Download citation
Download citation
link to html
The structure of the title compound, [EuFe(CN)6(DMF)4(H2O)3]·H2O (DMF is di­methyl­form­amide), is comprised of a neutral bimetallic complex EuFe(CN)6(DMF)4(H2O)3 and a solvent water mol­ecule. Approximately octahedral sixfold-coordinated FeIII and a slightly distorted square-antiprismatic eightfold-coordinated EuIII ions are bridged by a cyanide group to form a dinuclear complex. A three-dimensional framework is formed through O—H...N and O—H...O hydrogen-bonding interactions.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536802019578/bt6208sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536802019578/bt6208Isup2.hkl
Contains datablock I

CCDC reference: 202273

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](N-C) = 0.009 Å
  • Some non-H atoms missing
  • R factor = 0.033
  • wR factor = 0.095
  • Data-to-parameter ratio = 20.5

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry


Red Alert Alert Level A:
REFLT_03 From the CIF: _diffrn_reflns_theta_max 31.02 From the CIF: _reflns_number_total 7067 TEST2: Reflns within _diffrn_reflns_theta_max Count of symmetry unique reflns 9866 Completeness (_total/calc) 71.63% Alert A: < 85% complete (theta max?)
Yellow Alert Alert Level C:
ABSTY_02 Alert C An _exptl_absorpt_correction_type has been given without a literature citation. This should be contained in the _exptl_absorpt_process_details field. Absorption correction given as \y scan PLAT_213 Alert C Atom C22 has ADP max/min Ratio ........... 4.00 prolate PLAT_320 Alert C Check Hybridisation of C(41) in Main Residue ? General Notes
FORMU_01 There is a discrepancy between the atom counts in the _chemical_formula_sum and the formula from the _atom_site* data. Atom count from _chemical_formula_sum:C18 H36 Eu1 Fe1 N10 O8 Atom count from the _atom_site data: C18 H28 Eu1 Fe1 N10 O8 ABSTM_02 When printed, the submitted absorption T values will be replaced by the scaled T values. Since the ratio of scaled T's is identical to the ratio of reported T values, the scaling does not imply a change to the absorption corrections used in the study. Ratio of Tmax expected/reported 0.363 Tmax scaled 0.363 Tmin scaled 0.271 CELLZ_01 From the CIF: _cell_formula_units_Z 4 From the CIF: _chemical_formula_sum C18H36EuFeN10O8 TEST: Compare cell contents of formula and atom_site data WARNING: Unexpected atom type is in site list: Eu WARNING: Unexpected atom type is in site list: Fe WARNING: Unexpected atom type is in site list: N WARNING: Formula and atom_type_symbol element names mismatch. atom Z*formula cif sites diff C 72.00 72.00 0.00 H 144.00 112.00 32.00 EuFeN 40.00 0.00 40.00 O 32.00 32.00 0.00 WARNING: Site labels do not match formula elements Difference between formula and atom_site contents detected. ALERT: Large difference may be due to a symmetry error - see SYMMG tests CHEMW_03 From the CIF: _cell_formula_units_Z 4 From the CIF: _chemical_formula_weight 728.38 TEST: Calculate formula weight from _atom_site_* atom mass num sum C 12.01 18.00 216.20 H 1.01 28.00 28.22 N 14.01 10.00 140.07 O 16.00 8.00 127.99 Fe 55.85 1.00 55.85 Eu 151.96 1.00 151.96 Calculated formula weight 720.29 The ratio of given/expected molecular weight as calculated from the _atom_site* data lies outside the range 0.99 <> 1.01 REFLT_03 From the CIF: _diffrn_reflns_theta_max 31.02 From the CIF: _reflns_number_total 7067 From the CIF: _diffrn_reflns_limit_ max hkl 25. 3. 22. From the CIF: _diffrn_reflns_limit_ min hkl -7. -11. -22. TEST1: Expected hkl limits for theta max Calculated maximum hkl 25. 12. 28. Calculated minimum hkl -25. -12. -28. ALERT: Expected hkl max differ from CIF values
1 Alert Level A = Potentially serious problem
0 Alert Level B = Potential problem
3 Alert Level C = Please check

Comment top

In 1998, Kou et al. first obtained a dinuclear cyano-bridged Ln–Fe complex, [SmFe(CN)6(DMF)4(H2O)4]·H2O (Kou et al., 1998; (DMF is dimethylformamide), using Sm(NO3)3 as starting material. Whereafter, in 2000, the group of Kautz reported lighter and heavier rare-earth ions ferrocyanide bimetallic complexes [LnFe(CN)6(DMF)4(H2O)3]·H2O (Ln = La, Ce, Er, Yb and Lu; Kautz et al., 2000; Mullica et al., 2000). It is interesting that various amounts of coordinated water molecules have been found in these complexes. When Ln = Sm there are four coordinated water molecules in the complex, however, when Ln = La, Ce, Er, Yb and Lu, three coordinated water molecules have been found. In order to further investigate the influence of lanthanide contraction on the composition and structure of complexes, we synthesized a dinuclear Fe–Eu complex, viz. [EuFe(CN)6(DMF)4(H2O)3]·H2O, (I), the crystal structure of which is reported here.

As shown in Fig. 1, the structure of (I) is comprised of neutral bimetallic EuFe(CN)6(DMF)4(H2O)3 complex molecules and a solvent water molecule. The FeIII and EuIII ions are bridged by a cyanide group to form a dimer. The EuIII ion is eightfold coordinated with one N atom of the bridging cyanide [Eu—N = 2.495 (4) Å] group and seven O atoms of four DMF molecules [Eu—ODMF = 2.353 (3)–2.649 (3) Å, with an average distance of 2.469 (3) Å] and three water molecules, in which the three Eu—Owater dustances are in the range 2.204 (3)–2.589 (3) Å, with an average distance of 2.362 (3) Å. The coordination polyhedron can been described as a slightly distorted square antiprism. A similar situation has been found in [Ln(Fe(CN)6(DMF)4(H2O)3]·H2O (Mullica et al., 2000), where the FeIII ion is approximately octahedrally coordinated by six cyanide groups. The Eu1—N1—C1 angle is 165.7 (4)°, deviating slightly from linearity as the case found in analogA tThree-dimensional framework is formed through O—H···O and O—H···N hydrogen-bonding interactions, with O···O distances of 2.748 (3) Å and average O···N separations of 2.706 (3) Å.

Experimental top

The title complex was prepared by mixing a 1:1 molar ratio of EuCl3·H2O (0.5 mmol) and K3[Fe(CN)6] (165 mg, 0.5 mmol) in a mixed solution of DMF/H2O/EtOH (v:v = 1:2:2). The reaction mixture was filtered and orange single crystals suitable for X-ray analysis were obtained by slow evaporation of the solvent. Yield = 81%. IR spectra [recorded on an FT–IR 170SX (Nicolet) spectrometer, KBr pellet]: 3614, 3380 (board band center), 2945, 2125, 1653, 1497, 1381, 1115, 675 cm−1.

Computing details top

Data collection: TEXSAN (Molecular Structure Corporation, 1999); cell refinement: TEXSAN; data reduction: TEXSAN; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1998); software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1.  
Pentacyanoiron-m-cyano-triaquatetrakis(dimethylformamide)europium hydrate top
Crystal data top
[EuFe(CN)6(C3H7NO)4(H2O)3]·H2ODx = 1.567 Mg m3
Mr = 728.38Melting point: not measured K
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 17.633 (4) ÅCell parameters from 25 reflections
b = 8.8791 (18) Åθ = 30.1–33.9°
c = 19.831 (4) ŵ = 2.54 mm1
β = 96.12 (3)°T = 293 K
V = 3087.2 (11) Å3Prism, orange
Z = 40.80 × 0.40 × 0.40 mm
F(000) = 1468
Data collection top
Rigaku AFC-7R
diffractometer
5832 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.050
Graphite monochromatorθmax = 31.0°, θmin = 1.6°
2θω scansh = 725
Absorption correction: ψ scan
?
k = 113
Tmin = 0.747, Tmax = 0.999l = 2222
7448 measured reflections3 standard reflections every 200 reflections
7067 independent reflections intensity decay: 1.3%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.033H-atom parameters constrained
wR(F2) = 0.095 w = 1/[σ2(Fo2) + (0.0609P)2 + 3.1152P]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max = 0.003
7067 reflectionsΔρmax = 1.64 e Å3
344 parametersΔρmin = 1.42 e Å3
0 restraintsExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.00100 (17)
Crystal data top
[EuFe(CN)6(C3H7NO)4(H2O)3]·H2OV = 3087.2 (11) Å3
Mr = 728.38Z = 4
Monoclinic, P21/nMo Kα radiation
a = 17.633 (4) ŵ = 2.54 mm1
b = 8.8791 (18) ÅT = 293 K
c = 19.831 (4) Å0.80 × 0.40 × 0.40 mm
β = 96.12 (3)°
Data collection top
Rigaku AFC-7R
diffractometer
5832 reflections with I > 2σ(I)
Absorption correction: ψ scan
?
Rint = 0.050
Tmin = 0.747, Tmax = 0.9993 standard reflections every 200 reflections
7448 measured reflections intensity decay: 1.3%
7067 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0330 restraints
wR(F2) = 0.095H-atom parameters constrained
S = 1.01Δρmax = 1.64 e Å3
7067 reflectionsΔρmin = 1.42 e Å3
344 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Eu10.271450 (8)0.582069 (19)0.523943 (9)0.02423 (8)
Fe10.45678 (2)0.25145 (5)0.71199 (3)0.02284 (12)
N10.36330 (19)0.4715 (4)0.6150 (2)0.0438 (9)
N20.5389 (3)0.0158 (5)0.8110 (3)0.0683 (14)
N30.5481 (2)0.2149 (5)0.5830 (2)0.0565 (12)
N40.3705 (2)0.2979 (5)0.8454 (2)0.0484 (10)
N50.5503 (2)0.5052 (5)0.7809 (3)0.0594 (12)
N60.3666 (2)0.0072 (4)0.6412 (3)0.0548 (11)
N110.4159 (2)0.2718 (4)0.4195 (2)0.0464 (9)
N210.2631 (2)0.7716 (7)0.2821 (2)0.0656 (14)
N310.16569 (19)0.2797 (4)0.6802 (2)0.0393 (8)
N410.1219 (3)0.2081 (6)0.4679 (3)0.0660 (13)
C10.39956 (18)0.3933 (4)0.6511 (2)0.0293 (8)
C20.5093 (2)0.1046 (4)0.7735 (3)0.0388 (10)
C30.51388 (19)0.2273 (4)0.6304 (2)0.0349 (9)
C40.40148 (19)0.2803 (4)0.7948 (2)0.0334 (8)
C50.5155 (2)0.4119 (4)0.7546 (2)0.0339 (8)
C60.39951 (19)0.0893 (4)0.6682 (2)0.0338 (8)
C110.4000 (3)0.4130 (6)0.4240 (3)0.0564 (14)
H11A0.43150.48170.40510.068*
C120.4767 (4)0.2247 (9)0.3858 (5)0.093 (2)
H12A0.50080.31060.36800.139*
H12B0.45840.15870.34930.139*
H12C0.51290.17210.41690.139*
C130.3732 (5)0.1577 (8)0.4477 (7)0.131 (4)
H13A0.33270.20260.46940.196*
H13B0.40580.10160.48050.196*
H13C0.35210.09130.41240.196*
C210.2829 (3)0.7137 (7)0.3471 (3)0.0587 (14)
H21A0.33490.69470.35570.070*
C220.1915 (4)0.8049 (19)0.2623 (5)0.208 (8)
H22A0.16060.78060.29770.312*
H22B0.17450.74800.22240.312*
H22C0.18720.91060.25230.312*
C230.3099 (4)0.8063 (13)0.2260 (5)0.129 (4)
H23A0.27760.84430.18770.194*
H23B0.33490.71630.21320.194*
H23C0.34750.88080.24090.194*
C310.1662 (2)0.4147 (5)0.6516 (3)0.0445 (11)
H31A0.12330.47410.65440.053*
C320.1044 (3)0.2215 (7)0.7096 (4)0.0701 (18)
H32A0.06400.29420.70680.105*
H32B0.11990.19830.75630.105*
H32C0.08690.13140.68610.105*
C330.2240 (3)0.1824 (7)0.6826 (4)0.080 (2)
H33A0.26510.22650.66140.120*
H33B0.20760.09150.65920.120*
H33C0.24110.15940.72910.120*
C410.1471 (3)0.3417 (6)0.4660 (3)0.0553 (13)
H41A0.12220.38550.42400.066*
C420.1637 (6)0.0791 (8)0.4734 (7)0.131 (4)
H42A0.21700.10360.47600.196*
H42B0.15000.01690.43440.196*
H42C0.15360.02590.51360.196*
C430.0482 (4)0.1865 (12)0.4644 (5)0.118 (4)
H43A0.02250.28190.46110.177*
H43B0.03610.13470.50430.177*
H43C0.03190.12700.42510.177*
O1W0.35552 (15)0.7768 (3)0.51615 (18)0.0444 (8)
O2W0.26578 (15)0.7736 (4)0.62169 (19)0.0505 (9)
O3W0.15759 (15)0.6869 (4)0.50913 (17)0.0451 (7)
O4W0.06700 (18)0.7533 (4)0.39143 (19)0.0523 (8)
O110.34818 (18)0.4610 (4)0.4504 (2)0.0520 (9)
O210.24661 (17)0.6806 (4)0.39742 (18)0.0522 (9)
O310.21597 (17)0.4688 (4)0.62251 (19)0.0505 (8)
O410.20856 (19)0.3726 (4)0.4674 (2)0.0551 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Eu10.01812 (8)0.02006 (10)0.03462 (13)0.00025 (6)0.00332 (6)0.00058 (7)
Fe10.01293 (17)0.0204 (2)0.0358 (3)0.00067 (16)0.00512 (17)0.0000 (2)
N10.0258 (15)0.0423 (19)0.062 (3)0.0080 (14)0.0004 (16)0.0117 (19)
N20.052 (2)0.046 (2)0.102 (4)0.009 (2)0.014 (2)0.020 (3)
N30.0393 (19)0.064 (3)0.073 (3)0.0083 (18)0.033 (2)0.012 (2)
N40.0330 (17)0.053 (2)0.064 (3)0.0005 (16)0.0258 (17)0.000 (2)
N50.041 (2)0.048 (2)0.086 (3)0.0165 (18)0.002 (2)0.014 (2)
N60.0345 (18)0.040 (2)0.090 (3)0.0143 (16)0.0091 (19)0.019 (2)
N110.0313 (16)0.0359 (19)0.073 (3)0.0084 (14)0.0118 (17)0.0049 (19)
N210.0369 (19)0.109 (4)0.052 (3)0.019 (2)0.0137 (18)0.031 (3)
N310.0300 (15)0.0272 (16)0.062 (2)0.0024 (12)0.0123 (15)0.0047 (16)
N410.064 (3)0.061 (3)0.073 (3)0.039 (2)0.006 (2)0.007 (2)
C10.0190 (13)0.0283 (18)0.041 (2)0.0021 (12)0.0034 (14)0.0009 (16)
C20.0263 (16)0.0287 (19)0.061 (3)0.0007 (14)0.0015 (17)0.0035 (19)
C30.0223 (15)0.0323 (19)0.051 (3)0.0027 (13)0.0088 (15)0.0034 (18)
C40.0220 (14)0.0317 (19)0.047 (2)0.0024 (13)0.0053 (15)0.0022 (17)
C50.0216 (14)0.0321 (19)0.048 (2)0.0006 (14)0.0044 (15)0.0012 (18)
C60.0205 (14)0.0318 (19)0.050 (2)0.0021 (14)0.0069 (15)0.0056 (18)
C110.043 (2)0.045 (3)0.083 (4)0.000 (2)0.016 (2)0.014 (3)
C120.059 (4)0.094 (5)0.130 (7)0.033 (4)0.030 (4)0.012 (5)
C130.098 (6)0.056 (4)0.250 (13)0.004 (4)0.073 (7)0.031 (6)
C210.031 (2)0.085 (4)0.059 (3)0.003 (2)0.000 (2)0.021 (3)
C220.055 (4)0.44 (2)0.130 (8)0.086 (8)0.024 (5)0.156 (12)
C230.069 (4)0.211 (11)0.116 (7)0.029 (6)0.045 (5)0.082 (7)
C310.0332 (19)0.041 (2)0.061 (3)0.0020 (17)0.0117 (19)0.013 (2)
C320.042 (2)0.059 (3)0.112 (5)0.015 (2)0.023 (3)0.015 (3)
C330.045 (3)0.051 (3)0.144 (7)0.016 (2)0.013 (3)0.011 (4)
C410.042 (2)0.058 (3)0.065 (3)0.021 (2)0.003 (2)0.011 (3)
C420.125 (8)0.053 (4)0.205 (12)0.027 (4)0.024 (8)0.003 (6)
C430.075 (5)0.156 (8)0.128 (7)0.080 (5)0.033 (5)0.037 (6)
O1W0.0295 (13)0.0418 (16)0.066 (2)0.0165 (12)0.0231 (13)0.0134 (15)
O2W0.0266 (12)0.0499 (18)0.079 (2)0.0152 (12)0.0239 (14)0.0316 (17)
O3W0.0245 (12)0.0572 (19)0.0528 (19)0.0163 (13)0.0001 (12)0.0033 (16)
O4W0.0392 (15)0.0431 (17)0.070 (2)0.0011 (14)0.0150 (15)0.0010 (17)
O110.0396 (16)0.0481 (18)0.071 (2)0.0136 (14)0.0164 (16)0.0121 (17)
O210.0302 (14)0.076 (2)0.050 (2)0.0023 (15)0.0056 (13)0.0183 (18)
O310.0339 (14)0.0487 (18)0.071 (2)0.0086 (13)0.0139 (15)0.0209 (17)
O410.0390 (15)0.0405 (17)0.086 (3)0.0153 (14)0.0086 (16)0.0209 (18)
Geometric parameters (Å, º) top
Eu1—O3W2.204 (3)C11—O111.180 (6)
Eu1—O1W2.293 (3)C11—H11A0.9300
Eu1—O112.353 (3)C12—H12A0.9600
Eu1—O412.383 (3)C12—H12B0.9600
Eu1—O312.489 (3)C12—H12C0.9600
Eu1—N12.495 (4)C13—H13A0.9600
Eu1—O2W2.589 (3)C13—H13B0.9600
Eu1—O212.649 (3)C13—H13C0.9600
Eu1—C413.185 (5)C21—O211.276 (6)
Fe1—C51.905 (4)C21—H21A0.9300
Fe1—C61.913 (4)C22—H22A0.9600
Fe1—C21.951 (4)C22—H22B0.9600
Fe1—C11.951 (4)C22—H22C0.9600
Fe1—C32.006 (4)C23—H23A0.9600
Fe1—C42.013 (4)C23—H23B0.9600
N1—C11.142 (5)C23—H23C0.9600
N2—C21.167 (6)C31—O311.200 (5)
N3—C31.175 (6)C31—H31A0.9300
N4—C41.202 (6)C32—H32A0.9600
N5—C51.126 (6)C32—H32B0.9600
N6—C61.136 (5)C32—H32C0.9600
N11—C111.290 (6)C33—H33A0.9600
N11—C121.386 (7)C33—H33B0.9600
N11—C131.413 (8)C33—H33C0.9600
N21—C221.315 (8)C41—O411.116 (5)
N21—C211.397 (7)C41—H41A0.9800
N21—C231.487 (8)C42—H42A0.9600
N31—C311.327 (5)C42—H42B0.9600
N31—C331.340 (6)C42—H42C0.9600
N31—C321.382 (6)C43—H43A0.9600
N41—C411.269 (6)C43—H43B0.9600
N41—C431.308 (8)C43—H43C0.9600
N41—C421.360 (10)
O3W—Eu1—O1W105.01 (12)N6—C6—Fe1178.5 (4)
O3W—Eu1—O11133.32 (13)O11—C11—N11124.5 (5)
O1W—Eu1—O1183.34 (11)O11—C11—H11A117.8
O3W—Eu1—O4183.98 (13)N11—C11—H11A117.8
O1W—Eu1—O41145.93 (12)N11—C12—H12A109.5
O11—Eu1—O4167.75 (12)N11—C12—H12B109.5
O3W—Eu1—O3181.17 (12)H12A—C12—H12B109.5
O1W—Eu1—O31131.94 (12)N11—C12—H12C109.5
O11—Eu1—O31127.05 (13)H12A—C12—H12C109.5
O41—Eu1—O3181.49 (13)H12B—C12—H12C109.5
O3W—Eu1—N1140.75 (13)N11—C13—H13A109.5
O1W—Eu1—N188.33 (13)N11—C13—H13B109.5
O11—Eu1—N184.11 (13)H13A—C13—H13B109.5
O41—Eu1—N1105.50 (13)N11—C13—H13C109.5
O31—Eu1—N163.37 (11)H13A—C13—H13C109.5
O3W—Eu1—O2W73.45 (11)H13B—C13—H13C109.5
O1W—Eu1—O2W68.41 (10)O21—C21—N21135.3 (4)
O11—Eu1—O2W146.63 (11)O21—C21—H21A112.4
O41—Eu1—O2W144.26 (10)N21—C21—H21A112.4
O31—Eu1—O2W68.13 (12)N21—C22—H22A109.5
N1—Eu1—O2W77.89 (13)N21—C22—H22B109.5
O3W—Eu1—O2171.22 (12)H22A—C22—H22B109.5
O1W—Eu1—O2174.34 (12)N21—C22—H22C109.5
O11—Eu1—O2167.14 (12)H22A—C22—H22C109.5
O41—Eu1—O2177.91 (13)H22B—C22—H22C109.5
O31—Eu1—O21146.92 (10)N21—C23—H23A109.5
N1—Eu1—O21147.63 (11)N21—C23—H23B109.5
O2W—Eu1—O21118.46 (12)H23A—C23—H23B109.5
O3W—Eu1—C4169.66 (14)N21—C23—H23C109.5
O1W—Eu1—C41154.95 (14)H23A—C23—H23C109.5
O11—Eu1—C4183.66 (13)H23B—C23—H23C109.5
O41—Eu1—C4116.18 (13)O31—C31—N31127.3 (4)
O31—Eu1—C4172.51 (14)O31—C31—H31A116.3
N1—Eu1—C41111.50 (15)N31—C31—H31A116.3
O2W—Eu1—C41129.06 (12)N31—C32—H32A109.5
O21—Eu1—C4180.89 (14)N31—C32—H32B109.5
C5—Fe1—C6178.84 (16)H32A—C32—H32B109.5
C5—Fe1—C291.32 (18)N31—C32—H32C109.5
C6—Fe1—C288.47 (18)H32A—C32—H32C109.5
C5—Fe1—C190.72 (17)H32B—C32—H32C109.5
C6—Fe1—C189.53 (16)N31—C33—H33A109.5
C2—Fe1—C1177.20 (15)N31—C33—H33B109.5
C5—Fe1—C398.17 (17)H33A—C33—H33B109.5
C6—Fe1—C380.75 (16)N31—C33—H33C109.5
C2—Fe1—C3100.78 (18)H33A—C33—H33C109.5
C1—Fe1—C380.81 (16)H33B—C33—H33C109.5
C5—Fe1—C480.24 (17)O41—C41—N41124.8 (6)
C6—Fe1—C4100.83 (16)O41—C41—Eu136.5 (3)
C2—Fe1—C479.29 (18)N41—C41—Eu1147.7 (4)
C1—Fe1—C499.18 (16)O41—C41—H41A105.6
C3—Fe1—C4178.42 (16)N41—C41—H41A105.6
C1—N1—Eu1165.7 (4)Eu1—C41—H41A105.6
C11—N11—C12120.8 (5)N41—C42—H42A109.5
C11—N11—C13122.7 (5)N41—C42—H42B109.5
C12—N11—C13116.5 (6)H42A—C42—H42B109.5
C22—N21—C21119.7 (5)N41—C42—H42C109.5
C22—N21—C23108.8 (6)H42A—C42—H42C109.5
C21—N21—C23131.5 (5)H42B—C42—H42C109.5
C31—N31—C33123.9 (4)N41—C43—H43A109.5
C31—N31—C32124.1 (4)N41—C43—H43B109.5
C33—N31—C32112.0 (5)H43A—C43—H43B109.5
C41—N41—C43119.0 (7)N41—C43—H43C109.5
C41—N41—C42127.0 (6)H43A—C43—H43C109.5
C43—N41—C42114.1 (7)H43B—C43—H43C109.5
N1—C1—Fe1176.7 (3)C11—O11—Eu1164.5 (4)
N2—C2—Fe1178.2 (4)C21—O21—Eu1140.5 (3)
N3—C3—Fe1179.0 (4)C31—O31—Eu1155.2 (3)
N4—C4—Fe1178.0 (4)C41—O41—Eu1127.3 (4)
N5—C5—Fe1178.7 (5)

Experimental details

Crystal data
Chemical formula[EuFe(CN)6(C3H7NO)4(H2O)3]·H2O
Mr728.38
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)17.633 (4), 8.8791 (18), 19.831 (4)
β (°) 96.12 (3)
V3)3087.2 (11)
Z4
Radiation typeMo Kα
µ (mm1)2.54
Crystal size (mm)0.80 × 0.40 × 0.40
Data collection
DiffractometerRigaku AFC-7R
diffractometer
Absorption correctionψ scan
Tmin, Tmax0.747, 0.999
No. of measured, independent and
observed [I > 2σ(I)] reflections
7448, 7067, 5832
Rint0.050
(sin θ/λ)max1)0.725
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.095, 1.01
No. of reflections7067
No. of parameters344
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.64, 1.42

Computer programs: TEXSAN (Molecular Structure Corporation, 1999), TEXSAN, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Bruker, 1998), SHELXTL.

Selected geometric parameters (Å, º) top
Eu1—O3W2.204 (3)Eu1—N12.495 (4)
Eu1—O1W2.293 (3)Eu1—O2W2.589 (3)
Eu1—O112.353 (3)Eu1—O212.649 (3)
Eu1—O412.383 (3)N1—C11.142 (5)
Eu1—O312.489 (3)
C1—N1—Eu1165.7 (4)N1—C1—Fe1176.7 (3)
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds