Download citation
Download citation
link to html
The Ni atom in the title compound, {[Ni2(C10H2O8)(C4H4N2)(H2O)4]·2H2O}n, exists in an octahedral NO5Ni coordination environment that is defined by the two O atoms of a chelating carboxyl group, the O atom of a monodentate carboxyl group belonging to another carboxy­lato tetraanion, two water mol­ecules and the N atom of the N-heterocycle. The tetra­carboxyl­ato anion and the pyrazine mol­ecule are each located on a center of inversion. The bonding pattern leads to the formation of a layer structure; the layers are linked into a three-dimensional network by extensive hydrogen bonds involving the water mol­ecules and the O atoms of the anionic unit.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536803017045/bt6319sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536803017045/bt6319Isup2.hkl
Contains datablock I

CCDC reference: 222802

Key indicators

  • Single-crystal X-ray study
  • T = 298 K
  • Mean [sigma](C-C) = 0.007 Å
  • R factor = 0.065
  • wR factor = 0.142
  • Data-to-parameter ratio = 13.2

checkCIF/PLATON results

No syntax errors found



Alert level A PLAT029_ALERT_3_A _diffrn_measured_fraction_theta_full Low ..... 0.93
Alert level B PLAT731_ALERT_1_B Bond Calc 0.84(5), Rep 0.840(10) .... 5.00 su-Ratio O1W -H1W1 1.555 1.555 PLAT731_ALERT_1_B Bond Calc 0.84(6), Rep 0.850(10) .... 6.00 su-Ratio O2W -H2W1 1.555 1.555 PLAT731_ALERT_1_B Bond Calc 0.85(5), Rep 0.850(10) .... 5.00 su-Ratio O2W -H2W2 1.555 1.555 PLAT731_ALERT_1_B Bond Calc 0.85(6), Rep 0.850(10) .... 6.00 su-Ratio O3W -H3W1 1.555 1.555 PLAT735_ALERT_1_B D-H Calc 0.84(5), Rep 0.840(10) .... 5.00 su-Ratio O1W -H1W1 1.555 1.555 PLAT735_ALERT_1_B D-H Calc 0.85(5), Rep 0.850(10) .... 5.00 su-Ratio O2W -H2W2 1.555 1.555 PLAT735_ALERT_1_B D-H Calc 0.84(6), Rep 0.850(10) .... 6.00 su-Ratio O2W -H2W1 1.555 1.555 PLAT735_ALERT_1_B D-H Calc 0.85(6), Rep 0.850(10) .... 6.00 su-Ratio O3W -H3W1 1.555 1.555 PLAT736_ALERT_1_B H...A Calc 1.96(5), Rep 1.960(10) .... 5.00 su-Ratio H2W2 -O1W 1.555 2.676 PLAT736_ALERT_1_B H...A Calc 1.90(6), Rep 1.900(10) .... 6.00 su-Ratio H2W1 -O3W 1.555 1.455
Alert level C ABSTM02_ALERT_3_C The ratio of expected to reported Tmax/Tmin(RR') is < 0.90 Tmin and Tmax reported: 0.616 0.919 Tmin' and Tmax expected: 0.738 0.919 RR' = 0.835 Please check that your absorption correction is appropriate. REFLT03_ALERT_3_C Reflection count < 95% complete From the CIF: _diffrn_reflns_theta_max 28.30 From the CIF: _diffrn_reflns_theta_full 0.00 From the CIF: _reflns_number_total 2152 TEST2: Reflns within _diffrn_reflns_theta_max Count of symmetry unique reflns 2304 Completeness (_total/calc) 93.40% PLAT041_ALERT_1_C Calc. and Rep. SumFormula Strings Differ .. ? PLAT042_ALERT_1_C Calc. and Rep. MoietyFormula Strings Differ .. ? PLAT045_ALERT_1_C Calculated and Reported Z Differ by .......... 2.00 Ratio PLAT061_ALERT_3_C Tmax/Tmin Range Test RR' too Large ........... 0.82 PLAT125_ALERT_4_C No _symmetry_space_group_name_Hall Given ..... ? PLAT213_ALERT_2_C Atom C3 has ADP max/min Ratio ........... 3.10 oblate PLAT341_ALERT_3_C Low Bond Precision on C-C bonds (x 1000) Ang.. 7 PLAT710_ALERT_4_C Delete 1-2-3 or 2-3-4 (CIF) Linear Torsion Angle # 11 O3 -NI1 -N1 -C6 -64.00 2.00 2.667 1.555 1.555 1.555 PLAT710_ALERT_4_C Delete 1-2-3 or 2-3-4 (CIF) Linear Torsion Angle # 16 O3 -NI1 -N1 -C7 107.00 1.00 2.667 1.555 1.555 1.555 PLAT720_ALERT_4_C Number of Unusual/Non-Standard Label(s) ...... 6 PLAT731_ALERT_1_C Bond Calc 0.85(4), Rep 0.850(10) .... 4.00 su-Ratio O1W -H1W2 1.555 1.555 PLAT731_ALERT_1_C Bond Calc 0.85(4), Rep 0.850(10) .... 4.00 su-Ratio O3W -H3W2 1.555 1.555 PLAT735_ALERT_1_C D-H Calc 0.85(4), Rep 0.850(10) .... 4.00 su-Ratio O1W -H1W2 1.555 1.555 PLAT735_ALERT_1_C D-H Calc 0.85(4), Rep 0.850(10) .... 4.00 su-Ratio O3W -H3W2 1.555 1.555 PLAT736_ALERT_1_C H...A Calc 1.82(5), Rep 1.82(2) .... 2.50 su-Ratio H1W1 -O4 1.555 2.667 PLAT736_ALERT_1_C H...A Calc 2.02(3), Rep 2.020(10) .... 3.00 su-Ratio H3W2 -O3 1.555 1.665 PLAT764_ALERT_4_C Overcomplete CIF Bond list Detected (Rep/Expd) 1.11 Ratio
1 ALERT level A = In general: serious problem 10 ALERT level B = Potentially serious problem 19 ALERT level C = Check and explain 0 ALERT level G = General alerts; check 19 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 1 ALERT type 2 Indicator that the structure model may be wrong or deficient 5 ALERT type 3 Indicator that the structure quality may be low 5 ALERT type 4 Improvement, methodology, query or suggestion

Comment top

A number of the adducts of nickel benzenepolycarboxylates with N-heterocycles have been reported (Li et al., 2003; Yuan et al., 2001). To this number has been added the 4,4'-bipyridine adduct of nickel terephthalate (Yang et al., 2003a) and of nickel phthalate (Yang et al., 2003b). The present pyrazine adduct, (I), of dinickel 1,2,4,5-benzenetetracarboxylate exists as a dihydrate (Fig. 1).

The Ni atom in (I) exists in an octahedral NO5Ni environment that is defined by the two O atoms of a chelating –CO2 group, the O atom of a monodentate CO2 group of another tetraanion, two water molecules and the N atom of pyrazine (Table 1). The tetracarboxylate anion and the pyrazine molecule are located on a center of inversion. The bonding pattern leads to the formation of layers (Fig. 2); the layers are linked into a three-dimensional network by hydrogen bonds involving the water molecules (Table 2).

Experimental top

1,2,4,5-Benzenetetracarboxylic acid anhydride (pyromellitic anhydride, 0.22 g, 1 mmol) dissolved in water (15 ml) containing sodium hydroxide (0.16 g, 4 mmol). Nickel dinitrate hexahydrate (0.58 g, 2 mmol) and pyrazine (0.16 g, 2 mmol) dissolved in water (3 ml) were added. The mixture was placed in a 20 ml Teflon-lined stainless-steel bomb. The bomb was heated at 453 K for 100 h. Crystals separated from the solution when the bomb was cooled down at a rate of 5 K h−1.

Refinement top

The use of too small a value for the ω-dependent absorption correction in SADABS (Sheldrick, 1996) lead to non-positive definites for several atoms, and a compromise value of 0.5 was used for which only one atom (C3) was non-positive definite. The displacement parameter of this atom was made nearly isotropic by an ISOR 0.01 command in SHELXL97 (Sheldrick, 1997). The aromatic H atoms were generated geometrically and were included in the refinement in the riding-model approximation, with Uiso(H) = 1.2Ueq(C). The water H atoms were located and refined with restraints of O—H = 0.85±0.01 Å and H···H = 1.39±0.01 Å, and Uiso(H) = 1.2Ueq(O).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1]
Fig. 1. ORTEPII (Johnson, 1976) plot of a segment of the title structure at the 75% probability level. [Symmetry code: (i) 1 − x, 1 − y, 2 − z.]

Fig. 2. ORTEPII (Johnson, 1976) plot of the layer structure.
tetraaqua(1,2,4,5-benzenetetracarboxylato)(pyrazine)dinickel(II) dihydrate top
Crystal data top
[Ni2(C10H2O8)(C4H4N2)(H2O)4]·2H2OZ = 1
Mr = 555.72F(000) = 284
Triclinic, P1Dx = 1.991 Mg m3
a = 7.2005 (5) ÅMo Kα radiation, λ = 0.71073 Å
b = 8.0322 (5) ÅCell parameters from 2804 reflections
c = 9.3735 (6) Åθ = 2.3–28.3°
α = 96.175 (1)°µ = 2.12 mm1
β = 101.872 (1)°T = 298 K
γ = 116.245 (1)°Irregular block, green
V = 463.50 (5) Å30.14 × 0.13 × 0.04 mm
Data collection top
Bruker APEX area-detector
diffractometer
2152 independent reflections
Radiation source: fine-focus sealed tube2055 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.041
ϕ and ω scansθmax = 28.3°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 99
Tmin = 0.616, Tmax = 0.919k = 1010
5415 measured reflectionsl = 1212
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.065Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.142H atoms treated by a mixture of independent and constrained refinement
S = 1.25 w = 1/[σ2(Fo2) + (0.0629P)2 + 0.259P]
where P = (Fo2 + 2Fc2)/3
2152 reflections(Δ/σ)max = 0.001
163 parametersΔρmax = 0.95 e Å3
12 restraintsΔρmin = 0.65 e Å3
Crystal data top
[Ni2(C10H2O8)(C4H4N2)(H2O)4]·2H2Oγ = 116.245 (1)°
Mr = 555.72V = 463.50 (5) Å3
Triclinic, P1Z = 1
a = 7.2005 (5) ÅMo Kα radiation
b = 8.0322 (5) ŵ = 2.12 mm1
c = 9.3735 (6) ÅT = 298 K
α = 96.175 (1)°0.14 × 0.13 × 0.04 mm
β = 101.872 (1)°
Data collection top
Bruker APEX area-detector
diffractometer
2152 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2055 reflections with I > 2σ(I)
Tmin = 0.616, Tmax = 0.919Rint = 0.041
5415 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.06512 restraints
wR(F2) = 0.142H atoms treated by a mixture of independent and constrained refinement
S = 1.25Δρmax = 0.95 e Å3
2152 reflectionsΔρmin = 0.65 e Å3
163 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.60108 (8)0.81218 (8)0.67559 (6)0.0110 (2)
O10.6582 (5)0.5750 (5)0.6851 (4)0.017 (1)
O20.8599 (5)0.8424 (4)0.8517 (4)0.018 (1)
O30.5956 (5)0.2995 (5)1.1964 (4)0.021 (1)
O40.9037 (5)0.3347 (6)1.3403 (4)0.028 (1)
N10.8301 (6)0.9266 (6)0.5624 (4)0.018 (1)
O1w0.3494 (5)0.7163 (5)0.4853 (4)0.018 (1)
O2w0.6017 (6)1.0632 (5)0.7309 (4)0.023 (1)
O3w1.3406 (7)1.0949 (7)0.8959 (5)0.040 (1)
C10.8069 (7)0.6716 (6)0.8048 (5)0.015 (1)
C20.9098 (7)0.5810 (6)0.9020 (5)0.015 (1)
C30.8153 (7)0.5061 (6)1.0095 (5)0.015 (1)
C40.9005 (7)0.4241 (7)1.1087 (5)0.017 (1)
C50.7944 (7)0.3455 (7)1.2247 (5)0.017 (1)
C61.0016 (8)1.0989 (7)0.6229 (6)0.022 (1)
C70.8302 (8)0.8267 (7)0.4382 (5)0.021 (1)
H1w10.242 (6)0.689 (7)0.519 (6)0.021*
H1w20.309 (8)0.607 (4)0.433 (5)0.021*
H2w10.520 (8)1.076 (8)0.779 (6)0.028*
H2w20.620 (9)1.135 (7)0.669 (5)0.028*
H3w11.222 (6)1.021 (8)0.911 (8)0.047*
H3w21.418 (9)1.163 (8)0.983 (3)0.047*
H30.69030.51051.01600.018*
H61.00651.17070.70970.026*
H70.71490.70590.39320.025*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0108 (3)0.0142 (3)0.0113 (3)0.0073 (2)0.0052 (2)0.0062 (2)
O10.015 (2)0.022 (2)0.016 (2)0.010 (1)0.001 (1)0.004 (1)
O20.020 (2)0.018 (2)0.018 (2)0.011 (1)0.004 (1)0.005 (1)
O30.016 (2)0.035 (2)0.021 (2)0.014 (2)0.011 (1)0.016 (2)
O40.020 (2)0.053 (2)0.021 (2)0.021 (2)0.010 (2)0.021 (2)
N10.015 (2)0.022 (2)0.019 (2)0.008 (2)0.007 (2)0.008 (2)
O1w0.017 (2)0.022 (2)0.016 (2)0.010 (1)0.005 (1)0.004 (1)
O2w0.032 (2)0.023 (2)0.025 (2)0.018 (2)0.015 (2)0.011 (2)
O3w0.030 (2)0.057 (3)0.023 (2)0.017 (2)0.007 (2)0.005 (2)
C10.011 (2)0.021 (2)0.014 (2)0.008 (2)0.006 (2)0.009 (2)
C20.013 (2)0.019 (2)0.017 (2)0.011 (2)0.004 (2)0.005 (2)
C30.019 (2)0.013 (2)0.023 (2)0.011 (2)0.009 (2)0.014 (2)
C40.014 (2)0.021 (2)0.018 (2)0.008 (2)0.009 (2)0.008 (2)
C50.018 (2)0.022 (2)0.017 (2)0.012 (2)0.009 (2)0.008 (2)
C60.022 (2)0.024 (2)0.018 (2)0.010 (2)0.008 (2)0.004 (2)
C70.017 (2)0.022 (2)0.019 (2)0.006 (2)0.006 (2)0.002 (2)
Geometric parameters (Å, º) top
Ni1—O12.126 (3)C3—C41.389 (6)
Ni1—O22.123 (3)C4—C2ii1.408 (6)
Ni1—O3i2.014 (3)C4—C51.493 (6)
Ni1—O1w2.049 (3)C6—C7iii1.367 (7)
Ni1—O2w2.025 (4)C7—C6iii1.367 (7)
Ni1—N12.068 (4)O1w—H1w10.84 (1)
O1—C11.262 (6)O1w—H1w20.85 (1)
O2—C11.248 (6)O2w—H2w10.85 (1)
O3—C51.269 (5)O2w—H2w20.85 (1)
O4—C51.237 (6)O3w—H3w10.85 (1)
N1—C61.339 (6)O3w—H3w20.85 (1)
N1—C71.341 (6)C3—H30.93
C1—C21.500 (6)C6—H60.93
C2—C31.375 (6)C7—H70.93
C2—C4ii1.408 (6)
O1—Ni1—O261.7 (1)C3—C2—C1117.2 (4)
O1—Ni1—O3i84.9 (1)C4ii—C2—C1123.3 (4)
O1—Ni1—O1w103.2 (1)C2—C3—C4122.1 (4)
O1—Ni1—O2w162.8 (1)C3—C4—C2ii118.4 (4)
O1—Ni1—N191.5 (1)C3—C4—C5120.6 (4)
O2—Ni1—O3i87.8 (1)C2ii—C4—C5121.0 (4)
O2—Ni1—O1w164.8 (1)O4—C5—O3125.2 (4)
O2—Ni1—O2w101.8 (1)O4—C5—C4119.2 (4)
O2—Ni1—N185.8 (1)O3—C5—C4115.6 (4)
O3i—Ni1—O1w93.2 (1)N1—C6—C7iii122.5 (5)
O3i—Ni1—O2w89.8 (1)N1—C7—C6iii120.6 (4)
O3i—Ni1—N1173.6 (1)Ni1—O1w—H1w1103 (4)
O1w—Ni1—O2w93.4 (1)Ni1—O1w—H1w2117 (4)
O1w—Ni1—N192.8 (1)H1w1—O1w—H1w298 (5)
O2w—Ni1—N192.2 (2)Ni1—O2w—H2w1123 (4)
C1—O1—Ni188.5 (3)Ni1—O2w—H2w2119 (4)
C1—O2—Ni189.0 (3)H2w1—O2w—H2w2109 (5)
C5—O3—Ni1i127.0 (3)H3w1—O3w—H3w2103 (7)
C6—N1—C7116.9 (4)C2—C3—H3119.0
C6—N1—Ni1119.8 (3)C4—C3—H3119.0
C7—N1—Ni1122.8 (3)N1—C6—H6118.7
O2—C1—O1120.5 (4)C7iii—C6—H6118.7
O2—C1—C2118.0 (4)N1—C7—H7119.7
O1—C1—C2121.2 (4)C6iii—C7—H7119.7
C3—C2—C4ii119.5 (4)
O3i—Ni1—O1—C187.2 (3)Ni1—O2—C1—C2169.0 (3)
O2w—Ni1—O1—C114.7 (6)Ni1—O1—C1—O25.2 (4)
O1w—Ni1—O1—C1179.3 (2)Ni1—O1—C1—C2168.8 (4)
N1—Ni1—O1—C187.5 (3)O2—C1—C2—C385.6 (5)
O2—Ni1—O1—C13.0 (2)O1—C1—C2—C388.5 (5)
O3i—Ni1—O2—C182.3 (3)O2—C1—C2—C4ii92.0 (6)
O2w—Ni1—O2—C1171.7 (3)O1—C1—C2—C4ii93.8 (6)
O1w—Ni1—O2—C111.8 (6)C4ii—C2—C3—C40.2 (8)
N1—Ni1—O2—C197.0 (3)C1—C2—C3—C4178.0 (4)
O1—Ni1—O2—C13.0 (2)C2—C3—C4—C2ii0.2 (8)
O3i—Ni1—N1—C664 (2)C2—C3—C4—C5179.5 (4)
O2w—Ni1—N1—C643.6 (4)Ni1i—O3—C5—O42.5 (7)
O1w—Ni1—N1—C6137.1 (4)Ni1i—O3—C5—C4179.5 (3)
O2—Ni1—N1—C658.1 (4)C3—C4—C5—O4155.1 (5)
O1—Ni1—N1—C6119.6 (4)C2ii—C4—C5—O424.2 (7)
O3i—Ni1—N1—C7107 (1)C3—C4—C5—O322.9 (7)
O2w—Ni1—N1—C7144.9 (4)C2ii—C4—C5—O3157.8 (4)
O1w—Ni1—N1—C751.4 (4)C7—N1—C6—C7iii0.7 (8)
O2—Ni1—N1—C7113.4 (4)Ni1—N1—C6—C7iii172.7 (4)
O1—Ni1—N1—C751.9 (4)C6—N1—C7—C6iii0.7 (8)
Ni1—O2—C1—O15.3 (4)Ni1—N1—C7—C6iii172.4 (4)
Symmetry codes: (i) x+1, y+1, z+2; (ii) x+2, y+1, z+2; (iii) x+2, y+2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1w—H1w2···O1iv0.85 (1)1.87 (3)2.660 (5)155 (5)
O1w—H1w1···O4i0.84 (1)1.82 (2)2.621 (5)157 (5)
O2w—H2w2···O1wv0.85 (1)1.96 (1)2.807 (5)176 (6)
O2w—H2w1···O3wvi0.85 (1)1.90 (1)2.744 (5)176 (6)
O3w—H3w1···O20.85 (1)2.26 (3)3.047 (5)155 (6)
O3w—H3w2···O3vii0.85 (1)2.02 (1)2.866 (5)174 (7)
Symmetry codes: (i) x+1, y+1, z+2; (iv) x+1, y+1, z+1; (v) x+1, y+2, z+1; (vi) x1, y, z; (vii) x+1, y+1, z.

Experimental details

Crystal data
Chemical formula[Ni2(C10H2O8)(C4H4N2)(H2O)4]·2H2O
Mr555.72
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)7.2005 (5), 8.0322 (5), 9.3735 (6)
α, β, γ (°)96.175 (1), 101.872 (1), 116.245 (1)
V3)463.50 (5)
Z1
Radiation typeMo Kα
µ (mm1)2.12
Crystal size (mm)0.14 × 0.13 × 0.04
Data collection
DiffractometerBruker APEX area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.616, 0.919
No. of measured, independent and
observed [I > 2σ(I)] reflections
5415, 2152, 2055
Rint0.041
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.065, 0.142, 1.25
No. of reflections2152
No. of parameters163
No. of restraints12
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.95, 0.65

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SAINT, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEPII (Johnson, 1976), SHELXL97.

Selected geometric parameters (Å, º) top
Ni1—O12.126 (3)Ni1—O1w2.049 (3)
Ni1—O22.123 (3)Ni1—O2w2.025 (4)
Ni1—O3i2.014 (3)Ni1—N12.068 (4)
O1—Ni1—O261.7 (1)O2—Ni1—N185.8 (1)
O1—Ni1—O3i84.9 (1)O3i—Ni1—O1w93.2 (1)
O1—Ni1—O1w103.2 (1)O3i—Ni1—O2w89.8 (1)
O1—Ni1—O2w162.8 (1)O3i—Ni1—N1173.6 (1)
O1—Ni1—N191.5 (1)O1w—Ni1—O2w93.4 (1)
O2—Ni1—O3i87.8 (1)O1w—Ni1—N192.8 (1)
O2—Ni1—O1w164.8 (1)O2w—Ni1—N192.2 (2)
O2—Ni1—O2w101.8 (1)
Symmetry code: (i) x+1, y+1, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1w—H1w2···O1ii0.85 (1)1.87 (3)2.660 (5)155 (5)
O1w—H1w1···O4i0.84 (1)1.82 (2)2.621 (5)157 (5)
O2w—H2w2···O1wiii0.85 (1)1.96 (1)2.807 (5)176 (6)
O2w—H2w1···O3wiv0.85 (1)1.90 (1)2.744 (5)176 (6)
O3w—H3w1···O20.85 (1)2.26 (3)3.047 (5)155 (6)
O3w—H3w2···O3v0.85 (1)2.02 (1)2.866 (5)174 (7)
Symmetry codes: (i) x+1, y+1, z+2; (ii) x+1, y+1, z+1; (iii) x+1, y+2, z+1; (iv) x1, y, z; (v) x+1, y+1, z.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds