Download citation
Download citation
link to html
The solid state structure of moscham­indole {systematic name: 10-[2-(4-hydroxy-3-methoxy­phenyl)]-1,2,3,4,10,10a-hexa­hydro-6H-furo­[2,3,4-jk]­pyrrolo­[4,3,2-ef]-3-benzazocin-1-one}, C20H18N2O4 is similar to its solution state structure, previously determined by NMR, and evidence of intermolecular hydrogen bonding is now presented.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536800020730/cf6033sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536800020730/cf6033Isup2.hkl
Contains datablock I

CCDC reference: 155899

Key indicators

  • Single-crystal X-ray study
  • T = 150 K
  • Mean [sigma](C-C) = 0.005 Å
  • R factor = 0.046
  • wR factor = 0.097
  • Data-to-parameter ratio = 7.5

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry


Yellow Alert Alert Level C:
ABSMU_01 Alert C The ratio of given/expected absorption coefficient lies outside the range 0.99 <> 1.01 Calculated value of mu = 0.105 Value of mu given = 0.110 PLAT_352 Alert C Short N-H Bond (0.87A) N(2) - H(2) = 0.76 Ang. General Notes
REFLT_03 From the CIF: _diffrn_reflns_theta_max 27.50 From the CIF: _reflns_number_total 1839 Count of symmetry unique reflns 1859 Completeness (_total/calc) 98.92% TEST3: Check Friedels for noncentro structure Estimate of Friedel pairs measured 0 Fraction of Friedel pairs measured 0.000 Are heavy atom types Z>Si present no Please check that the estimate of the number of Friedel pairs is correct. If it is not, please give the correct count in the _publ_section_exptl_refinement section of the submitted CIF.
0 Alert Level A = Potentially serious problem
0 Alert Level B = Potential problem
2 Alert Level C = Please check

Comment top

Moschamindole, (I), was obtained as one of four indole alkaloids from Centaurea moschata and its molecular structure was determined by extensive one-dimensional and two-dimensional NMR spectroscopy (Sarker et al., 1997). We undertook an X-ray study to confirm the structure determined from NMR data and to establish the presence of hydrogen bonding.

Each H atom (H1 and H2) at the donor N-atom positions (N1 and N2) is involved in an intermolecular hydrogen bond (with O4 and O2, respectively). There is also a weak C11—H11···O4 intermolecular hydrogen bond. Three short intramolecular distances are present where the H···A distance `closes' a five-membered ring. Details of these geometries are shown in Table 2. The absolute stereochemistry of the molecule has not been determined but the two chiral centres, C1 and C2, have the same designation (shown as R in Fig. 1). Here, the torsion angle H1—C1—C2—H2 is -115 (1)°. The eight-membered ring has a conformation where atoms C2, C4, C5, C6, C7 and C8 lie within 0.05 Å of a mean plane, with atoms N1 and C3 displaced to the same side of this plane by 1.15 (4) and 1.28 (4) Å, respectively. The other four rings adopt planar conformations and the dihedral angle between the aryl ring and the dihydrofuran ring is 43.3 (1)°. As a result of ring fusion, valency angle distortions are present around C6, C7 and C8 (Table 1).

Experimental top

Moschamindole was obtained from the methanol extract of the seeds of Centaurea moschata. Crystals for X-ray work were obtained from a methanol solution.

Refinement top

Friedel pairs were merged in the data set, and the absolute configuration was not determined. H atoms were initially placed in calculated positions and thereafter allowed to ride on their attached atoms. In the final cycles of least squares, the coordinates of the H atoms attached to N1, N2 and O4 were freely refined. Each H atom was given an equivalent Uiso set at 1.2Ueq for its attached atom. Hydrogen-bonding geometries were obtained with PLATON (Spek, 1998).

Computing details top

Data collection: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998); cell refinement: DENZO and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. The atomic arrangement in the title molecule. Displacement ellipsoids are shown at the 50% probability level.
{2-(3-methoxy-4-hydroxyphenyl)}-dihydrofuro[kl]-1H- pyrrolo[fg]-2-oxo-1,2,3,4,5,6-hexahydro-3-benzazocine top
Crystal data top
C20H18N2O4F(000) = 368
Mr = 350.36Dx = 1.493 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
a = 4.8724 (3) ÅCell parameters from 3310 reflections
b = 15.2803 (9) Åθ = 2.9–27.5°
c = 10.6940 (7) ŵ = 0.11 mm1
β = 101.840 (3)°T = 150 K
V = 779.25 (8) Å3Plate, yellow
Z = 20.4 × 0.2 × 0.05 mm
Data collection top
Enraf Nonius KappaCCD area-detector
diffractometer
1272 reflections with I > 2σ(I)
Radiation source: Enraf Nonius FR591 rotating anodeRint = 0.080
Graphite monochromatorθmax = 27.5°, θmin = 3.3°
Detector resolution: 9.091 pixels mm-1h = 66
ϕ and ω scans to fill Ewald spherek = 1918
5565 measured reflectionsl = 1213
1839 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.097H atoms treated by a mixture of independent and constrained refinement
S = 0.99 w = 1/[σ2(Fo2) + (0.0348P)2]
where P = (Fo2 + 2Fc2)/3
1839 reflections(Δ/σ)max = 0.007
245 parametersΔρmax = 0.22 e Å3
1 restraintΔρmin = 0.28 e Å3
Crystal data top
C20H18N2O4V = 779.25 (8) Å3
Mr = 350.36Z = 2
Monoclinic, P21Mo Kα radiation
a = 4.8724 (3) ŵ = 0.11 mm1
b = 15.2803 (9) ÅT = 150 K
c = 10.6940 (7) Å0.4 × 0.2 × 0.05 mm
β = 101.840 (3)°
Data collection top
Enraf Nonius KappaCCD area-detector
diffractometer
1272 reflections with I > 2σ(I)
5565 measured reflectionsRint = 0.080
1839 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0461 restraint
wR(F2) = 0.097H atoms treated by a mixture of independent and constrained refinement
S = 0.99Δρmax = 0.22 e Å3
1839 reflectionsΔρmin = 0.28 e Å3
245 parameters
Special details top

Experimental. Please note cell_measurement_ fields are not relevant to area detector data, the entire data set is used to refine the cell, which is indexed from all observed reflections in a 10 degree phi range.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O11.0233 (5)0.56379 (17)0.8951 (2)0.0272 (6)
O20.8375 (5)0.37968 (15)0.6439 (2)0.0277 (6)
O30.2063 (5)0.29402 (17)1.0335 (2)0.0302 (6)
O40.3312 (5)0.37320 (18)1.2564 (2)0.0287 (6)
H40.188 (8)0.326 (3)1.229 (3)0.034*
N10.4571 (6)0.4431 (2)0.5244 (3)0.0253 (7)
H10.452 (8)0.409 (3)0.469 (4)0.030*
N20.8203 (7)0.7503 (2)0.4526 (3)0.0301 (8)
H20.922 (8)0.784 (3)0.435 (3)0.036*
C10.8558 (7)0.4855 (2)0.8585 (3)0.0210 (8)
H1A0.98370.43760.84220.025*
C20.6525 (7)0.5072 (2)0.7311 (3)0.0202 (8)
H2A0.45800.51690.74510.024*
C30.6552 (7)0.4363 (2)0.6300 (3)0.0198 (7)
C40.2289 (7)0.5057 (3)0.4966 (3)0.0249 (8)
H4A0.20130.53190.57780.030*
H4B0.05440.47440.45780.030*
C50.2770 (7)0.5787 (2)0.4074 (3)0.0262 (9)
H5A0.30160.55210.32590.031*
H5B0.10630.61550.38830.031*
C60.5239 (7)0.6368 (2)0.4562 (3)0.0242 (8)
C70.7173 (7)0.6401 (2)0.5761 (3)0.0229 (8)
C80.7749 (7)0.5910 (2)0.6915 (3)0.0183 (7)
C90.9907 (7)0.6167 (2)0.7875 (3)0.0244 (8)
C101.1662 (7)0.6868 (3)0.7815 (3)0.0284 (9)
H101.31280.70140.85170.034*
C111.1207 (7)0.7352 (2)0.6697 (4)0.0288 (9)
H111.23790.78350.66050.035*
C120.9010 (7)0.7118 (2)0.5717 (3)0.0249 (8)
C130.5985 (8)0.7047 (3)0.3855 (3)0.0297 (9)
H130.50650.71810.30050.036*
C140.7172 (7)0.4572 (2)0.9658 (3)0.0211 (8)
C150.7808 (7)0.4961 (2)1.0836 (3)0.0254 (8)
H150.91350.54241.09870.031*
C160.6509 (7)0.4678 (3)1.1822 (3)0.0265 (8)
H160.69570.49481.26390.032*
C170.4596 (7)0.4013 (2)1.1600 (3)0.0235 (8)
C180.3967 (7)0.3605 (2)1.0414 (3)0.0224 (8)
C190.5267 (7)0.3883 (2)0.9439 (3)0.0243 (8)
H190.48550.36030.86280.029*
C200.1393 (9)0.2442 (3)0.9195 (3)0.0347 (9)
H20A0.07600.28340.84680.042*
H20B0.01040.20260.92580.042*
H20C0.30590.21210.90720.042*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0309 (14)0.0320 (15)0.0196 (13)0.0107 (12)0.0070 (11)0.0003 (12)
O20.0350 (14)0.0220 (14)0.0271 (13)0.0068 (13)0.0092 (11)0.0017 (11)
O30.0382 (15)0.0291 (14)0.0253 (13)0.0074 (13)0.0114 (12)0.0014 (12)
O40.0320 (13)0.0376 (16)0.0189 (12)0.0027 (13)0.0110 (11)0.0005 (12)
N10.0330 (17)0.0222 (17)0.0220 (18)0.0033 (15)0.0091 (15)0.0054 (14)
N20.036 (2)0.0203 (17)0.0371 (19)0.0026 (16)0.0153 (16)0.0080 (15)
C10.0222 (17)0.0227 (19)0.0179 (18)0.0015 (16)0.0035 (15)0.0005 (14)
C20.0222 (17)0.0197 (18)0.0202 (18)0.0012 (16)0.0076 (15)0.0019 (15)
C30.0221 (17)0.0181 (18)0.0209 (18)0.0039 (17)0.0084 (16)0.0005 (15)
C40.0222 (18)0.030 (2)0.023 (2)0.0012 (17)0.0050 (15)0.0009 (16)
C50.0280 (19)0.032 (2)0.0197 (18)0.0056 (18)0.0070 (16)0.0012 (16)
C60.027 (2)0.023 (2)0.026 (2)0.0059 (17)0.0121 (16)0.0009 (16)
C70.0262 (19)0.018 (2)0.028 (2)0.0027 (16)0.0127 (16)0.0028 (16)
C80.0214 (16)0.0162 (17)0.0196 (17)0.0018 (15)0.0098 (15)0.0007 (14)
C90.0263 (19)0.028 (2)0.0217 (18)0.0019 (17)0.0126 (16)0.0013 (16)
C100.0293 (19)0.031 (2)0.027 (2)0.0085 (19)0.0107 (16)0.0137 (18)
C110.031 (2)0.023 (2)0.039 (2)0.0093 (18)0.0210 (18)0.0054 (18)
C120.031 (2)0.017 (2)0.029 (2)0.0013 (17)0.0124 (17)0.0009 (16)
C130.036 (2)0.029 (2)0.0264 (19)0.0074 (19)0.0123 (17)0.0090 (18)
C140.0222 (17)0.0252 (19)0.0161 (17)0.0035 (16)0.0048 (14)0.0002 (15)
C150.0261 (19)0.025 (2)0.026 (2)0.0004 (17)0.0072 (16)0.0007 (16)
C160.0280 (18)0.031 (2)0.0200 (18)0.0011 (17)0.0043 (15)0.0030 (16)
C170.0254 (17)0.030 (2)0.0157 (18)0.0050 (18)0.0063 (15)0.0055 (16)
C180.0227 (18)0.0218 (18)0.0227 (18)0.0018 (16)0.0051 (15)0.0028 (16)
C190.0268 (18)0.029 (2)0.0177 (17)0.0018 (18)0.0066 (14)0.0003 (16)
C200.050 (2)0.025 (2)0.029 (2)0.007 (2)0.0082 (19)0.0022 (18)
Geometric parameters (Å, º) top
O1—C91.389 (4)C5—C61.500 (5)
O1—C11.456 (4)C6—C131.376 (5)
O2—C31.227 (4)C6—C71.428 (5)
O3—C181.366 (4)C7—C121.422 (5)
O3—C201.417 (4)C7—C81.422 (5)
O4—C171.380 (4)C8—C91.367 (4)
N1—C31.331 (4)C9—C101.380 (5)
N1—C41.451 (5)C10—C111.384 (5)
N2—C131.360 (5)C11—C121.383 (5)
N2—C121.384 (4)C14—C151.370 (5)
C1—C141.509 (5)C14—C191.391 (5)
C1—C21.546 (4)C15—C161.404 (5)
C2—C81.510 (5)C16—C171.367 (5)
C2—C31.532 (5)C17—C181.389 (5)
C4—C51.516 (5)C18—C191.393 (4)
C9—O1—C1107.0 (2)C7—C8—C2132.2 (3)
C18—O3—C20119.1 (3)C8—C9—C10125.2 (3)
C3—N1—C4128.1 (3)C8—C9—O1113.2 (3)
C13—N2—C12108.2 (3)C10—C9—O1121.6 (3)
O1—C1—C14110.2 (3)C9—C10—C11117.6 (3)
O1—C1—C2106.5 (3)C12—C11—C10118.6 (3)
C14—C1—C2115.2 (3)C11—C12—N2128.1 (3)
C8—C2—C3109.9 (2)C11—C12—C7124.6 (3)
C8—C2—C1102.1 (3)N2—C12—C7107.2 (3)
C3—C2—C1111.9 (3)N2—C13—C6111.5 (3)
O2—C3—N1122.6 (3)C15—C14—C19120.0 (3)
O2—C3—C2121.6 (3)C15—C14—C1121.5 (3)
N1—C3—C2115.8 (3)C19—C14—C1118.5 (3)
N1—C4—C5113.8 (3)C14—C15—C16120.4 (3)
C6—C5—C4115.6 (3)C17—C16—C15119.6 (3)
C13—C6—C7105.5 (3)C16—C17—O4119.9 (3)
C13—C6—C5122.6 (3)C16—C17—C18120.5 (3)
C7—C6—C5131.9 (3)O4—C17—C18119.6 (3)
C12—C7—C8114.9 (3)O3—C18—C17114.2 (3)
C12—C7—C6107.5 (3)O3—C18—C19125.9 (3)
C8—C7—C6137.5 (3)C17—C18—C19119.8 (3)
C9—C8—C7119.0 (3)C14—C19—C18119.7 (3)
C9—C8—C2108.7 (3)
C9—O1—C1—C14141.6 (3)C8—C9—C10—C110.0 (5)
C9—O1—C1—C216.1 (3)O1—C9—C10—C11179.1 (3)
O1—C1—C2—C813.1 (3)C9—C10—C11—C121.1 (5)
C14—C1—C2—C8135.5 (3)C10—C11—C12—N2179.4 (3)
O1—C1—C2—C3130.6 (3)C10—C11—C12—C70.9 (5)
C14—C1—C2—C3107.0 (3)C13—N2—C12—C11178.4 (3)
C4—N1—C3—O2179.1 (3)C13—N2—C12—C70.3 (4)
C4—N1—C3—C24.2 (4)C8—C7—C12—C110.4 (5)
C8—C2—C3—O299.8 (4)C6—C7—C12—C11178.8 (3)
C1—C2—C3—O212.9 (4)C8—C7—C12—N2178.3 (3)
C8—C2—C3—N176.9 (3)C6—C7—C12—N20.1 (4)
C1—C2—C3—N1170.4 (3)C12—N2—C13—C60.6 (4)
C3—N1—C4—C5103.1 (4)C7—C6—C13—N20.7 (4)
N1—C4—C5—C662.5 (4)C5—C6—C13—N2177.0 (3)
C4—C5—C6—C13178.7 (3)O1—C1—C14—C157.8 (5)
C4—C5—C6—C74.4 (5)C2—C1—C14—C15128.3 (4)
C13—C6—C7—C120.4 (4)O1—C1—C14—C19173.9 (3)
C5—C6—C7—C12176.9 (3)C2—C1—C14—C1953.5 (4)
C13—C6—C7—C8177.4 (4)C19—C14—C15—C161.1 (5)
C5—C6—C7—C85.2 (7)C1—C14—C15—C16179.4 (3)
C12—C7—C8—C91.5 (4)C14—C15—C16—C170.1 (5)
C6—C7—C8—C9179.2 (4)C15—C16—C17—O4180.0 (3)
C12—C7—C8—C2173.6 (3)C15—C16—C17—C181.1 (5)
C6—C7—C8—C24.1 (6)C20—O3—C18—C17176.1 (3)
C3—C2—C8—C9124.7 (3)C20—O3—C18—C193.4 (5)
C1—C2—C8—C95.7 (3)C16—C17—C18—O3178.8 (3)
C3—C2—C8—C750.8 (5)O4—C17—C18—O30.1 (5)
C1—C2—C8—C7169.8 (3)C16—C17—C18—C190.8 (5)
C7—C8—C9—C101.4 (5)O4—C17—C18—C19179.7 (3)
C2—C8—C9—C10174.8 (3)C15—C14—C19—C181.4 (5)
C7—C8—C9—O1179.5 (3)C1—C14—C19—C18179.7 (3)
C2—C8—C9—O14.3 (4)O3—C18—C19—C14180.0 (3)
C1—O1—C9—C813.1 (4)C17—C18—C19—C140.5 (5)
C1—O1—C9—C10166.0 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O4i0.79 (4)2.29 (4)3.002 (4)150 (4)
N2—H2···O2ii0.76 (4)2.15 (4)2.909 (4)171 (3)
O4—H4···O31.00 (4)2.17 (3)2.631 (5)106 (2)
C1—H1A···O21.002.272.794 (4)111
C11—H11···O4iii0.952.513.367 (4)150
C15—H15···O10.942.372.740 (4)103
Symmetry codes: (i) x, y, z1; (ii) x+2, y+1/2, z+1; (iii) x+2, y+1/2, z+2.

Experimental details

Crystal data
Chemical formulaC20H18N2O4
Mr350.36
Crystal system, space groupMonoclinic, P21
Temperature (K)150
a, b, c (Å)4.8724 (3), 15.2803 (9), 10.6940 (7)
β (°) 101.840 (3)
V3)779.25 (8)
Z2
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.4 × 0.2 × 0.05
Data collection
DiffractometerEnraf Nonius KappaCCD area-detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
5565, 1839, 1272
Rint0.080
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.097, 0.99
No. of reflections1839
No. of parameters245
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.22, 0.28

Computer programs: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998), DENZO and COLLECT, SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 1997), ORTEP-3 (Farrugia, 1997), SHELXL97.

Selected geometric parameters (Å, º) top
O2—C31.227 (4)C7—C121.422 (5)
C1—C141.509 (5)C8—C91.367 (4)
C6—C131.376 (5)
C13—C6—C7105.5 (3)C8—C7—C6137.5 (3)
C13—C6—C5122.6 (3)C9—C8—C7119.0 (3)
C7—C6—C5131.9 (3)C9—C8—C2108.7 (3)
C12—C7—C8114.9 (3)C7—C8—C2132.2 (3)
C12—C7—C6107.5 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O4i.79 (4)2.29 (4)3.002 (4)150 (4)
N2—H2···O2ii.76 (4)2.15 (4)2.909 (4)171 (3)
O4—H4···O31.00 (4)2.17 (3)2.631 (5)106 (2)
C1—H1A···O21.002.272.794 (4)111
C11—H11···O4iii0.952.513.367 (4)150
C15—H15···O10.942.372.740 (4)103
Symmetry codes: (i) x, y, z1; (ii) x+2, y+1/2, z+1; (iii) x+2, y+1/2, z+2.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds