The reaction of Cs2S3, Ge and S yields single crystals of tetracesium digermanium octasulfide, Cs4Ge2S8. The structure contains the novel dinuclear anion [Ge2S8]4-, and is another example of a chalcogenidogermanate(IV) exhibiting S2 bridging units. Two GeS4 tetrahedra in the anion are linked via S-S bonds, yielding a six-membered ring which displays a chair conformation and crystallographic C2h symmetry. The anions are connected via Cs+ ions. The compound crystallizes with the Cs4Ge2Se8 structure.
Supporting information
Key indicators
- Single-crystal X-ray study
- T = 293 K
- Mean (S-S) = 0.001 Å
- R factor = 0.021
- wR factor = 0.051
- Data-to-parameter ratio = 34.6
checkCIF/PLATON results
No syntax errors found
Alert level C
PLAT042_ALERT_1_C Calc. and Rep. MoietyFormula Strings Differ .... ?
0 ALERT level A = In general: serious problem
0 ALERT level B = Potentially serious problem
1 ALERT level C = Check and explain
0 ALERT level G = General alerts; check
1 ALERT type 1 CIF construction/syntax error, inconsistent or missing data
0 ALERT type 2 Indicator that the structure model may be wrong or deficient
0 ALERT type 3 Indicator that the structure quality may be low
0 ALERT type 4 Improvement, methodology, query or suggestion
Data collection: DIF4 (Stoe & Cie, 1990); cell refinement: DIF4; data reduction: REDU4 (Stoe & Cie, 1990); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: XP in SHELXTL (Bruker, 1998); software used to prepare material for publication: CIFTAB in SHELXTL.
Tetracaesium digermanium octasulfide
top
Crystal data top
Cs4Ge2S8 | F(000) = 824 |
Mr = 933.42 | Dx = 3.450 Mg m−3 |
Monoclinic, C2/m | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -C 2y | Cell parameters from 108 reflections |
a = 14.721 (2) Å | θ = 14–19° |
b = 7.364 (1) Å | µ = 12.23 mm−1 |
c = 9.820 (1) Å | T = 293 K |
β = 122.43 (1)° | Polyhedron, orange |
V = 898.5 (2) Å3 | 0.12 × 0.08 × 0.06 mm |
Z = 2 | |
Data collection top
Phillips PW1100 four-circle diffractometer | 1244 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.034 |
Graphite monochromator | θmax = 30.0°, θmin = 2.5° |
ω/θ scans | h = −20→18 |
Absorption correction: numerical (X-SHAPE; Stoe & Cie, 1998) | k = −10→10 |
Tmin = 0.322, Tmax = 0.480 | l = −13→13 |
4059 measured reflections | 4 standard reflections every 120 min |
1417 independent reflections | intensity decay: none |
Refinement top
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.021 | w = 1/[σ2(Fo2) + (0.0206P)2 + 2.6105P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.051 | (Δ/σ)max < 0.001 |
S = 1.08 | Δρmax = 0.92 e Å−3 |
1417 reflections | Δρmin = −0.87 e Å−3 |
41 parameters | Extinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
0 restraints | Extinction coefficient: 0.00151 (12) |
Special details top
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes)
are estimated using the full covariance matrix. The cell e.s.d.'s are taken
into account individually in the estimation of e.s.d.'s in distances, angles
and torsion angles; correlations between e.s.d.'s in cell parameters are only
used when they are defined by crystal symmetry. An approximate (isotropic)
treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s.
planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor
wR and goodness of fit S are based on F2, conventional
R-factors R are based on F, with F set to zero for
negative F2. The threshold expression of F2 >
σ(F2) is used only for calculating R-factors(gt) etc.
and is not relevant to the choice of reflections for refinement.
R-factors based on F2 are statistically about twice as large
as those based on F, and R- factors based on ALL data will be
even larger. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top | x | y | z | Uiso*/Ueq | |
Cs1 | 0.16369 (2) | 0.0000 | 0.28823 (4) | 0.03154 (9) | |
Cs2 | 0.41590 (2) | 0.0000 | 0.15007 (3) | 0.03007 (9) | |
Ge1 | 0.15583 (4) | 0.0000 | 0.70131 (5) | 0.02168 (10) | |
S1 | 0.31312 (10) | 0.0000 | 0.73583 (14) | 0.0323 (2) | |
S2 | 0.12490 (9) | 0.0000 | 0.89111 (13) | 0.0283 (2) | |
S3 | 0.07944 (6) | 0.24278 (10) | 0.53104 (9) | 0.02617 (15) | |
Atomic displacement parameters (Å2) top | U11 | U22 | U33 | U12 | U13 | U23 |
Cs1 | 0.03182 (15) | 0.03397 (15) | 0.03260 (15) | 0.000 | 0.01977 (13) | 0.000 |
Cs2 | 0.02964 (15) | 0.03338 (14) | 0.02519 (14) | 0.000 | 0.01336 (11) | 0.000 |
Ge1 | 0.0223 (2) | 0.02382 (19) | 0.0194 (2) | 0.000 | 0.01150 (17) | 0.000 |
S1 | 0.0250 (5) | 0.0424 (6) | 0.0321 (6) | 0.000 | 0.0170 (5) | 0.000 |
S2 | 0.0293 (5) | 0.0352 (5) | 0.0237 (5) | 0.000 | 0.0165 (4) | 0.000 |
S3 | 0.0263 (4) | 0.0251 (3) | 0.0265 (3) | −0.0016 (3) | 0.0138 (3) | 0.0019 (3) |
Geometric parameters (Å, º) top
Cs1—S2i | 3.6229 (13) | Cs2—Ge1iv | 4.2959 (5) |
Cs1—S2ii | 3.6256 (12) | Cs2—Ge1v | 4.2959 (5) |
Cs1—S3 | 3.6866 (8) | Ge1—S2 | 2.1428 (11) |
Cs1—S3iii | 3.6866 (8) | Ge1—S1 | 2.1528 (12) |
Cs1—S1 | 3.7132 (13) | Ge1—S3iii | 2.2891 (8) |
Cs1—S1iv | 3.7170 (5) | Ge1—S3 | 2.2891 (8) |
Cs1—S1v | 3.7170 (5) | Ge1—Cs2xi | 3.9977 (9) |
Cs1—S3iv | 3.7200 (9) | Ge1—Cs2iv | 4.2959 (5) |
Cs1—S3vi | 3.7200 (9) | Ge1—Cs2v | 4.2959 (5) |
Cs1—Ge1 | 4.1196 (6) | S1—Cs2xi | 3.4979 (13) |
Cs1—Cs2 | 4.5857 (7) | S1—Cs2viii | 3.5177 (13) |
Cs1—Cs2vii | 4.8369 (6) | S1—Cs1iv | 3.7170 (5) |
Cs2—S1ii | 3.4979 (13) | S1—Cs1v | 3.7170 (5) |
Cs2—S1viii | 3.5177 (13) | S2—Cs1i | 3.6229 (13) |
Cs2—S2ii | 3.6241 (14) | S2—Cs2xi | 3.6241 (14) |
Cs2—S3iv | 3.6289 (8) | S2—Cs1xi | 3.6256 (12) |
Cs2—S3vi | 3.6289 (8) | S2—Cs2v | 3.7176 (5) |
Cs2—S3ix | 3.7040 (9) | S2—Cs2iv | 3.7176 (5) |
Cs2—S3x | 3.7040 (9) | S3—S3xii | 2.0767 (15) |
Cs2—S2v | 3.7176 (5) | S3—Cs2iv | 3.6289 (8) |
Cs2—S2iv | 3.7176 (5) | S3—Cs2xiii | 3.7040 (9) |
Cs2—Ge1ii | 3.9977 (9) | S3—Cs1iv | 3.7200 (9) |
| | | |
S2i—Cs1—S2ii | 90.56 (3) | S1viii—Cs2—Ge1ii | 127.10 (2) |
S2i—Cs1—S3 | 66.48 (2) | S2ii—Cs2—Ge1ii | 32.183 (19) |
S2ii—Cs1—S3 | 141.450 (18) | S3iv—Cs2—Ge1ii | 120.997 (16) |
S2i—Cs1—S3iii | 66.48 (2) | S3vi—Cs2—Ge1ii | 120.997 (16) |
S2ii—Cs1—S3iii | 141.450 (18) | S3ix—Cs2—Ge1ii | 146.395 (13) |
S3—Cs1—S3iii | 58.02 (2) | S3x—Cs2—Ge1ii | 146.395 (13) |
S2i—Cs1—S1 | 111.80 (3) | S2v—Cs2—Ge1ii | 82.920 (18) |
S2ii—Cs1—S1 | 157.64 (3) | S2iv—Cs2—Ge1ii | 82.920 (18) |
S3—Cs1—S1 | 54.95 (2) | S1ii—Cs2—Ge1iv | 111.300 (11) |
S3iii—Cs1—S1 | 54.95 (2) | S1viii—Cs2—Ge1iv | 109.581 (12) |
S2i—Cs1—S1iv | 95.326 (18) | S2ii—Cs2—Ge1iv | 79.919 (12) |
S2ii—Cs1—S1iv | 84.174 (18) | S3iv—Cs2—Ge1iv | 32.198 (13) |
S3—Cs1—S1iv | 68.59 (2) | S3vi—Cs2—Ge1iv | 92.783 (16) |
S3iii—Cs1—S1iv | 126.56 (2) | S3ix—Cs2—Ge1iv | 50.477 (14) |
S1—Cs1—S1iv | 93.379 (19) | S3x—Cs2—Ge1iv | 103.899 (16) |
S2i—Cs1—S1v | 95.326 (18) | S2v—Cs2—Ge1iv | 146.205 (19) |
S2ii—Cs1—S1v | 84.174 (18) | S2iv—Cs2—Ge1iv | 29.921 (17) |
S3—Cs1—S1v | 126.56 (2) | Ge1ii—Cs2—Ge1iv | 96.311 (9) |
S3iii—Cs1—S1v | 68.59 (2) | S1ii—Cs2—Ge1v | 111.300 (11) |
S1—Cs1—S1v | 93.379 (19) | S1viii—Cs2—Ge1v | 109.581 (12) |
S1iv—Cs1—S1v | 164.27 (4) | S2ii—Cs2—Ge1v | 79.919 (12) |
S2i—Cs1—S3iv | 149.192 (13) | S3iv—Cs2—Ge1v | 92.783 (16) |
S2ii—Cs1—S3iv | 92.67 (2) | S3vi—Cs2—Ge1v | 32.198 (13) |
S3—Cs1—S3iv | 93.036 (19) | S3ix—Cs2—Ge1v | 103.899 (16) |
S3iii—Cs1—S3iv | 123.149 (15) | S3x—Cs2—Ge1v | 50.477 (14) |
S1—Cs1—S3iv | 68.28 (2) | S2v—Cs2—Ge1v | 29.921 (17) |
S1iv—Cs1—S3iv | 54.65 (2) | S2iv—Cs2—Ge1v | 146.205 (19) |
S1v—Cs1—S3iv | 115.48 (2) | Ge1ii—Cs2—Ge1v | 96.311 (9) |
S2i—Cs1—S3vi | 149.192 (13) | Ge1iv—Cs2—Ge1v | 117.983 (14) |
S2ii—Cs1—S3vi | 92.67 (2) | S2—Ge1—S1 | 125.13 (5) |
S3—Cs1—S3vi | 123.149 (15) | S2—Ge1—S3iii | 112.65 (3) |
S3iii—Cs1—S3vi | 93.036 (19) | S1—Ge1—S3iii | 100.40 (3) |
S1—Cs1—S3vi | 68.28 (2) | S2—Ge1—S3 | 112.65 (3) |
S1iv—Cs1—S3vi | 115.48 (2) | S1—Ge1—S3 | 100.40 (3) |
S1v—Cs1—S3vi | 54.65 (2) | S3iii—Ge1—S3 | 102.71 (4) |
S3iv—Cs1—S3vi | 61.22 (3) | S2—Ge1—Cs2xi | 64.26 (4) |
S2i—Cs1—Ge1 | 80.44 (2) | S1—Ge1—Cs2xi | 60.86 (3) |
S2ii—Cs1—Ge1 | 171.00 (2) | S3iii—Ge1—Cs2xi | 127.60 (2) |
S3—Cs1—Ge1 | 33.523 (13) | S3—Ge1—Cs2xi | 127.60 (2) |
S3iii—Cs1—Ge1 | 33.523 (13) | S2—Ge1—Cs1 | 171.03 (4) |
S1—Cs1—Ge1 | 31.359 (19) | S1—Ge1—Cs1 | 63.85 (4) |
S1iv—Cs1—Ge1 | 96.582 (18) | S3iii—Ge1—Cs1 | 62.80 (2) |
S1v—Cs1—Ge1 | 96.582 (18) | S3—Ge1—Cs1 | 62.80 (2) |
S3iv—Cs1—Ge1 | 95.069 (17) | Cs2xi—Ge1—Cs1 | 124.710 (15) |
S3vi—Cs1—Ge1 | 95.069 (17) | S2—Ge1—Cs2iv | 59.926 (8) |
S2i—Cs1—Cs2 | 141.31 (2) | S1—Ge1—Cs2iv | 112.711 (15) |
S2ii—Cs1—Cs2 | 50.75 (2) | S3iii—Ge1—Cs2iv | 143.47 (3) |
S3—Cs1—Cs2 | 142.933 (13) | S3—Ge1—Cs2iv | 57.64 (2) |
S3iii—Cs1—Cs2 | 142.933 (13) | Cs2xi—Ge1—Cs2iv | 83.689 (9) |
S1—Cs1—Cs2 | 106.89 (2) | Cs1—Ge1—Cs2iv | 118.446 (7) |
S1iv—Cs1—Cs2 | 82.222 (18) | S2—Ge1—Cs2v | 59.927 (8) |
S1v—Cs1—Cs2 | 82.222 (18) | S1—Ge1—Cs2v | 112.711 (15) |
S3iv—Cs1—Cs2 | 50.508 (14) | S3iii—Ge1—Cs2v | 57.64 (2) |
S3vi—Cs1—Cs2 | 50.508 (14) | S3—Ge1—Cs2v | 143.47 (3) |
Ge1—Cs1—Cs2 | 138.250 (13) | Cs2xi—Ge1—Cs2v | 83.689 (9) |
S2i—Cs1—Cs2vii | 49.631 (7) | Cs1—Ge1—Cs2v | 118.446 (7) |
S2ii—Cs1—Cs2vii | 92.188 (15) | Cs2iv—Ge1—Cs2v | 117.983 (14) |
S3—Cs1—Cs2vii | 94.928 (16) | Ge1—S1—Cs2xi | 86.62 (4) |
S3iii—Cs1—Cs2vii | 49.277 (14) | Ge1—S1—Cs2viii | 172.04 (5) |
S1—Cs1—Cs2vii | 102.179 (15) | Cs2xi—S1—Cs2viii | 85.42 (3) |
S1iv—Cs1—Cs2vii | 144.82 (2) | Ge1—S1—Cs1 | 84.79 (4) |
S1v—Cs1—Cs2vii | 46.311 (19) | Cs2xi—S1—Cs1 | 171.41 (4) |
S3iv—Cs1—Cs2vii | 160.418 (13) | Cs2viii—S1—Cs1 | 103.17 (3) |
S3vi—Cs1—Cs2vii | 99.610 (16) | Ge1—S1—Cs1iv | 96.758 (18) |
Ge1—Cs1—Cs2vii | 82.011 (10) | Cs2xi—S1—Cs1iv | 94.400 (19) |
Cs2—Cs1—Cs2vii | 121.699 (8) | Cs2viii—S1—Cs1iv | 83.865 (18) |
S1ii—Cs2—S1viii | 94.58 (3) | Cs1—S1—Cs1iv | 86.621 (19) |
S1ii—Cs2—S2ii | 64.70 (3) | Ge1—S1—Cs1v | 96.758 (18) |
S1viii—Cs2—S2ii | 159.28 (3) | Cs2xi—S1—Cs1v | 94.400 (19) |
S1ii—Cs2—S3iv | 143.108 (16) | Cs2viii—S1—Cs1v | 83.865 (18) |
S1viii—Cs2—S3iv | 103.40 (2) | Cs1—S1—Cs1v | 86.621 (19) |
S2ii—Cs2—S3iv | 94.23 (2) | Cs1iv—S1—Cs1v | 164.27 (4) |
S1ii—Cs2—S3vi | 143.108 (16) | Ge1—S2—Cs1i | 108.54 (4) |
S1viii—Cs2—S3vi | 103.40 (2) | Ge1—S2—Cs2xi | 83.55 (4) |
S2ii—Cs2—S3vi | 94.23 (2) | Cs1i—S2—Cs2xi | 167.91 (3) |
S3iv—Cs2—S3vi | 62.93 (2) | Ge1—S2—Cs1xi | 162.03 (5) |
S1ii—Cs2—S3ix | 144.695 (16) | Cs1i—S2—Cs1xi | 89.44 (3) |
S1viii—Cs2—S3ix | 70.52 (2) | Cs2xi—S2—Cs1xi | 78.47 (3) |
S2ii—Cs2—S3ix | 126.31 (2) | Ge1—S2—Cs2v | 90.153 (18) |
S3iv—Cs2—S3ix | 32.88 (2) | Cs1i—S2—Cs2v | 82.427 (18) |
S3vi—Cs2—S3ix | 72.19 (2) | Cs2xi—S2—Cs2v | 97.905 (18) |
S1ii—Cs2—S3x | 144.695 (16) | Cs1xi—S2—Cs2v | 92.297 (17) |
S1viii—Cs2—S3x | 70.52 (2) | Ge1—S2—Cs2iv | 90.153 (18) |
S2ii—Cs2—S3x | 126.31 (2) | Cs1i—S2—Cs2iv | 82.427 (18) |
S3iv—Cs2—S3x | 72.19 (2) | Cs2xi—S2—Cs2iv | 97.905 (18) |
S3vi—Cs2—S3x | 32.88 (2) | Cs1xi—S2—Cs2iv | 92.297 (17) |
S3ix—Cs2—S3x | 61.51 (3) | Cs2v—S2—Cs2iv | 164.12 (4) |
S1ii—Cs2—S2v | 85.963 (18) | S3xii—S3—Ge1 | 104.43 (3) |
S1viii—Cs2—S2v | 97.128 (18) | S3xii—S3—Cs2iv | 75.55 (4) |
S2ii—Cs2—S2v | 82.095 (18) | Ge1—S3—Cs2iv | 90.16 (3) |
S3iv—Cs2—S2v | 122.55 (2) | S3xii—S3—Cs1 | 121.78 (4) |
S3vi—Cs2—S2v | 60.27 (2) | Ge1—S3—Cs1 | 83.67 (2) |
S3ix—Cs2—S2v | 126.58 (2) | Cs2iv—S3—Cs1 | 162.56 (2) |
S3x—Cs2—S2v | 65.35 (2) | S3xii—S3—Cs2xiii | 71.57 (4) |
S1ii—Cs2—S2iv | 85.963 (18) | Ge1—S3—Cs2xiii | 159.35 (3) |
S1viii—Cs2—S2iv | 97.128 (18) | Cs2iv—S3—Cs2xiii | 107.81 (2) |
S2ii—Cs2—S2iv | 82.095 (18) | Cs1—S3—Cs2xiii | 81.758 (18) |
S3iv—Cs2—S2iv | 60.27 (2) | S3xii—S3—Cs1iv | 146.79 (2) |
S3vi—Cs2—S2iv | 122.55 (2) | Ge1—S3—Cs1iv | 94.23 (3) |
S3ix—Cs2—S2iv | 65.35 (2) | Cs2iv—S3—Cs1iv | 77.205 (18) |
S3x—Cs2—S2iv | 126.58 (2) | Cs1—S3—Cs1iv | 86.964 (19) |
S2v—Cs2—S2iv | 164.12 (4) | Cs2xiii—S3—Cs1iv | 99.51 (2) |
S1ii—Cs2—Ge1ii | 32.52 (2) | | |
Symmetry codes: (i) −x, −y, −z+1; (ii) x, y, z−1; (iii) x, −y, z; (iv) −x+1/2, −y+1/2, −z+1; (v) −x+1/2, −y−1/2, −z+1; (vi) −x+1/2, y−1/2, −z+1; (vii) x−1/2, y−1/2, z; (viii) −x+1, −y, −z+1; (ix) x+1/2, −y+1/2, z; (x) x+1/2, y−1/2, z; (xi) x, y, z+1; (xii) −x, y, −z+1; (xiii) x−1/2, y+1/2, z. |