Tei127.50 (13)
O3vi—Na—O5viii67.48 (8)V—O1—Naiv92.97 (9)
O5—Na—O5viii141.29 (10)Tei—O1—Naiv102.98 (10)
O1vii—Na—O5viii62.10 (7)V—O2—Na121.12 (13)
O2—Na—O3vii154.51 (10)V—O2—Naviii139.69 (13)
O2v—Na—O3vii82.44 (8)Na—O2—Naviii92.08 (9)
O3vi—Na—O3vii85.54 (8)V—O3—Nax167.62 (14)
O5—Na—O3vii67.25 (8)V—O3—Naiv94.94 (10)
O1vii—Na—O3vii62.72 (7)Nax—O3—Naiv85.27 (8)
O5viii—Na—O3vii123.81 (8)V—O4—Te136.52 (12)
O2—Na—O4ix88.39 (8)V—O4—Naxi110.65 (10)
O2v—Na—O4ix74.42 (8)Te—O4—Naxi97.91 (9)
O3vi—Na—O4ix130.87 (9)Te—O5—Teii102.22 (10)
O5—Na—O4ix150.96 (9)Te—O5—Na133.99 (11)
O1vii—Na—O4ix79.13 (8)Teii—O5—Na109.73 (9)
O5viii—Na—O4ix64.24 (7)Te—O5—Nav124.73 (11)
O3vii—Na—O4ix114.15 (8)Teii—O5—Nav94.68 (8)
O2—Na—Vvii159.38 (8)Na—O5—Nav85.22 (7)
Symmetry codes: (i) x+1, y+1, z; (ii) x+2, y+1, z+1; (iii) x+2, y+1/2, z+1/2; (iv) x1, y+1/2, z1/2; (v) x, y+1/2, z+1/2; (vi) x+1, y, z; (vii) x+1, y+1/2, z+1/2; (viii) x, y+1/2, z1/2; (ix) x+1, y1/2, z+1/2; (x) x1, y, z; (xi) x+1, y+1/2, z+1/2.

Experimental details

(I)(II)
Crystal data
Chemical formulaKO5TeVNaO5TeV
Mr297.64281.53
Crystal system, space groupMonoclinic, P21/cMonoclinic, P21/c
Temperature (K)293293
a, b, c (Å)6.3870 (3), 11.6150 (8), 6.8840 (3)5.8840 (2), 11.3760 (3), 6.8190 (2)
β (°) 105.100 (3) 103.0680 (17)
V3)493.06 (5)444.62 (2)
Z44
Radiation typeMo KαMo Kα
µ (mm1)8.588.67
Crystal size (mm)0.06 × 0.06 × 0.050.08 × 0.08 × 0.07
Data collection
DiffractometerNonius KappaCCD area-detector
diffractometer
Nonius KappaCCD area-detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
3494, 2137, 1726 4088, 1024, 979
Rint0.0360.067
(sin θ/λ)max1)0.8070.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.063, 1.04 0.018, 0.043, 1.07
No. of reflections21371024
No. of parameters7474
Δρmax, Δρmin (e Å3)1.97, 1.780.90, 1.09

Computer programs: COLLECT (Nonius, 1998), DENZO-SMN (Otwinowski & Minor, 1997), DENZO-SMN, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEPIII (Burnett & Johnson, 1996), SHELXL97.

Selected geometric parameters (Å, º) for (I) top
Te—O51.866 (2)K—O22.671 (2)
Te—O1i1.920 (2)K—O2iii2.712 (3)
Te—O42.010 (2)K—O5iv2.748 (2)
Te—O5ii2.291 (2)K—O52.756 (3)
V—O21.627 (3)K—O3v2.756 (2)
V—O31.640 (2)K—O1v2.844 (3)
V—O41.803 (2)K—O4vi2.963 (3)
V—O11.847 (2)K—O3vii2.990 (2)
O5—Te—O1i97.36 (10)O2—V—O3109.06 (13)
O5—Te—O493.27 (10)O2—V—O4112.01 (12)
O1i—Te—O489.70 (10)O3—V—O4109.02 (12)
O5—Te—O5ii76.46 (11)O2—V—O1109.68 (12)
O1i—Te—O5ii84.77 (9)O3—V—O1107.17 (11)
O4—Te—O5ii167.57 (10)O4—V—O1109.77 (11)
Symmetry codes: (i) x+1, y+1, z; (ii) x+2, y+1, z+1; (iii) x, y+1/2, z+1/2; (iv) x, y+1/2, z1/2; (v) x+1, y+1/2, z+1/2; (vi) x+1, y1/2, z+1/2; (vii) x+1, y, z.
Selected geometric parameters (Å, º) for (II) top
Te—O51.891 (2)Na—O22.418 (3)
Te—O1i1.913 (2)Na—O2iii2.512 (3)
Te—O42.057 (2)Na—O3iv2.527 (3)
Te—O5ii2.158 (2)Na—O52.537 (3)
V—O21.639 (2)Na—O1v2.642 (3)
V—O31.649 (2)Na—O5vi2.703 (3)
V—O41.789 (2)Na—O3v2.709 (3)
V—O11.828 (2)Na—O4vii2.903 (3)
O5—Te—O1i94.88 (9)O2—V—O3109.11 (12)
O5—Te—O490.07 (9)O2—V—O4110.71 (11)
O1i—Te—O488.89 (9)O3—V—O4109.14 (11)
O5—Te—O5ii77.78 (10)O2—V—O1109.72 (11)
O1i—Te—O5ii85.05 (9)O3—V—O1106.36 (11)
O4—Te—O5ii165.88 (9)O4—V—O1111.68 (10)
Symmetry codes: (i) x+1, y+1, z; (ii) x+2, y+1, z+1; (iii) x, y+1/2, z+1/2; (iv) x+1, y, z; (v) x+1, y+1/2, z+1/2; (vi) x, y+1/2, z1/2; (vii) x+1, y1/2, z+1/2.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds