Download citation
Download citation
link to html
The structure of the title compound, trigadolinium niobium tri­sulfide tetraoxide, Gd3NbS3O4, was determined by single-crystal X-ray diffraction. Gd3NbS3O4 crystallizes in the non-centrosymmetric space group Pn21a (No.33) of the orthorhombic system. It is isostructural with Sm3NbS3O4.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536803013035/br6101sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536803013035/br6101Isup2.hkl
Contains datablock I

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](Nb-O) = 0.005 Å
  • R factor = 0.030
  • wR factor = 0.061
  • Data-to-parameter ratio = 30.7

checkCIF results

No syntax errors found


Red Alert Alert Level A:
PLAT_111 Alert A ADDSYM Detects (Pseudo) Centre of Symmetry ..... 100 PerFit
Author response: The structure solution in the non centrosymmetric space group Pn21a is better than the structure solution in the centrosymmetric space group Pnma, see _publ_section_comment
PLAT_112  Alert A ADDSYM Detects Additional (Pseudo) Symm. Elem...          m
Author response: The structure solution in the non centrosymmetric space group Pn21a is better than the structure solution in the centrosymmetric space group Pnma, see _publ_section_comment
PLAT_113  Alert A ADDSYM Suggests Possible Pseudo/New Spacegroup .          Pnma
Author response: The structure solution in the non centrosymmetric space group Pn21a is better than the structure solution in the centrosymmetric space group Pnma, see _publ_section_comment

Yellow Alert Alert Level C:
STRVAL_01 From the CIF: _refine_ls_abs_structure_Flack 0.554 From the CIF: _refine_ls_abs_structure_Flack_su 0.014 Alert C Flack test results are ambiguous. General Notes
ABSTM_02 The ratio of expected to reported Tmax/Tmin(RR) is > 1.10 Tmin and Tmax reported: 0.192 0.641 Tmin and Tmax expected: 0.130 0.639 RR = 1.466 Please check that your absorption correction is appropriate. REFLT_03 From the CIF: _diffrn_reflns_theta_max 34.96 From the CIF: _reflns_number_total 3130 Count of symmetry unique reflns 1672 Completeness (_total/calc) 187.20% TEST3: Check Friedels for noncentro structure Estimate of Friedel pairs measured 1458 Fraction of Friedel pairs measured 0.872 Are heavy atom types Z>Si present yes Please check that the estimate of the number of Friedel pairs is correct. If it is not, please give the correct count in the _publ_section_exptl_refinement section of the submitted CIF.
3 Alert Level A = Potentially serious problem
0 Alert Level B = Potential problem
1 Alert Level C = Please check

Comment top

Recent explorations in the field of oxychalcogenides have revealed novel interesting layered intergrowth compounds with structures based on the staking of chalcogenide and oxide layers (Zhu & Hor, 1997; Otzschi et al., 1999; Boyer et al., 1999; Goga et al., 1999). As the combination of both type layers could lead to materials with interesting electronic and magnetic properties, we were looking for new layered intergrowth compounds. We are currently investigating several quaternary systems containing rare earths and transition elements and during our investigation of the Gd–Nb–S–O system we obtained Gd3NbS3O4 as a side product. A yellow transparent platelet-shaped crystal was mounted on the diffractometer for data collection.

The observed systematic conditions (k+l = 2n for 0kl; and h = 2n for hk0) led to only two possible space groups Pn21a (No. 33) and Pnma (No. 62). As the intensity statistics were rather indicating a centrosymmetric space group, we first supposed that Gd3NbS3O4 was isostructural with Sm3NbSe3O4 (Meerschaut et al., 1998) and tried to refine the structure using Pnma (No. 62). However, the refinement led to bad reliability factors (R = 0.0634 and wR = 0.1439). Subsequently, we considered that Gd3NbS3O4 could be isostructural with Sm3NbS3O4 (Boyer-Candalen et al., 2000), i.e. we tried to refine the structure with the non-centrosymetric space group Pn21a. The refinement led to much better reliability factors (R = 0.0297 and wR = 0.0606).

A projection of the structure of Gd3NbS3O4 is shown in Fig. 1. A l l metal atoms are found in mixed environments of oxygen and sulfur. Nb1 and Gd1 are involved in similar coordination polyhedra (very distorted prism with eight surrounding atoms, viz. four O and four S atoms). These polyhedra are connected by edge-sharing and alternate regularly along the b axis. In the same way, Gd2 and Gd3 are located in slightly different bicapped trigonal prisms that are alternate along the b axis.

The difference between the sulfur and selenium compounds is related to the position of the chalcogen in the structure. In the Sm3NbSe3O4 compound, atom Se3 sits on the inversion center (special position 4a) and is octahedrally coordinated. On the contrary, in Gd3NbS3O4, atom S3 deviates from this position and no longer occupies the center of the octahedron but a square pyramid. These structural characteristics lead to the absence of a mirror plane in the structure. Finally, we refined a Flack (1983) parameter close to 1/2, which indicates that we have a racemic twin.

Experimental top

A mixture of Gd2S3, Gd2O3, Nb2O5, and Nb, weighted in the proportion 1.33:1.67:1:0.5, was pressed into a pellet and sealed in a silica tube under vacuum. The tube was progressively heated (100 K h−1) to 1273 K and maintained at that temperature for 12 h. To favor crystallization, a small amount of iodine (<5 mg cm−3) was added to the intermediate reaction product which was reheated in a temperature gradient furnace at 1273 K for 10 d. Yellow transparent platelet-shaped crystals were obtained as a by-product. Chemical analyses performed on these crystals using an EDS-equipped scanning electron microscope revealed the following atomic percentages (except for oxygen): Gd 42.8, Nb 12.7 and S 44.5, in good agreement with the theoretical values Gd 42.8, Nb 14.3 and S 42.8 calculated for Gd3NbS3O4.

Refinement top

Refinement of the opposite enantiomer leads to identical R values and a complementary Flack parameter [0.446 (14)].

Computing details top

Data collection: COLLECT (Nonius, 1997-2000); cell refinement: HKL SCALEPACK (Otwinowski & Minor, 1997); data reduction: HKL DENZO (Otwinowski & Minor, 1997) and SCALEPACK; program(s) used to solve structure: not used (isotypic); molecular graphics: DIAMOND (Brandenburg, 2001); software used to prepare material for publication: SHELXTL (Bruker, 2001).

Figures top
[Figure 1] Fig. 1. A projection of the structure of Gd3NbS3O4 along the b axis, ellipsoids drawn at the 80% probability level.
Tridadolinium niobium trisulfide tetraoxide top
Crystal data top
Gd3NbS3O4F(000) = 1252
Mr = 724.84Dx = 6.734 Mg m3
Orthorhombic, Pn21aMo Kα radiation, λ = 0.71069 Å
Hall symbol: P -2ac -2nCell parameters from 21073 reflections
a = 6.6451 (1) Åθ = 2.9–35.0°
b = 7.5873 (2) ŵ = 29.85 mm1
c = 14.1809 (3) ÅT = 293 K
V = 714.98 (3) Å3Platelet, yellow
Z = 40.09 × 0.06 × 0.02 mm
Data collection top
Nonius KappaCCD
diffractometer
3130 independent reflections
Radiation source: fine-focus sealed tube2839 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.054
Detector resolution: 9 pixels mm-1θmax = 35.0°, θmin = 3.0°
CCD scansh = 1010
Absorption correction: gaussian
(SHELXTL; Bruker, 2001)
k = 1212
Tmin = 0.192, Tmax = 0.641l = 2221
18460 measured reflections
Refinement top
Refinement on F2 w = 1/[σ2(Fo2) + (0.0207P)2 + 6.6189P]
where P = (Fo2 + 2Fc2)/3
Least-squares matrix: full(Δ/σ)max = 0.002
R[F2 > 2σ(F2)] = 0.030Δρmax = 2.23 e Å3
wR(F2) = 0.061Δρmin = 2.11 e Å3
S = 1.05Extinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
3130 reflectionsExtinction coefficient: 0.00103 (6)
102 parametersAbsolute structure: (Flack, 1983)
1 restraintAbsolute structure parameter: 0.554 (14)
Primary atom site location: isomorphous structure methods
Crystal data top
Gd3NbS3O4V = 714.98 (3) Å3
Mr = 724.84Z = 4
Orthorhombic, Pn21aMo Kα radiation
a = 6.6451 (1) ŵ = 29.85 mm1
b = 7.5873 (2) ÅT = 293 K
c = 14.1809 (3) Å0.09 × 0.06 × 0.02 mm
Data collection top
Nonius KappaCCD
diffractometer
3130 independent reflections
Absorption correction: gaussian
(SHELXTL; Bruker, 2001)
2839 reflections with I > 2σ(I)
Tmin = 0.192, Tmax = 0.641Rint = 0.054
18460 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0301 restraint
wR(F2) = 0.061Δρmax = 2.23 e Å3
S = 1.05Δρmin = 2.11 e Å3
3130 reflectionsAbsolute structure: (Flack, 1983)
102 parametersAbsolute structure parameter: 0.554 (14)
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Gd10.77583 (4)0.24993 (9)0.58180 (2)0.00675 (6)
Gd20.21841 (5)0.00586 (3)0.65757 (3)0.00756 (8)
Gd30.22626 (5)0.50511 (4)0.66538 (3)0.00857 (8)
Nb10.81637 (8)0.74064 (13)0.57250 (4)0.00674 (10)
S10.5013 (2)0.2443 (3)0.72724 (10)0.0080 (2)
S20.5457 (2)0.7568 (3)0.70274 (10)0.0092 (2)
S30.4791 (3)0.0219 (3)0.49464 (13)0.0118 (4)
O10.8565 (6)0.7551 (13)0.4376 (3)0.0099 (8)
O20.8755 (8)0.0289 (8)0.6154 (4)0.0118 (11)
O30.8798 (8)0.5231 (8)0.6323 (4)0.0109 (11)
O40.1330 (6)0.7415 (12)0.5731 (3)0.0092 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Gd10.00683 (11)0.00576 (10)0.00767 (12)0.0003 (2)0.00051 (9)0.0000 (2)
Gd20.00659 (17)0.00641 (16)0.00968 (15)0.00030 (18)0.00006 (11)0.00003 (18)
Gd30.00713 (17)0.00623 (17)0.01234 (15)0.00007 (19)0.00058 (12)0.00069 (18)
Nb10.0087 (2)0.0058 (2)0.00570 (19)0.0015 (4)0.00000 (16)0.0000 (3)
S10.0076 (5)0.0090 (5)0.0075 (5)0.0002 (9)0.0000 (4)0.0001 (9)
S20.0088 (6)0.0095 (6)0.0092 (5)0.0002 (8)0.0002 (4)0.0001 (8)
S30.0119 (8)0.0135 (12)0.0101 (6)0.0047 (7)0.0010 (6)0.0018 (7)
O10.0106 (17)0.0116 (18)0.0076 (16)0.003 (3)0.0002 (14)0.001 (3)
O20.010 (2)0.009 (3)0.017 (2)0.0001 (19)0.0056 (19)0.001 (2)
O30.008 (2)0.008 (3)0.017 (2)0.001 (2)0.0035 (17)0.000 (2)
O40.0091 (16)0.012 (2)0.0064 (16)0.004 (3)0.0004 (13)0.000 (3)
Geometric parameters (Å, º) top
Gd1—O22.267 (6)Gd3—S3iii2.9996 (19)
Gd1—O4i2.279 (4)Gd3—Nb1vii3.5139 (7)
Gd1—O32.299 (6)Gd3—Gd2xi3.7124 (4)
Gd1—O1ii2.459 (4)Gd3—Gd1vii3.7567 (5)
Gd1—S12.7536 (14)Nb1—O2xi1.893 (6)
Gd1—S3iii2.882 (2)Nb1—O31.903 (6)
Gd1—S32.899 (2)Nb1—O11.935 (4)
Gd1—S1iv3.0952 (14)Nb1—O4v2.104 (4)
Gd1—Nb1ii3.4838 (6)Nb1—S22.5809 (15)
Gd1—Gd2v3.6838 (6)Nb1—S3iii2.7415 (19)
Gd1—Gd3v3.7567 (5)Nb1—Gd1xii3.4838 (6)
Gd1—Gd2iii3.8675 (6)Nb1—Gd2xiii3.5060 (8)
Gd2—O4vi2.331 (8)Nb1—Gd3v3.5139 (7)
Gd2—O2vii2.363 (5)S1—Gd2iv2.890 (2)
Gd2—O1i2.447 (8)S1—Gd3iv2.910 (2)
Gd2—S12.848 (2)S1—Gd1viii3.0952 (14)
Gd2—S1viii2.890 (2)S2—Gd2xi2.895 (2)
Gd2—S2vi2.895 (2)S2—Gd2xiv2.913 (2)
Gd2—S32.8957 (19)S2—Gd3iv2.930 (2)
Gd2—S2ix2.913 (2)S3—Nb1i2.7415 (19)
Gd2—Nb1x3.5060 (8)S3—Gd1i2.882 (2)
Gd2—Gd1vii3.6838 (6)S3—Gd3i2.9996 (19)
Gd2—Gd3vi3.7125 (4)O1—Gd2iii2.447 (8)
Gd2—Gd1i3.8675 (6)O1—Gd3iii2.456 (8)
Gd3—O42.305 (7)O1—Gd1xii2.459 (4)
Gd3—O3vii2.354 (5)O2—Nb1vi1.893 (6)
Gd3—O1i2.456 (8)O2—Gd2v2.363 (5)
Gd3—S12.833 (2)O3—Gd3v2.354 (5)
Gd3—S22.904 (2)O4—Nb1vii2.104 (4)
Gd3—S1viii2.910 (2)O4—Gd1iii2.279 (4)
Gd3—S2viii2.930 (2)O4—Gd2xi2.331 (8)
O2—Gd1—O4i95.7 (3)O2vii—Gd2—S2ix75.32 (14)
O2—Gd1—O3133.47 (16)O1i—Gd2—S2ix142.66 (10)
O4i—Gd1—O3104.2 (3)S1—Gd2—S2ix115.86 (5)
O2—Gd1—O1ii75.4 (3)S1viii—Gd2—S2ix79.92 (6)
O4i—Gd1—O1ii68.19 (14)S2vi—Gd2—S2ix76.17 (5)
O3—Gd1—O1ii73.9 (3)S3—Gd2—S2ix145.43 (6)
O2—Gd1—S191.24 (16)O4—Gd3—O3vii65.09 (19)
O4i—Gd1—S1153.82 (11)O4—Gd3—O1i101.71 (17)
O3—Gd1—S188.83 (15)O3vii—Gd3—O1i72.97 (19)
O1ii—Gd1—S1137.92 (10)O4—Gd3—S1153.21 (11)
O2—Gd1—S3iii156.77 (14)O3vii—Gd3—S1137.16 (17)
O4i—Gd1—S3iii79.28 (19)O1i—Gd3—S177.83 (15)
O3—Gd1—S3iii69.41 (15)O4—Gd3—S277.79 (16)
O1ii—Gd1—S3iii122.0 (2)O3vii—Gd3—S2135.51 (17)
S1—Gd1—S3iii84.46 (6)O1i—Gd3—S2141.26 (10)
O2—Gd1—S374.42 (14)S1—Gd3—S286.06 (6)
O4i—Gd1—S375.71 (16)O4—Gd3—S1viii133.48 (12)
O3—Gd1—S3151.04 (14)O3vii—Gd3—S1viii68.97 (15)
O1ii—Gd1—S3129.60 (19)O1i—Gd3—S1viii70.78 (14)
S1—Gd1—S381.93 (5)S1—Gd3—S1viii72.20 (5)
S3iii—Gd1—S382.366 (10)S2—Gd3—S1viii136.65 (4)
O2—Gd1—S1iv70.24 (15)O4—Gd3—S2viii75.25 (14)
O4i—Gd1—S1iv135.55 (11)O3vii—Gd3—S2viii71.87 (15)
O3—Gd1—S1iv66.07 (15)O1i—Gd3—S2viii142.29 (10)
O1ii—Gd1—S1iv67.48 (10)S1—Gd3—S2viii121.46 (4)
S1—Gd1—S1iv70.441 (9)S2—Gd3—S2viii75.78 (6)
S3iii—Gd1—S1iv128.58 (6)S1viii—Gd3—S2viii84.20 (6)
S3—Gd1—S1iv133.94 (6)O4—Gd3—S3iii73.31 (11)
O4vi—Gd2—O2vii64.80 (18)O3vii—Gd3—S3iii119.03 (15)
O4vi—Gd2—O1i109.41 (17)O1i—Gd3—S3iii74.29 (11)
O2vii—Gd2—O1i73.97 (18)S1—Gd3—S3iii80.96 (5)
O4vi—Gd2—S1152.51 (11)S2—Gd3—S3iii68.47 (5)
O2vii—Gd2—S1140.69 (15)S1viii—Gd3—S3iii139.46 (7)
O1i—Gd2—S177.67 (15)S2viii—Gd3—S3iii136.25 (6)
O4vi—Gd2—S1viii135.17 (11)O2xi—Nb1—O3127.8 (2)
O2vii—Gd2—S1viii73.15 (14)O2xi—Nb1—O1103.7 (3)
O1i—Gd2—S1viii71.26 (13)O3—Nb1—O1117.3 (3)
S1—Gd2—S1viii72.29 (5)O2xi—Nb1—O4v77.8 (3)
O4vi—Gd2—S2vi77.59 (14)O3—Nb1—O4v77.3 (3)
O2vii—Gd2—S2vi137.28 (16)O1—Nb1—O4v82.28 (16)
O1i—Gd2—S2vi141.08 (10)O2xi—Nb1—S282.58 (18)
S1—Gd2—S2vi80.90 (6)O3—Nb1—S282.91 (17)
S1viii—Gd2—S2vi131.17 (4)O1—Nb1—S2143.23 (13)
O4vi—Gd2—S378.19 (12)O4v—Nb1—S2133.95 (11)
O2vii—Gd2—S3112.36 (14)O2xi—Nb1—S3iii145.03 (17)
O1i—Gd2—S367.84 (11)O3—Nb1—S3iii77.78 (17)
S1—Gd2—S380.40 (5)O1—Nb1—S3iii77.9 (2)
S1viii—Gd2—S3134.58 (7)O4v—Nb1—S3iii136.0 (2)
S2vi—Gd2—S376.84 (5)S2—Nb1—S3iii77.18 (6)
O4vi—Gd2—S2ix75.24 (14)
Symmetry codes: (i) x+1, y1/2, z+1; (ii) x+2, y1/2, z+1; (iii) x+1, y+1/2, z+1; (iv) x+1/2, y, z+3/2; (v) x+1, y, z; (vi) x, y1, z; (vii) x1, y, z; (viii) x1/2, y, z+3/2; (ix) x1/2, y1, z+3/2; (x) x1, y1, z; (xi) x, y+1, z; (xii) x+2, y+1/2, z+1; (xiii) x+1, y+1, z; (xiv) x+1/2, y+1, z+3/2.

Experimental details

Crystal data
Chemical formulaGd3NbS3O4
Mr724.84
Crystal system, space groupOrthorhombic, Pn21a
Temperature (K)293
a, b, c (Å)6.6451 (1), 7.5873 (2), 14.1809 (3)
V3)714.98 (3)
Z4
Radiation typeMo Kα
µ (mm1)29.85
Crystal size (mm)0.09 × 0.06 × 0.02
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correctionGaussian
(SHELXTL; Bruker, 2001)
Tmin, Tmax0.192, 0.641
No. of measured, independent and
observed [I > 2σ(I)] reflections
18460, 3130, 2839
Rint0.054
(sin θ/λ)max1)0.806
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.061, 1.05
No. of reflections3130
No. of parameters102
No. of restraints1
Δρmax, Δρmin (e Å3)2.23, 2.11
Absolute structure(Flack, 1983)
Absolute structure parameter0.554 (14)

Computer programs: COLLECT (Nonius, 1997-2000), HKL SCALEPACK (Otwinowski & Minor, 1997), HKL DENZO (Otwinowski & Minor, 1997) and SCALEPACK, not used (isotypic), DIAMOND (Brandenburg, 2001), SHELXTL (Bruker, 2001).

Selected geometric parameters (Å, º) top
Gd1—O22.267 (6)Gd2—S2viii2.913 (2)
Gd1—O4i2.279 (4)Gd3—O42.305 (7)
Gd1—O32.299 (6)Gd3—O3vi2.354 (5)
Gd1—O1ii2.459 (4)Gd3—O1i2.456 (8)
Gd1—S12.7536 (14)Gd3—S12.833 (2)
Gd1—S3iii2.882 (2)Gd3—S22.904 (2)
Gd1—S32.899 (2)Gd3—S1vii2.910 (2)
Gd1—S1iv3.0952 (14)Gd3—S2vii2.930 (2)
Gd2—O4v2.331 (8)Gd3—S3iii2.9996 (19)
Gd2—O2vi2.363 (5)Nb1—O2ix1.893 (6)
Gd2—O1i2.447 (8)Nb1—O31.903 (6)
Gd2—S12.848 (2)Nb1—O11.935 (4)
Gd2—S1vii2.890 (2)Nb1—O4x2.104 (4)
Gd2—S2v2.895 (2)Nb1—S22.5809 (15)
Gd2—S32.8957 (19)Nb1—S3iii2.7415 (19)
O2—Gd1—O4i95.7 (3)O2vi—Gd2—S2viii75.32 (14)
O2—Gd1—O3133.47 (16)O1i—Gd2—S2viii142.66 (10)
O4i—Gd1—O3104.2 (3)S1—Gd2—S2viii115.86 (5)
O2—Gd1—O1ii75.4 (3)S1vii—Gd2—S2viii79.92 (6)
O4i—Gd1—O1ii68.19 (14)S2v—Gd2—S2viii76.17 (5)
O3—Gd1—O1ii73.9 (3)S3—Gd2—S2viii145.43 (6)
O2—Gd1—S191.24 (16)O4—Gd3—O3vi65.09 (19)
O4i—Gd1—S1153.82 (11)O4—Gd3—O1i101.71 (17)
O3—Gd1—S188.83 (15)O3vi—Gd3—O1i72.97 (19)
O1ii—Gd1—S1137.92 (10)O4—Gd3—S1153.21 (11)
O2—Gd1—S3iii156.77 (14)O3vi—Gd3—S1137.16 (17)
O4i—Gd1—S3iii79.28 (19)O1i—Gd3—S177.83 (15)
O3—Gd1—S3iii69.41 (15)O4—Gd3—S277.79 (16)
O1ii—Gd1—S3iii122.0 (2)O3vi—Gd3—S2135.51 (17)
S1—Gd1—S3iii84.46 (6)O1i—Gd3—S2141.26 (10)
O2—Gd1—S374.42 (14)S1—Gd3—S286.06 (6)
O4i—Gd1—S375.71 (16)O4—Gd3—S1vii133.48 (12)
O3—Gd1—S3151.04 (14)O3vi—Gd3—S1vii68.97 (15)
O1ii—Gd1—S3129.60 (19)O1i—Gd3—S1vii70.78 (14)
S1—Gd1—S381.93 (5)S1—Gd3—S1vii72.20 (5)
S3iii—Gd1—S382.366 (10)S2—Gd3—S1vii136.65 (4)
O2—Gd1—S1iv70.24 (15)O4—Gd3—S2vii75.25 (14)
O4i—Gd1—S1iv135.55 (11)O3vi—Gd3—S2vii71.87 (15)
O3—Gd1—S1iv66.07 (15)O1i—Gd3—S2vii142.29 (10)
O1ii—Gd1—S1iv67.48 (10)S1—Gd3—S2vii121.46 (4)
S1—Gd1—S1iv70.441 (9)S2—Gd3—S2vii75.78 (6)
S3iii—Gd1—S1iv128.58 (6)S1vii—Gd3—S2vii84.20 (6)
S3—Gd1—S1iv133.94 (6)O4—Gd3—S3iii73.31 (11)
O4v—Gd2—O2vi64.80 (18)O3vi—Gd3—S3iii119.03 (15)
O4v—Gd2—O1i109.41 (17)O1i—Gd3—S3iii74.29 (11)
O2vi—Gd2—O1i73.97 (18)S1—Gd3—S3iii80.96 (5)
O4v—Gd2—S1152.51 (11)S2—Gd3—S3iii68.47 (5)
O2vi—Gd2—S1140.69 (15)S1vii—Gd3—S3iii139.46 (7)
O1i—Gd2—S177.67 (15)S2vii—Gd3—S3iii136.25 (6)
O4v—Gd2—S1vii135.17 (11)O2ix—Nb1—O3127.8 (2)
O2vi—Gd2—S1vii73.15 (14)O2ix—Nb1—O1103.7 (3)
O1i—Gd2—S1vii71.26 (13)O3—Nb1—O1117.3 (3)
S1—Gd2—S1vii72.29 (5)O2ix—Nb1—O4x77.8 (3)
O4v—Gd2—S2v77.59 (14)O3—Nb1—O4x77.3 (3)
O2vi—Gd2—S2v137.28 (16)O1—Nb1—O4x82.28 (16)
O1i—Gd2—S2v141.08 (10)O2ix—Nb1—S282.58 (18)
S1—Gd2—S2v80.90 (6)O3—Nb1—S282.91 (17)
S1vii—Gd2—S2v131.17 (4)O1—Nb1—S2143.23 (13)
O4v—Gd2—S378.19 (12)O4x—Nb1—S2133.95 (11)
O2vi—Gd2—S3112.36 (14)O2ix—Nb1—S3iii145.03 (17)
O1i—Gd2—S367.84 (11)O3—Nb1—S3iii77.78 (17)
S1—Gd2—S380.40 (5)O1—Nb1—S3iii77.9 (2)
S1vii—Gd2—S3134.58 (7)O4x—Nb1—S3iii136.0 (2)
S2v—Gd2—S376.84 (5)S2—Nb1—S3iii77.18 (6)
O4v—Gd2—S2viii75.24 (14)
Symmetry codes: (i) x+1, y1/2, z+1; (ii) x+2, y1/2, z+1; (iii) x+1, y+1/2, z+1; (iv) x+1/2, y, z+3/2; (v) x, y1, z; (vi) x1, y, z; (vii) x1/2, y, z+3/2; (viii) x1/2, y1, z+3/2; (ix) x, y+1, z; (x) x+1, y, z.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds