Download citation
Download citation
link to html
The title compound, [Cu(C20H14N2O2)]·CH2Cl2, crystallizes as a monomer, with the copper ion in a square-planar environment provided by the tetradentate 2,2'-[1,2-phenyl­ene­bis(nitrilo­methyl­idyne)]­diphenolate (L18) ligand. The planar mol­ecules pack parallel to the (101) crystallographic planes.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536800019668/cf6024sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536800019668/cf6024Isup2.hkl
Contains datablock I

CCDC reference: 155838

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.016 Å
  • R factor = 0.048
  • wR factor = 0.108
  • Data-to-parameter ratio = 6.6

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry

General Notes

REFLT_03 From the CIF: _diffrn_reflns_theta_max 25.00 From the CIF: _reflns_number_total 1718 Count of symmetry unique reflns 1703 Completeness (_total/calc) 100.88% TEST3: Check Friedels for noncentro structure Estimate of Friedel pairs measured 15 Fraction of Friedel pairs measured 0.009 Are heavy atom types Z>Si present yes WARNING: Large fraction of Friedel related reflns may be needed to determine absolute structure

Comment top

2,2'-[1,2-Phenylenebis(nitrilomethylidyne)]diphenol (L18) is a well known Schiff base which can act as a tetradentate ligand, and its square-planar copper complex has been described as an isolated molecule in a number of crystalline forms, both on its own (Suresh et al., 1996), (1), as well as stabilized by a variety of different solvates, e.g. water [(2); Yao et al., 1997], thiourea [(3); Ferrari et al., 1976] and tetracyanoquinodimethane [(4); Cassoux & Gleizes, 1980]. During the synthesis of a heteronuclear Cu–Gd(L18) complex, we obtained some crystals which happened to be a new unreported form of the Cu(L18) complex, (I), this time stabilized by a molecule of CH2Cl2, and which we report herein.

The molecular structure of (I) is quite similar to those described previously (Fig. 1), in spite of the very different crystalline forms, and a least-squares fit showed that the extreme differences were found when comparing it with the two independent moieties in (2), with a minimum mean-squares deviation of 0.079 Å and a maximum of 0.158 Å. The largest misfit appeared as deviations of the ligand from its planar character, rather than from the intrinsic bond lengths and angles, which remained fairly stable.

The planar molecules pack parallel to each other and to the (101) planes (Fig. 2), with no obvious interaction besides the usual van der Waals forces.

The CH2Cl2 solvate molecule attaches to the complex through a medium strength C—H···O interaction [H1XB···O1 2.313 (3) Å and C1X—H1XB···O1 171 (3)°].

Experimental top

To a solution containing 1 mmol of Cu(NO3)2·2H2O in CH2Cl2, 1 mm mol of Gd(NO3)2 and 1 mm mol of L18 were added. The Cu(L18)·CH2Cl2 complex precipitated as a polycrystalline brown powder, which by filtering was separated from the solution containing the heteronuclear species.

Refinement top

H atoms attached to C atoms were included in idealized positions and refined using a riding scheme (C—H = 0.93 Å), both for the coordinates and the displacement parameters. The H atoms of the CH2Cl2 molecule were found in the difference Fourier map and refined with similarity restraints in the C—H distances (C—H = 0.90 Å).

Computing details top

Data collection: P3/P4-PC (Siemens, 1991); cell refinement: P3/P4-PC; data reduction: XDISK in SHELXTL/PC (Sheldrick, 1994); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: XP in SHELXTL/PC (Sheldrick, 1994); software used to prepare material for publication: SHELXTL and PARST (Nardelli, 1983).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing the atom numbering and displacement ellipsoids at the 50% probability level.
[Figure 2] Fig. 2. Packing diagram showing the way in which the molecules organize parallel to (101).
{2,2'-[1,2-Phenylenebis(nitrilomethylidyne)]diphenolato}copper(II) dichloromethane solvate top
Crystal data top
[Cu(C20H14N2O2)]·CH2Cl2F(000) = 940
Mr = 462.80Dx = 1.591 Mg m3
Monoclinic, CcMo Kα radiation, λ = 0.71073 Å
a = 15.787 (3) ÅCell parameters from 25 reflections
b = 14.359 (3) Åθ = 7.5–12.5°
c = 9.1630 (15) ŵ = 1.43 mm1
β = 111.59 (2)°T = 293 K
V = 1931.5 (6) Å3Prism, red–brown
Z = 40.15 × 0.12 × 0.10 mm
Data collection top
Siemens R3m
diffractometer
1308 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.043
Graphite monochromatorθmax = 25.0°, θmin = 2.0°
ω/2θ scansh = 1818
Absorption correction: ψ scan
(SHELXTL/PC; Sheldrick, 1994)
k = 1717
Tmin = 0.80, Tmax = 0.84l = 010
3419 measured reflections2 standard reflections every 98 reflections
1718 independent reflections intensity decay: 4.8%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.048H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.108 w = 1/[σ2(Fo2) + (0.061P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.002
1718 reflectionsΔρmax = 0.49 e Å3
262 parametersΔρmin = 0.34 e Å3
3 restraintsAbsolute structure: Flack (1983); 119 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.01 (3)
Crystal data top
[Cu(C20H14N2O2)]·CH2Cl2V = 1931.5 (6) Å3
Mr = 462.80Z = 4
Monoclinic, CcMo Kα radiation
a = 15.787 (3) ŵ = 1.43 mm1
b = 14.359 (3) ÅT = 293 K
c = 9.1630 (15) Å0.15 × 0.12 × 0.10 mm
β = 111.59 (2)°
Data collection top
Siemens R3m
diffractometer
1308 reflections with I > 2σ(I)
Absorption correction: ψ scan
(SHELXTL/PC; Sheldrick, 1994)
Rint = 0.043
Tmin = 0.80, Tmax = 0.842 standard reflections every 98 reflections
3419 measured reflections intensity decay: 4.8%
1718 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.048H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.108Δρmax = 0.49 e Å3
S = 1.02Δρmin = 0.34 e Å3
1718 reflectionsAbsolute structure: Flack (1983); 119 Friedel pairs
262 parametersAbsolute structure parameter: 0.01 (3)
3 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.02223 (9)0.42130 (7)0.18066 (14)0.0481 (3)
O10.1030 (4)0.4909 (5)0.1118 (9)0.060 (2)
O20.0606 (5)0.3127 (5)0.1040 (9)0.059 (2)
N10.0269 (5)0.5305 (7)0.2483 (10)0.049 (2)
N20.0589 (5)0.3541 (6)0.2600 (10)0.048 (2)
C10.1104 (6)0.5799 (7)0.1092 (12)0.055 (3)
C20.1680 (7)0.6185 (7)0.0354 (13)0.058 (3)
H2A0.19770.57830.00950.070*
C30.1811 (7)0.7127 (8)0.0285 (14)0.070 (3)
H3A0.21970.73590.01890.083*
C40.1356 (7)0.7729 (8)0.0937 (14)0.073 (3)
H4A0.14480.83670.09050.088*
C50.0788 (7)0.7413 (7)0.1610 (13)0.070 (3)
H5A0.04870.78340.20200.083*
C60.0640 (7)0.6447 (7)0.1704 (13)0.047 (3)
C70.0005 (6)0.6155 (7)0.2412 (13)0.049 (3)
H7A0.02310.66180.28620.058*
C80.0939 (6)0.5089 (7)0.3089 (12)0.050 (2)
C90.1442 (7)0.5740 (7)0.3569 (13)0.060 (3)
H9A0.13300.63740.35360.072*
C100.2102 (6)0.5433 (8)0.4086 (13)0.066 (3)
H10A0.24370.58690.43960.079*
C110.2284 (7)0.4518 (8)0.4163 (15)0.069 (3)
H11A0.27450.43340.45060.083*
C120.1783 (6)0.3856 (7)0.3731 (13)0.058 (3)
H12A0.18950.32260.38090.069*
C130.1107 (5)0.4140 (7)0.3176 (10)0.045 (2)
C140.0631 (6)0.2633 (7)0.2629 (12)0.054 (2)
H14A0.10160.23760.30850.064*
C150.0168 (8)0.2024 (9)0.2056 (15)0.054 (3)
C160.0296 (8)0.1040 (9)0.2224 (18)0.074 (4)
H16A0.06970.08550.27010.089*
C170.0142 (10)0.0367 (6)0.172 (2)0.082 (3)
H17A0.00640.02600.18930.098*
C180.0706 (9)0.0638 (8)0.0941 (16)0.074 (4)
H18A0.09990.01880.05680.089*
C190.0834 (6)0.1548 (7)0.0720 (14)0.065 (3)
H19A0.12070.17080.01750.078*
C200.0427 (8)0.2264 (8)0.1276 (16)0.058 (4)
C1X0.2638 (9)0.3553 (14)0.112 (2)0.133 (6)
H1XA0.241 (2)0.297 (2)0.0918 (15)0.40 (13)*
H1XB0.2240 (19)0.397 (3)0.1198 (19)0.11 (3)*
Cl1X0.3001 (3)0.3872 (4)0.0303 (6)0.1333 (16)
Cl2X0.3454 (3)0.3480 (4)0.2994 (6)0.1506 (17)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0462 (4)0.0484 (5)0.0553 (6)0.0015 (6)0.0254 (4)0.0020 (7)
O10.062 (4)0.048 (4)0.076 (5)0.008 (3)0.031 (4)0.002 (4)
O20.065 (4)0.046 (4)0.079 (6)0.004 (3)0.042 (4)0.002 (4)
N10.050 (5)0.054 (5)0.043 (5)0.002 (4)0.019 (4)0.003 (4)
N20.044 (5)0.052 (5)0.050 (5)0.006 (3)0.022 (4)0.004 (4)
C10.047 (5)0.055 (6)0.063 (7)0.009 (5)0.021 (5)0.007 (6)
C20.058 (6)0.053 (6)0.069 (8)0.008 (5)0.029 (6)0.000 (6)
C30.064 (6)0.083 (8)0.069 (8)0.019 (5)0.034 (6)0.003 (6)
C40.077 (7)0.069 (7)0.072 (8)0.039 (6)0.025 (6)0.003 (6)
C50.072 (7)0.067 (7)0.069 (8)0.006 (6)0.026 (6)0.009 (6)
C60.050 (6)0.043 (6)0.045 (7)0.019 (5)0.014 (5)0.012 (5)
C70.046 (6)0.046 (6)0.045 (7)0.009 (5)0.006 (5)0.010 (5)
C80.043 (4)0.062 (7)0.047 (6)0.012 (5)0.020 (4)0.005 (5)
C90.067 (6)0.054 (6)0.069 (8)0.010 (5)0.039 (6)0.002 (6)
C100.049 (5)0.080 (7)0.072 (8)0.014 (5)0.029 (5)0.012 (6)
C110.053 (6)0.080 (7)0.082 (9)0.002 (5)0.036 (6)0.003 (7)
C120.051 (5)0.067 (6)0.064 (7)0.009 (4)0.030 (5)0.009 (5)
C130.041 (4)0.057 (6)0.042 (5)0.001 (4)0.023 (4)0.006 (5)
C140.052 (5)0.057 (6)0.058 (7)0.007 (5)0.027 (5)0.007 (5)
C150.058 (6)0.054 (6)0.061 (8)0.004 (5)0.033 (6)0.004 (6)
C160.072 (8)0.053 (6)0.107 (12)0.013 (6)0.045 (8)0.010 (7)
C170.102 (8)0.050 (5)0.107 (9)0.009 (9)0.054 (8)0.003 (9)
C180.083 (8)0.064 (7)0.080 (10)0.013 (6)0.036 (7)0.001 (7)
C190.069 (6)0.061 (6)0.071 (8)0.009 (5)0.035 (6)0.009 (6)
C200.057 (7)0.067 (8)0.049 (7)0.000 (5)0.018 (6)0.015 (6)
C1X0.072 (8)0.180 (17)0.170 (19)0.035 (10)0.071 (11)0.055 (13)
Cl1X0.130 (3)0.171 (4)0.110 (4)0.006 (3)0.057 (3)0.019 (3)
Cl2X0.138 (3)0.188 (4)0.113 (4)0.007 (3)0.031 (3)0.030 (3)
Geometric parameters (Å, º) top
Cu1—O21.899 (7)C9—H9A0.9300
Cu1—O11.902 (7)C10—C111.353 (14)
Cu1—N21.945 (8)C10—H10A0.9300
Cu1—N11.949 (9)C11—C121.383 (14)
O1—C11.285 (12)C11—H11A0.9300
O2—C201.306 (14)C12—C131.402 (12)
N1—C71.305 (14)C12—H12A0.9300
N1—C81.397 (12)C14—C151.363 (16)
N2—C141.306 (13)C14—H14A0.9300
N2—C131.416 (12)C15—C201.416 (14)
C1—C61.422 (16)C15—C161.444 (18)
C1—C21.428 (14)C16—C171.36 (2)
C2—C31.374 (14)C16—H16A0.9300
C2—H2A0.9300C17—C181.385 (19)
C3—C41.392 (15)C17—H17A0.9300
C3—H3A0.9300C18—C191.350 (15)
C4—C51.340 (14)C18—H18A0.9300
C4—H4A0.9300C19—C201.403 (15)
C5—C61.413 (14)C19—H19A0.9300
C5—H5A0.9300C1X—Cl1X1.671 (17)
C6—C71.442 (13)C1X—Cl2X1.729 (19)
C7—H7A0.9300C1X—H1XA0.90 (3)
C8—C91.399 (13)C1X—H1XB0.89 (4)
C8—C131.397 (13)Cl2X—H1XA2.135 (17)
C9—C101.365 (14)
O2—Cu1—O188.0 (3)C11—C10—C9122.4 (10)
O2—Cu1—N294.2 (4)C11—C10—H10A118.8
O1—Cu1—N2177.2 (4)C9—C10—H10A118.8
O2—Cu1—N1175.5 (4)C10—C11—C12119.8 (11)
O1—Cu1—N194.4 (4)C10—C11—H11A120.1
N2—Cu1—N183.5 (4)C12—C11—H11A120.1
C1—O1—Cu1127.3 (8)C11—C12—C13119.8 (9)
C20—O2—Cu1126.9 (8)C11—C12—H12A120.1
C7—N1—C8122.8 (9)C13—C12—H12A120.1
C7—N1—Cu1123.9 (7)C8—C13—C12119.3 (8)
C8—N1—Cu1113.3 (7)C8—C13—N2115.1 (8)
C14—N2—C13123.9 (9)C12—C13—N2125.5 (8)
C14—N2—Cu1123.3 (7)N2—C14—C15126.4 (11)
C13—N2—Cu1112.8 (6)N2—C14—H14A116.8
O1—C1—C6125.5 (10)C15—C14—H14A116.8
O1—C1—C2118.2 (11)C14—C15—C20126.0 (13)
C6—C1—C2116.3 (10)C14—C15—C16118.0 (12)
C3—C2—C1122.4 (11)C20—C15—C16116.0 (12)
C3—C2—H2A118.7C17—C16—C15123.2 (13)
C1—C2—H2A118.8C17—C16—H16A118.4
C2—C3—C4118.7 (10)C15—C16—H16A118.4
C2—C3—H3A120.7C16—C17—C18118.5 (11)
C4—C3—H3A120.6C16—C17—H17A120.8
C5—C4—C3121.8 (10)C18—C17—H17A120.7
C5—C4—H4A119.1C19—C18—C17120.6 (12)
C3—C4—H4A119.2C19—C18—H18A119.7
C4—C5—C6120.9 (11)C17—C18—H18A119.7
C4—C5—H5A119.6C18—C19—C20122.8 (12)
C6—C5—H5A119.5C18—C19—H19A118.7
C5—C6—C1119.8 (11)C20—C19—H19A118.5
C5—C6—C7118.1 (11)O2—C20—C19118.7 (13)
C1—C6—C7122.1 (9)O2—C20—C15122.6 (12)
N1—C7—C6126.4 (9)C19—C20—C15118.8 (13)
N1—C7—H7A116.8Cl1X—C1X—Cl2X116.6 (8)
C6—C7—H7A116.8Cl1X—C1X—H1XA108.5 (17)
C9—C8—C13119.5 (9)Cl2X—C1X—H1XA104.1 (17)
C9—C8—N1125.2 (9)Cl1X—C1X—H1XB109.2 (17)
C13—C8—N1115.3 (8)Cl2X—C1X—H1XB104.5 (17)
C10—C9—C8119.2 (9)H1XA—C1X—H1XB114 (3)
C10—C9—H9A120.5C1X—Cl2X—H1XA24.2 (10)
C8—C9—H9A120.4
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1X—H1XB···O10.89 (4)2.32 (4)3.20 (2)171 (3)

Experimental details

Crystal data
Chemical formula[Cu(C20H14N2O2)]·CH2Cl2
Mr462.80
Crystal system, space groupMonoclinic, Cc
Temperature (K)293
a, b, c (Å)15.787 (3), 14.359 (3), 9.1630 (15)
β (°) 111.59 (2)
V3)1931.5 (6)
Z4
Radiation typeMo Kα
µ (mm1)1.43
Crystal size (mm)0.15 × 0.12 × 0.10
Data collection
DiffractometerSiemens R3m
diffractometer
Absorption correctionψ scan
(SHELXTL/PC; Sheldrick, 1994)
Tmin, Tmax0.80, 0.84
No. of measured, independent and
observed [I > 2σ(I)] reflections
3419, 1718, 1308
Rint0.043
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.108, 1.02
No. of reflections1718
No. of parameters262
No. of restraints3
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.49, 0.34
Absolute structureFlack (1983); 119 Friedel pairs
Absolute structure parameter0.01 (3)

Computer programs: P3/P4-PC (Siemens, 1991), P3/P4-PC, XDISK in SHELXTL/PC (Sheldrick, 1994), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), XP in SHELXTL/PC (Sheldrick, 1994), SHELXTL and PARST (Nardelli, 1983).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1X—H1XB···O10.89 (4)2.32 (4)3.20 (2)171 (3)
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds