Supporting information
Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536803007803/bt6267sup1.cif | |
Structure factor file (CIF format) https://doi.org/10.1107/S1600536803007803/bt6267Isup2.hkl |
CCDC reference: 214626
Triphosgene (bis(trichloromethyl) carbonate) was treated with six equivalents of N-hydroxysuccinimide and six equivalents of tri-n-butylamine in tetrahydrofuran (Pereira et al., 1998). The product was recrystallized from acetonitrile.
H atoms were included using a riding model with fixed C—H bond lengths of 0.99 Å; Uiso(H) values were fixed at 1.2 times the Ueq of the parent atom. The anomalous scattering was not sufficient to determine the absolute structure; Friedel opposite reflections were therefore merged.
Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: XP (Siemens, 1994); software used to prepare material for publication: SHELXL97.
C9H8N2O7 | Dx = 1.696 Mg m−3 |
Mr = 256.17 | Mo Kα radiation, λ = 0.71073 Å |
Orthorhombic, Fdd2 | Cell parameters from 2400 reflections |
a = 13.239 (2) Å | θ = 2.8–30.5° |
b = 14.629 (2) Å | µ = 0.15 mm−1 |
c = 10.3595 (12) Å | T = 133 K |
V = 2006.3 (5) Å3 | Flattened octahedron, colourless |
Z = 8 | 0.3 × 0.3 × 0.2 mm |
F(000) = 1056 |
Bruker SMART 1000 CCD diffractometer | 723 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.028 |
Graphite monochromator | θmax = 30.0°, θmin = 2.9° |
Detector resolution: 8.192 pixels mm-1 | h = −9→18 |
ω scans | k = −20→20 |
3941 measured reflections | l = −13→14 |
773 independent reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.027 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.073 | H-atom parameters constrained |
S = 1.06 | w = 1/[σ2(Fo2) + (0.0522P)2 + 0.2064P] where P = (Fo2 + 2Fc2)/3 |
773 reflections | (Δ/σ)max < 0.001 |
83 parameters | Δρmax = 0.29 e Å−3 |
1 restraint | Δρmin = −0.19 e Å−3 |
C9H8N2O7 | V = 2006.3 (5) Å3 |
Mr = 256.17 | Z = 8 |
Orthorhombic, Fdd2 | Mo Kα radiation |
a = 13.239 (2) Å | µ = 0.15 mm−1 |
b = 14.629 (2) Å | T = 133 K |
c = 10.3595 (12) Å | 0.3 × 0.3 × 0.2 mm |
Bruker SMART 1000 CCD diffractometer | 723 reflections with I > 2σ(I) |
3941 measured reflections | Rint = 0.028 |
773 independent reflections |
R[F2 > 2σ(F2)] = 0.027 | 1 restraint |
wR(F2) = 0.073 | H-atom parameters constrained |
S = 1.06 | Δρmax = 0.29 e Å−3 |
773 reflections | Δρmin = −0.19 e Å−3 |
83 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. Least-squares planes (x,y,z in crystal coordinates) and deviations from them (* indicates atom used to define plane) − 3.1027 (0.0140) x + 14.2215 (0.0043) y − 0.0000 (0.0000) z = 7.1107 (0.0022) * 0.0000 (0.0000) C5 * 0.0000 (0.0000) O4 * 0.0000 (0.0000) O3 * 0.0000 (0.0000) O3_$3 0.0174 (0.0027) N Rms deviation of fitted atoms = 0.0000 6.2463 (0.0073) x + 5.8329 (0.0050) y + 8.1466 (0.0041) z = 7.3393 (0.0024) Angle to previous plane (with approximate e.s.d.) = 73.92 (0.04) * 0.0593 (0.0011) N * 0.0100 (0.0013) C1 * −0.0545 (0.0009) O1 * 0.0001 (0.0013) C4 * −0.0193 (0.0008) O2 * 0.0466 (0.0011) C2 * −0.0422 (0.0011) C3 Rms deviation of fitted atoms = 0.0395 |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.17245 (10) | 0.61778 (10) | 0.32759 (16) | 0.0178 (3) | |
C2 | 0.27273 (12) | 0.61235 (11) | 0.25907 (15) | 0.0205 (3) | |
H2A | 0.3197 | 0.6593 | 0.2928 | 0.025* | |
H2B | 0.2639 | 0.6221 | 0.1652 | 0.025* | |
C3 | 0.31397 (12) | 0.51550 (11) | 0.28590 (15) | 0.0201 (3) | |
H3A | 0.3180 | 0.4798 | 0.2049 | 0.024* | |
H3B | 0.3822 | 0.5188 | 0.3246 | 0.024* | |
C4 | 0.24056 (11) | 0.47177 (10) | 0.37868 (15) | 0.0181 (3) | |
C5 | 0.0000 | 0.5000 | 0.3899 (2) | 0.0164 (4) | |
N | 0.16454 (9) | 0.53712 (8) | 0.39746 (12) | 0.0183 (3) | |
O1 | 0.10865 (8) | 0.67660 (8) | 0.32646 (14) | 0.0236 (2) | |
O2 | 0.24114 (9) | 0.39780 (8) | 0.42883 (12) | 0.0249 (3) | |
O3 | 0.07945 (8) | 0.51733 (8) | 0.47052 (11) | 0.0194 (2) | |
O4 | 0.0000 | 0.5000 | 0.27643 (15) | 0.0238 (4) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0175 (6) | 0.0190 (6) | 0.0168 (6) | −0.0038 (5) | −0.0024 (5) | 0.0000 (5) |
C2 | 0.0180 (7) | 0.0230 (7) | 0.0204 (7) | −0.0028 (5) | 0.0019 (6) | 0.0025 (6) |
C3 | 0.0162 (6) | 0.0232 (7) | 0.0210 (8) | 0.0000 (5) | 0.0024 (5) | −0.0006 (5) |
C4 | 0.0147 (6) | 0.0209 (6) | 0.0187 (6) | −0.0009 (5) | −0.0037 (5) | −0.0016 (6) |
C5 | 0.0133 (8) | 0.0178 (8) | 0.0182 (9) | −0.0013 (6) | 0.000 | 0.000 |
N | 0.0116 (5) | 0.0229 (6) | 0.0206 (6) | −0.0014 (4) | 0.0015 (4) | 0.0036 (5) |
O1 | 0.0207 (5) | 0.0210 (5) | 0.0291 (6) | 0.0020 (4) | −0.0014 (5) | 0.0016 (5) |
O2 | 0.0252 (6) | 0.0198 (5) | 0.0297 (6) | −0.0009 (4) | −0.0025 (5) | 0.0018 (4) |
O3 | 0.0124 (5) | 0.0294 (6) | 0.0162 (5) | −0.0035 (4) | −0.0002 (4) | 0.0015 (4) |
O4 | 0.0209 (7) | 0.0335 (9) | 0.0168 (8) | −0.0067 (6) | 0.000 | 0.000 |
C1—O1 | 1.2058 (19) | C3—H3A | 0.9900 |
C1—N | 1.3882 (18) | C3—H3B | 0.9900 |
C1—C2 | 1.508 (2) | C4—O2 | 1.200 (2) |
C2—C3 | 1.544 (2) | C4—N | 1.4017 (18) |
C2—H2A | 0.9900 | C5—O4 | 1.175 (3) |
C2—H2B | 0.9900 | C5—O3 | 1.3669 (17) |
C3—C4 | 1.509 (2) | N—O3 | 1.3876 (15) |
O1—C1—N | 123.97 (14) | C4—C3—H3B | 110.5 |
O1—C1—C2 | 130.53 (15) | C2—C3—H3B | 110.5 |
N—C1—C2 | 105.50 (12) | H3A—C3—H3B | 108.7 |
C1—C2—C3 | 105.96 (12) | O2—C4—N | 124.01 (14) |
C1—C2—H2A | 110.5 | O2—C4—C3 | 130.82 (14) |
C3—C2—H2A | 110.5 | N—C4—C3 | 105.17 (13) |
C1—C2—H2B | 110.5 | O4—C5—O3 | 127.67 (8) |
C3—C2—H2B | 110.5 | O3—C5—O3i | 104.67 (17) |
H2A—C2—H2B | 108.7 | O3—N—C1 | 121.53 (11) |
C4—C3—C2 | 106.02 (12) | O3—N—C4 | 121.08 (12) |
C4—C3—H3A | 110.5 | C1—N—C4 | 116.95 (12) |
C2—C3—H3A | 110.5 | C5—O3—N | 109.27 (11) |
O1—C1—C2—C3 | −173.32 (17) | O2—C4—N—O3 | −4.5 (2) |
N—C1—C2—C3 | 6.33 (15) | C3—C4—N—O3 | 175.03 (11) |
C1—C2—C3—C4 | −5.02 (16) | O2—C4—N—C1 | −177.00 (14) |
C2—C3—C4—O2 | −178.71 (16) | C3—C4—N—C1 | 2.51 (17) |
C2—C3—C4—N | 1.82 (16) | O4—C5—O3—N | 0.76 (12) |
O1—C1—N—O3 | 1.4 (2) | O3i—C5—O3—N | −179.24 (12) |
C2—C1—N—O3 | −178.25 (12) | C1—N—O3—C5 | 69.98 (15) |
O1—C1—N—C4 | 173.91 (16) | C4—N—O3—C5 | −102.20 (14) |
C2—C1—N—C4 | −5.77 (17) |
Symmetry code: (i) −x, −y+1, z. |
D—H···A | D—H | H···A | D···A | D—H···A |
C2—H2A···O1ii | 0.99 | 2.60 | 3.5334 (19) | 156 |
C2—H2B···O2iii | 0.99 | 2.47 | 3.429 (2) | 164 |
Symmetry codes: (ii) −x+1/2, −y+3/2, z; (iii) −x+1/2, −y+1, z−1/2. |
Experimental details
Crystal data | |
Chemical formula | C9H8N2O7 |
Mr | 256.17 |
Crystal system, space group | Orthorhombic, Fdd2 |
Temperature (K) | 133 |
a, b, c (Å) | 13.239 (2), 14.629 (2), 10.3595 (12) |
V (Å3) | 2006.3 (5) |
Z | 8 |
Radiation type | Mo Kα |
µ (mm−1) | 0.15 |
Crystal size (mm) | 0.3 × 0.3 × 0.2 |
Data collection | |
Diffractometer | Bruker SMART 1000 CCD diffractometer |
Absorption correction | – |
No. of measured, independent and observed [I > 2σ(I)] reflections | 3941, 773, 723 |
Rint | 0.028 |
(sin θ/λ)max (Å−1) | 0.703 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.027, 0.073, 1.06 |
No. of reflections | 773 |
No. of parameters | 83 |
No. of restraints | 1 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.29, −0.19 |
Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SAINT, SHELXS97 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997), XP (Siemens, 1994), SHELXL97.
C1—O1 | 1.2058 (19) | C5—O3 | 1.3669 (17) |
C1—N | 1.3882 (18) | N—O3 | 1.3876 (15) |
C5—O4 | 1.175 (3) | ||
O4—C5—O3 | 127.67 (8) | O3—N—C4 | 121.08 (12) |
O3—C5—O3i | 104.67 (17) | C1—N—C4 | 116.95 (12) |
O3—N—C1 | 121.53 (11) | C5—O3—N | 109.27 (11) |
O3i—C5—O3—N | −179.24 (12) | C1—N—O3—C5 | 69.98 (15) |
Symmetry code: (i) −x, −y+1, z. |
D—H···A | D—H | H···A | D···A | D—H···A |
C2—H2A···O1ii | 0.99 | 2.60 | 3.5334 (19) | 156 |
C2—H2B···O2iii | 0.99 | 2.47 | 3.429 (2) | 164 |
Symmetry codes: (ii) −x+1/2, −y+3/2, z; (iii) −x+1/2, −y+1, z−1/2. |
We are interested in the structures and synthetic applications of organic carbonates and have recently published the structures of bis(o-nitrophenyl) carbonate and bis(p-nitrophenyl) carbonate (Simon et al., 2003a,b). Introductory material is presented in the first of these publications. Here we present the structure of N,N'-disuccinimidyl carbonate, (I), a versatile reagent for the preparation of active esters in peptide chemistry (Pearson & Roush, 2001; Ogura et al., 1979; Gooßen & Ghosh, 2001) and as a substitute for phosgene in reactions with various nucleophiles (Takeda & Ogura, 1982; Halstrøm & Kovács, 1986; Ghosh et al., 1992; Boeden et al., 1998).
The molecule of (I) is shown in Fig. 1. It displays crystallographic twofold symmetry, with the twofold axis (symmetry code: −x, 1 − y, z) passing along the bond C5═O4. The carbonate moiety displays the usual s-cis-s-cis conformation (cf. torsion angles in Table 1). The N atom is essentially coplanar with the carbonate moiety, lying only 0.0174 (3) Å out of the exact carbonate plane. The succinimide ring is almost planar (r.m.s. deviation 0.040 Å) and subtends an interplanar angle of 73.92 (4)° to the carbonate group.
Bond lengths and angles of the carbonate moiety (Table 1) may be considered normal. A search of the Cambridge Structural Database (Allen, 2002; 2003 version) revealed no hit for the moiety N—O—C(═O)—O—N; our earlier paper (Simon et al., 2003a) briefly presents database results for diaryl carbonates.
The molecular packing involves two weak C—H···O hydrogen bonds (Table 2), the effect of which is to link the molecules to form two interpenetrating networks, one of which is shown in Fig. 2. Short intramolecular contacts O1···C4i [2.991 (2) Å; symmetry code: (i) −1/4 + x, 5/4 − y, −1/4 + z] and O1···O4ii [2.975 (2) Å; symmetry code: (ii) 1/4 + x, 5/4 − y, 1/4 + z] are also observed. These are not shown in Fig. 2.