Download citation
Download citation
link to html
The crystal structure of the title compound, C20H14Cl3N3, a potent antifungal agent discovered recently, is here reported. The elucidation of the structure may be useful to provide a better understanding of the interaction of imidazole agents with P-450-dependent enzymes involved either in ergosterol biosynthesis (in fungi) or in hormones biosynthesis (in humans).

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536800020699/cf6026sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536800020699/cf6026Isup2.hkl
Contains datablock I

CCDC reference: 155905

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.004 Å
  • R factor = 0.041
  • wR factor = 0.056
  • Data-to-parameter ratio = 10.5

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry General Notes
ABSTM_02 When printed, the submitted absorption T values will be replaced by the scaled T values. Since the ratio of scaled T's is identical to the ratio of reported T values, the scaling does not imply a change to the absorption corrections used in the study. Ratio of Tmax expected/reported 0.928 Tmax scaled 0.928 Tmin scaled 0.817

Comment top

Cytochromes P-450 are a superfamily of enzymes which catalyzes the oxidation of a large number of biological substrates (Ortiz de Montellano, 1986). In particular, cytochrome P-450-dependent lanosterol 14α-demethylase (P-450DM) catalyzes in fungi the first step of the lanosterol conversion to ergosterol, by removal the 14α-methyl group from lanosterol (Vanden Bossche, 1988). Azole antifungals are known to inhibit fungal P-450DM leading to accumulation of 14α-methylated sterols which cause inhibition of fungi growth by changing the membrane permeability (Adams & Metcalf, 1990; Yeagle et al., 1977, and references cited therein). In fact, the antimycotic derivatives bind to P-450DM by coordination of the ring N atom to the sixth coordination position of the Fe atom of the enzymatic protoporphyrin system (Hitchcock et al., 1990).

Starting from 1960, a number of potent antifungal azole derivatives, such as bifonazole, miconazole, econazole, ketoconazole and fluconazole (Fromtling, 1986; D'Arcy & Scott, 1987; Kerridge, 1988; Koltin, 1990) were synthesized and are now used in clinical practice against topical or systemic fungal infections. More recent biological studies showed some P-450-dependent enzymes to be inhibited by azole derivatives, thus opening new frontiers in the research on azole drugs. Aromatase (Banting et al., 1989) and C17,20-lyase (Njar & Brodie, 1999) are crucial targets for inhibition of mammalian or prostatic cancer, respectively. Unfortunately, aromatase, C17,20-lyase and 14α-demethylase stuctures have not been completely elucidated to date and theoretical approaches have been made in recent years to better understand the interaction of azole derivatives with P-450-dependent enzymes (Tafi et al., 1996; Ji et al., 2000). Our ten-year interest in antifungal drugs led us to discover several classes of azole derivatives endowed with interesting antimicotic activities (Artico et al., 1993, 1995; Di Santo et al., 1993, 1994, 1997; Massa Di Santo, Retico et al., 1992; Massa, Di Santo, Artico, Costi, Di Filippo et al., 1992, Massa, Di Santo, Costi, Simonetti et al., 1993 Massa, Di Santo, Costi, Mai et al., 1993;; Tafi et al., 1996). In particular, we reported about the high anti-Candida potency of a new class of imidazole derivatives, namely 3-aryl-4-[α-(1H-imidazol-1-yl)arylmethyl]pyrroles, which were highly effective, either in vitro or in vivo, against Candida albicans at doses lower than that of bifonazole used as reference drug (Artico et al., 1995). One of the most potent compounds was 3-(4-chlorophenyl)-4-[α-(1H-imidazol-1-yl)(2,4-dichlorophenyl)methylpyrrole (RDS 416), (I), which showed comparable topical efficacy to that of bifonazole in in vivo inhibition of cutaneous candidiasis (C. albicans A170) in white male rabbits. The aim of this work is to elucidate the spatial disposition of RDS 416, for a better understanding of its interaction with 14α-lanosterol demethylase.

The crystal structure of (I) consists of one molecule in the asymmetric unit. The geometry of the four rings is in good agreement with the accepted values. The three angles around C5 involving non-H substitutents are wider than the theoretical tetrahedral value of 109.5°, but the three angles involving the H atom are smaller; this tetrahedral deformation is explained in terms of the bulkiness of the non-H substituents together with the small volume of the H atom. The dihedral angle between the pyrrol ring plane and its attached Cl–phenyl group [52.9 (1)°] shows absence of mesomeric effect. The only short intermolecular distance observed is N1···C7i of 2.940 (3) Å [symmetry code: (i) 1 - x, 1/2 + y, 3/2 - z].

Experimental top

The title compound was synthesized previously by Artico et al. (1995).

Refinement top

The H atoms were placed in calculated positions (N—H and C—H = 0.96 Å).

Computing details top

Data collection: R3m/V (Siemens, 1989); cell refinement: R3m/V; data reduction: XDISK (Siemens, 1989); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: CAOS (Camalli & Spagna, 1994); molecular graphics: CAOS; software used to prepare material for publication: CAOS.

Figures top
[Figure 1] Fig. 1. The molecular structure with 50% probability ellipsoids.
[Figure 2] Fig. 2. The unit-cell contents viewed approximately along the a axis.
(I) top
Crystal data top
C20H14Cl3N3F(000) = 824
Mr = 402.71Dx = 1.428 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71069 Å
a = 6.887 (1) ÅCell parameters from 38 reflections
b = 18.847 (3) Åθ = 4.3–18.3°
c = 14.947 (3) ŵ = 0.50 mm1
β = 105.08 (1)°T = 293 K
V = 1873.2 (5) Å3Prism, brown
Z = 40.4 × 0.2 × 0.15 mm
Data collection top
Siemens P3 four-circle
diffractometer
2474 reflections with F > 6σ(F)
Radiation source: X-ray tubeRint = 0.028
Graphite monochromatorθmax = 45.1°, θmin = 1.8°
θ/2θ scansh = 013
Absorption correction: empirical (using intensity measurements)
ψ scan (North et al., 1968)
k = 037
Tmin = 0.82, Tmax = 0.93l = 2928
17474 measured reflections3 standard reflections every 97 reflections
15414 independent reflections intensity decay: none
Refinement top
Refinement on F235 parameters
Least-squares matrix: FullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.041 w = 1/(0.0009 + 0.0108F + 0.0032F2)
wR(F2) = 0.056(Δ/σ)max < 0.001
S = 0.90Δρmax = 0.42 e Å3
2474 reflectionsΔρmin = 0.35 e Å3
Crystal data top
C20H14Cl3N3V = 1873.2 (5) Å3
Mr = 402.71Z = 4
Monoclinic, P21/cMo Kα radiation
a = 6.887 (1) ŵ = 0.50 mm1
b = 18.847 (3) ÅT = 293 K
c = 14.947 (3) Å0.4 × 0.2 × 0.15 mm
β = 105.08 (1)°
Data collection top
Siemens P3 four-circle
diffractometer
2474 reflections with F > 6σ(F)
Absorption correction: empirical (using intensity measurements)
ψ scan (North et al., 1968)
Rint = 0.028
Tmin = 0.82, Tmax = 0.933 standard reflections every 97 reflections
17474 measured reflections intensity decay: none
15414 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.041235 parameters
wR(F2) = 0.056H-atom parameters constrained
S = 0.90Δρmax = 0.42 e Å3
2474 reflectionsΔρmin = 0.35 e Å3
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl(1)0.1548 (1)0.41838 (4)0.5942 (1)0.0630 (2)
Cl(2)0.0770 (1)0.41048 (5)0.28003 (5)0.0699 (3)
Cl(3)0.2278 (2)0.2986 (1)1.0404 (1)0.0864 (4)
N(1)0.4550 (3)0.5339 (1)0.7813 (2)0.048 (1)
N(2)0.3964 (3)0.2991 (1)0.7222 (1)0.040 (1)
N(3)0.6569 (6)0.2303 (2)0.7667 (2)0.080 (1)
C(1)0.4328 (4)0.4808 (1)0.7177 (2)0.043 (1)
C(2)0.3277 (3)0.4262 (1)0.7449 (1)0.038 (1)
C(3)0.2808 (4)0.4480 (1)0.8284 (2)0.041 (1)
C(4)0.3623 (4)0.5150 (1)0.8481 (2)0.050 (1)
C(5)0.2563 (3)0.3591 (1)0.6922 (2)0.038 (1)
C(6)0.3384 (5)0.2301 (1)0.7125 (2)0.056 (1)
C(7)0.4936 (4)0.1873 (1)0.7396 (2)0.050 (1)
C(8)0.6000 (4)0.3001 (1)0.7561 (2)0.052 (1)
C(9)0.2131 (3)0.3699 (1)0.5880 (1)0.036 (1)
C(10)0.0293 (3)0.3973 (1)0.5378 (2)0.041 (1)
C(11)0.0156 (4)0.4091 (1)0.4434 (2)0.048 (1)
C(12)0.1322 (4)0.3938 (1)0.3984 (2)0.048 (1)
C(13)0.3164 (4)0.3665 (1)0.4440 (2)0.047 (1)
C(14)0.3547 (4)0.3543 (1)0.5390 (2)0.043 (1)
C(15)0.1556 (4)0.4107 (1)0.8796 (2)0.043 (1)
C(16)0.0105 (4)0.4437 (1)0.8981 (2)0.052 (1)
C(17)0.1310 (5)0.4099 (1)0.9465 (2)0.056 (1)
C(18)0.0833 (5)0.3413 (1)0.9776 (2)0.054 (1)
C(19)0.0747 (5)0.3059 (2)0.9579 (2)0.062 (1)
C(20)0.1953 (5)0.3404 (1)0.9093 (2)0.059 (1)
H(1)0.52500.57770.77960.048*
H(2)0.48190.48140.66320.043*
H(3)0.35470.54360.90020.050*
H(4)0.13240.34700.70660.038*
H(5)0.20190.21450.68890.056*
H(6)0.49190.13640.74020.050*
H(7)0.68550.34110.76970.052*
H(8)0.14440.42720.41010.048*
H(9)0.41600.35610.41130.047*
H(10)0.48200.33470.57170.043*
H(11)0.04260.49140.87680.052*
H(12)0.24520.43370.95820.056*
H(13)0.10220.25760.97730.063*
H(14)0.30660.31560.89620.059*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl(1)0.0507 (3)0.0591 (4)0.0869 (5)0.0108 (3)0.0316 (3)0.0025 (3)
Cl(2)0.0931 (6)0.0647 (4)0.0482 (3)0.0124 (4)0.0117 (3)0.0095 (3)
Cl(3)0.1038 (7)0.0820 (6)0.0901 (6)0.0104 (5)0.0554 (5)0.0184 (5)
N(1)0.060 (1)0.0269 (7)0.060 (1)0.0071 (7)0.0194 (9)0.0038 (7)
N(2)0.057 (1)0.0228 (6)0.0423 (8)0.0037 (7)0.0150 (8)0.0018 (6)
N(3)0.102 (2)0.057 (2)0.078 (2)0.024 (2)0.018 (2)0.006 (1)
C(1)0.053 (1)0.0249 (7)0.054 (1)0.0010 (8)0.018 (1)0.0010 (7)
C(2)0.046 (1)0.0245 (7)0.045 (1)0.0025 (7)0.0159 (8)0.0006 (6)
C(3)0.054 (1)0.0263 (8)0.045 (1)0.0020 (8)0.0175 (9)0.0002 (7)
C(4)0.065 (2)0.0293 (9)0.056 (1)0.0013 (9)0.017 (1)0.0075 (9)
C(5)0.045 (1)0.0246 (7)0.048 (1)0.0004 (7)0.0165 (9)0.0008 (7)
C(6)0.078 (2)0.0233 (8)0.068 (2)0.0045 (9)0.023 (1)0.0015 (9)
C(7)0.067 (2)0.0199 (7)0.063 (1)0.0077 (9)0.015 (1)0.0057 (8)
C(8)0.058 (1)0.036 (1)0.059 (1)0.0057 (9)0.009 (1)0.0005 (9)
C(9)0.039 (1)0.0235 (6)0.045 (1)0.0020 (7)0.0115 (8)0.0020 (7)
C(10)0.041 (1)0.0280 (8)0.055 (1)0.0000 (7)0.0158 (9)0.0016 (8)
C(11)0.046 (1)0.038 (1)0.057 (1)0.0029 (9)0.006 (1)0.0023 (9)
C(12)0.064 (1)0.0336 (9)0.044 (1)0.0011 (9)0.009 (1)0.0010 (8)
C(13)0.051 (1)0.043 (1)0.049 (1)0.0021 (9)0.017 (1)0.0011 (9)
C(14)0.042 (1)0.039 (1)0.048 (1)0.0020 (8)0.0125 (9)0.0015 (8)
C(15)0.059 (1)0.0318 (8)0.0400 (9)0.0029 (9)0.0156 (9)0.0005 (7)
C(16)0.067 (2)0.0336 (9)0.060 (1)0.005 (1)0.026 (1)0.0028 (9)
C(17)0.065 (2)0.048 (1)0.061 (1)0.005 (1)0.029 (1)0.000 (1)
C(18)0.071 (2)0.050 (1)0.048 (1)0.006 (1)0.026 (1)0.005 (1)
C(19)0.084 (2)0.043 (1)0.066 (2)0.011 (1)0.032 (1)0.019 (1)
C(20)0.079 (2)0.040 (1)0.066 (2)0.015 (1)0.035 (1)0.014 (1)
Geometric parameters (Å, º) top
Cl(1)—C(10)1.742 (2)C(7)—H(6)0.960
Cl(2)—C(12)1.739 (3)C(8)—H(7)0.960
Cl(3)—C(18)1.734 (3)C(9)—C(10)1.392 (4)
N(1)—C(1)1.360 (3)C(9)—C(14)1.395 (3)
N(1)—C(4)1.364 (3)C(10)—C(11)1.381 (4)
N(1)—H(1)0.960C(11)—C(12)1.388 (3)
N(2)—C(5)1.479 (3)C(11)—H(8)0.960
N(2)—C(6)1.357 (3)C(12)—C(13)1.375 (4)
N(2)—C(8)1.362 (4)C(13)—C(14)1.395 (4)
N(3)—C(7)1.360 (5)C(13)—H(9)0.960
N(3)—C(8)1.370 (4)C(14)—H(10)0.960
C(1)—C(2)1.379 (3)C(15)—C(16)1.391 (4)
C(1)—H(2)0.960C(15)—C(20)1.402 (4)
C(2)—C(3)1.429 (3)C(16)—C(17)1.389 (4)
C(2)—C(5)1.503 (3)C(16)—H(11)0.960
C(3)—C(4)1.382 (3)C(17)—C(18)1.383 (4)
C(3)—C(15)1.472 (3)C(17)—H(12)0.960
C(4)—H(3)0.960C(18)—C(19)1.373 (4)
C(5)—C(9)1.522 (3)C(19)—C(20)1.397 (4)
C(5)—H(4)0.960C(19)—H(13)0.960
C(6)—C(7)1.316 (4)C(20)—H(14)0.960
C(6)—H(5)0.960
C(4)—N(1)—C(1)109.3 (2)C(10)—C(9)—C(14)117.2 (2)
H(1)—N(1)—C(1)125.4C(10)—C(9)—C(5)120.7 (2)
H(1)—N(1)—C(4)125.3Cl(1)—C(10)—C(11)117.4 (2)
C(5)—N(2)—C(8)129.0 (2)C(9)—C(10)—C(11)122.7 (2)
C(6)—N(2)—C(8)107.5 (2)C(9)—C(10)—Cl(1)119.8 (2)
C(6)—N(2)—C(5)123.4 (2)C(12)—C(11)—C(10)117.7 (3)
C(8)—N(3)—C(7)110.4 (3)H(8)—C(11)—C(10)121.1
N(1)—C(1)—C(2)108.4 (2)H(8)—C(11)—C(12)121.2
H(2)—C(1)—C(2)125.8C(11)—C(12)—C(13)122.4 (2)
H(2)—C(1)—N(1)125.8Cl(2)—C(12)—C(13)120.1 (2)
C(3)—C(2)—C(1)107.3 (2)Cl(2)—C(12)—C(11)117.5 (2)
C(5)—C(2)—C(1)126.8 (2)C(14)—C(13)—H(9)120.9
C(5)—C(2)—C(3)125.6 (2)C(12)—C(13)—H(9)121.0
C(15)—C(3)—C(4)125.9 (2)C(12)—C(13)—C(14)118.1 (2)
C(2)—C(3)—C(4)106.1 (2)C(9)—C(14)—C(13)121.8 (2)
C(2)—C(3)—C(15)127.8 (2)H(10)—C(14)—C(13)119.1
C(3)—C(4)—N(1)108.9 (2)H(10)—C(14)—C(9)119.0
H(3)—C(4)—N(1)125.6C(16)—C(15)—C(3)120.9 (2)
H(3)—C(4)—C(3)125.5C(20)—C(15)—C(3)121.6 (2)
H(4)—C(5)—C(2)105.8C(20)—C(15)—C(16)117.5 (2)
C(9)—C(5)—C(2)111.9 (2)C(17)—C(16)—C(15)122.2 (2)
C(9)—C(5)—H(4)108.2H(11)—C(16)—C(15)118.9
N(2)—C(5)—C(2)112.7 (2)H(11)—C(16)—C(17)119.0
N(2)—C(5)—H(4)107.3H(12)—C(17)—C(18)120.6
N(2)—C(5)—C(9)110.6 (2)C(16)—C(17)—C(18)118.7 (3)
N(2)—C(6)—C(7)111.2 (3)C(16)—C(17)—H(12)120.6
H(5)—C(6)—C(7)124.4Cl(3)—C(18)—C(19)119.3 (2)
H(5)—C(6)—N(2)124.4C(17)—C(18)—C(19)121.0 (3)
H(6)—C(7)—N(3)127.2C(17)—C(18)—Cl(3)119.8 (2)
C(6)—C(7)—N(3)105.6 (2)C(18)—C(19)—H(13)120.1
C(6)—C(7)—H(6)127.2C(20)—C(19)—H(13)120.1
N(3)—C(8)—N(2)105.3 (3)C(20)—C(19)—C(18)119.8 (3)
H(7)—C(8)—N(2)127.3C(15)—C(20)—H(14)119.6
H(7)—C(8)—N(3)127.4C(19)—C(20)—H(14)119.7
C(5)—C(9)—C(14)122.1 (2)C(19)—C(20)—C(15)120.7 (3)

Experimental details

Crystal data
Chemical formulaC20H14Cl3N3
Mr402.71
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)6.887 (1), 18.847 (3), 14.947 (3)
β (°) 105.08 (1)
V3)1873.2 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.50
Crystal size (mm)0.4 × 0.2 × 0.15
Data collection
DiffractometerSiemens P3 four-circle
diffractometer
Absorption correctionEmpirical (using intensity measurements)
ψ scan (North et al., 1968)
Tmin, Tmax0.82, 0.93
No. of measured, independent and
observed [F > 6σ(F)] reflections
17474, 15414, 2474
Rint0.028
(sin θ/λ)max1)0.997
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.056, 0.90
No. of reflections2474
No. of parameters235
No. of restraints?
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.42, 0.35

Computer programs: R3m/V (Siemens, 1989), R3m/V, XDISK (Siemens, 1989), SIR97 (Altomare et al., 1999), CAOS (Camalli & Spagna, 1994), CAOS.

 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds