In the title compound, [Cu(H2O)6]L2·2H2O, where HL = 3-carboxy-4-hydroxybenzenesulfonic acid (C7H6O6S), each CuII cation lies on an inversion center and is octahedrally coordinated by six water molecules. The L- anions do not coordinate to copper, but act as counter-anions. The crystal structure is composed of alternating layers of [Cu(H2O)6]2+ cations and sulfonate anions. The [Cu(H2O)6]2+ cations, water molecules and L- anions are connected through a complex pattern of hydrogen-bonding interactions.
Supporting information
CCDC reference: 217378
Key indicators
- Single-crystal X-ray study
- T = 293 K
- Mean (C-C) = 0.003 Å
- R factor = 0.032
- wR factor = 0.093
- Data-to-parameter ratio = 12.5
checkCIF results
No syntax errors found
ADDSYM reports no extra symmetry
A mixture of 3-carboxy-4-hydroxybenzenesulfonic acid (0.44 g, 2 mmol) and CuO (0.080 g, 1 mmol) in water (10 ml) was stirred at room temperature for 30 min. Blue crystals of compound (I) were obtained after leaving the solution to stand at room temperature for several days. Analysis calculated for C14H26CuO20S2: C 26.19, H 4.08%; found: C 26.25, H 4.03%.
All H atoms on C atoms were positioned geometrically and refined as riding atoms, with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C). The H atoms of the carboxyl group and hydroxyl group were also positioned geometrically and refined as riding atoms, with O—H = 0.82 Å and Uiso(H) = 1.5Ueq(O). The water H atoms were located in a difference Fourier map and refined with Uiso(H) = 1.5Ueq(O).
Data collection: XSCANS (Siemens, 1994); cell refinement: XSCANS; data reduction: XSCANS; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL-Plus (Sheldrick, 1990); software used to prepare material for publication: SHELXL97.
Crystal data top
[Cu(H2O)6](C7H5O6S)2·2H2O | Z = 1 |
Mr = 642.01 | F(000) = 331 |
Triclinic, P1 | Dx = 1.744 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 7.0298 (9) Å | Cell parameters from 20 reflections |
b = 7.0749 (15) Å | θ = 5.4–9.9° |
c = 13.288 (4) Å | µ = 1.16 mm−1 |
α = 92.16 (2)° | T = 293 K |
β = 90.259 (18)° | Block, blue |
γ = 112.236 (12)° | 0.50 × 0.36 × 0.34 mm |
V = 611.2 (2) Å3 | |
Data collection top
Siemens P4 diffractometer | Rint = 0.017 |
Radiation source: fine-focus sealed tube | θmax = 26.0°, θmin = 1.5° |
Graphite monochromator | h = −1→8 |
ω scans | k = −8→8 |
3134 measured reflections | l = −16→16 |
2413 independent reflections | 3 standard reflections every 97 reflections |
2140 reflections with I > 2σ(I) | intensity decay: none |
Refinement top
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.032 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.093 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.10 | w = 1/[σ2(Fo2) + (0.0566P)2] where P = (Fo2 + 2Fc2)/3 |
2413 reflections | (Δ/σ)max < 0.001 |
193 parameters | Δρmax = 0.30 e Å−3 |
8 restraints | Δρmin = −0.52 e Å−3 |
Crystal data top
[Cu(H2O)6](C7H5O6S)2·2H2O | γ = 112.236 (12)° |
Mr = 642.01 | V = 611.2 (2) Å3 |
Triclinic, P1 | Z = 1 |
a = 7.0298 (9) Å | Mo Kα radiation |
b = 7.0749 (15) Å | µ = 1.16 mm−1 |
c = 13.288 (4) Å | T = 293 K |
α = 92.16 (2)° | 0.50 × 0.36 × 0.34 mm |
β = 90.259 (18)° | |
Data collection top
Siemens P4 diffractometer | Rint = 0.017 |
3134 measured reflections | 3 standard reflections every 97 reflections |
2413 independent reflections | intensity decay: none |
2140 reflections with I > 2σ(I) | |
Refinement top
R[F2 > 2σ(F2)] = 0.032 | 8 restraints |
wR(F2) = 0.093 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.10 | Δρmax = 0.30 e Å−3 |
2413 reflections | Δρmin = −0.52 e Å−3 |
193 parameters | |
Special details top
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top | x | y | z | Uiso*/Ueq | |
C1 | 0.2205 (3) | 0.4403 (3) | 0.65438 (15) | 0.0244 (4) | |
C2 | 0.2004 (3) | 0.3313 (3) | 0.56410 (15) | 0.0243 (4) | |
H2 | 0.1638 | 0.1904 | 0.5634 | 0.029* | |
C3 | 0.2352 (3) | 0.4327 (3) | 0.47369 (15) | 0.0241 (4) | |
C4 | 0.2928 (4) | 0.6457 (4) | 0.47607 (17) | 0.0284 (5) | |
C5 | 0.3103 (4) | 0.7531 (3) | 0.56800 (18) | 0.0322 (5) | |
H5 | 0.3472 | 0.8941 | 0.5695 | 0.039* | |
C6 | 0.2734 (4) | 0.6517 (3) | 0.65644 (17) | 0.0301 (5) | |
H6 | 0.2835 | 0.7237 | 0.7176 | 0.036* | |
C7 | 0.2117 (4) | 0.3171 (4) | 0.37601 (17) | 0.0305 (5) | |
O1 | 0.3123 (3) | 0.1933 (3) | 0.76643 (13) | 0.0416 (5) | |
O2 | −0.0378 (3) | 0.1691 (2) | 0.76838 (12) | 0.0308 (4) | |
O3 | 0.2249 (3) | 0.4634 (3) | 0.84896 (12) | 0.0444 (5) | |
O4 | 0.1564 (3) | 0.1200 (3) | 0.38535 (12) | 0.0418 (5) | |
H4 | 0.1452 | 0.0634 | 0.3294 | 0.063* | |
O5 | 0.2416 (4) | 0.3988 (3) | 0.29508 (12) | 0.0467 (5) | |
O6 | 0.3330 (3) | 0.7531 (3) | 0.39242 (14) | 0.0448 (5) | |
H6A | 0.3181 | 0.6754 | 0.3431 | 0.067* | |
OW1 | 0.6723 (3) | 0.2571 (3) | 0.88095 (12) | 0.0317 (4) | |
OW2 | 0.4356 (3) | 0.1959 (3) | 1.08673 (14) | 0.0378 (4) | |
OW3 | 0.2426 (3) | −0.0653 (3) | 0.92333 (14) | 0.0378 (4) | |
OW4 | 0.8673 (3) | 0.6598 (3) | 0.95578 (13) | 0.0338 (4) | |
S1 | 0.17750 (9) | 0.30792 (8) | 0.76709 (4) | 0.02569 (16) | |
Cu1 | 0.5000 | 0.0000 | 1.0000 | 0.02392 (14) | |
H1A | 0.766 (4) | 0.237 (4) | 0.8420 (19) | 0.036* | |
H1B | 0.577 (4) | 0.252 (4) | 0.8364 (18) | 0.036* | |
H2A | 0.540 (4) | 0.304 (3) | 1.109 (2) | 0.036* | |
H2B | 0.339 (4) | 0.239 (4) | 1.071 (2) | 0.036* | |
H3A | 0.121 (3) | −0.157 (4) | 0.936 (2) | 0.036* | |
H3B | 0.222 (4) | −0.015 (4) | 0.8674 (16) | 0.036* | |
H4A | 0.854 (4) | 0.621 (4) | 1.0185 (15) | 0.036* | |
H4B | 0.819 (4) | 0.545 (3) | 0.9187 (18) | 0.036* | |
Atomic displacement parameters (Å2) top | U11 | U22 | U33 | U12 | U13 | U23 |
C1 | 0.0243 (11) | 0.0238 (10) | 0.0227 (10) | 0.0063 (9) | −0.0005 (8) | 0.0025 (8) |
C2 | 0.0254 (11) | 0.0200 (10) | 0.0252 (10) | 0.0057 (9) | −0.0013 (9) | 0.0012 (8) |
C3 | 0.0234 (11) | 0.0242 (11) | 0.0225 (10) | 0.0064 (9) | 0.0005 (8) | 0.0020 (8) |
C4 | 0.0256 (12) | 0.0290 (11) | 0.0301 (11) | 0.0092 (9) | 0.0015 (9) | 0.0091 (9) |
C5 | 0.0387 (14) | 0.0182 (10) | 0.0387 (12) | 0.0095 (10) | −0.0005 (11) | 0.0009 (9) |
C6 | 0.0343 (13) | 0.0247 (11) | 0.0283 (11) | 0.0084 (10) | −0.0016 (10) | −0.0053 (8) |
C7 | 0.0265 (12) | 0.0334 (12) | 0.0261 (11) | 0.0052 (10) | −0.0003 (9) | 0.0004 (9) |
O1 | 0.0390 (11) | 0.0545 (12) | 0.0377 (9) | 0.0231 (9) | 0.0038 (8) | 0.0196 (8) |
O2 | 0.0283 (9) | 0.0295 (8) | 0.0276 (8) | 0.0034 (7) | 0.0025 (7) | −0.0023 (6) |
O3 | 0.0568 (13) | 0.0339 (9) | 0.0229 (8) | −0.0043 (9) | −0.0022 (8) | −0.0050 (7) |
O4 | 0.0582 (13) | 0.0291 (9) | 0.0278 (8) | 0.0058 (9) | 0.0037 (8) | −0.0083 (7) |
O5 | 0.0675 (14) | 0.0458 (11) | 0.0217 (8) | 0.0155 (10) | 0.0049 (8) | 0.0043 (7) |
O6 | 0.0637 (14) | 0.0354 (10) | 0.0351 (9) | 0.0171 (10) | 0.0081 (9) | 0.0148 (7) |
OW1 | 0.0306 (9) | 0.0335 (9) | 0.0317 (8) | 0.0130 (8) | 0.0021 (7) | 0.0023 (7) |
OW2 | 0.0317 (10) | 0.0322 (9) | 0.0490 (10) | 0.0132 (8) | −0.0053 (8) | −0.0143 (8) |
OW3 | 0.0268 (9) | 0.0374 (10) | 0.0413 (9) | 0.0021 (8) | −0.0092 (8) | 0.0139 (8) |
OW4 | 0.0344 (10) | 0.0301 (9) | 0.0315 (8) | 0.0067 (8) | 0.0005 (7) | −0.0037 (7) |
S1 | 0.0267 (3) | 0.0267 (3) | 0.0189 (3) | 0.0047 (2) | −0.0018 (2) | 0.0008 (2) |
Cu1 | 0.0228 (2) | 0.0199 (2) | 0.0276 (2) | 0.00665 (16) | −0.00385 (15) | −0.00162 (14) |
Geometric parameters (Å, º) top
C1—C2 | 1.379 (3) | O4—H4 | 0.820 |
C1—C6 | 1.397 (3) | O6—H6A | 0.820 |
C1—S1 | 1.763 (2) | OW1—Cu1 | 2.4175 (18) |
C2—C3 | 1.397 (3) | OW1—H1A | 0.888 (18) |
C2—H2 | 0.930 | OW1—H1B | 0.884 (18) |
C3—C4 | 1.403 (3) | OW2—Cu1 | 1.9527 (18) |
C3—C7 | 1.482 (3) | OW2—H2A | 0.876 (18) |
C4—O6 | 1.340 (3) | OW2—H2B | 0.873 (17) |
C4—C5 | 1.394 (3) | OW3—Cu1 | 1.9596 (18) |
C5—C6 | 1.374 (3) | OW3—H3A | 0.879 (18) |
C5—H5 | 0.930 | OW3—H3B | 0.871 (17) |
C6—H6 | 0.930 | OW4—H4A | 0.882 (17) |
C7—O5 | 1.221 (3) | OW4—H4B | 0.879 (18) |
C7—O4 | 1.310 (3) | Cu1—OW2i | 1.9527 (18) |
O1—S1 | 1.462 (2) | Cu1—OW3i | 1.9596 (18) |
O2—S1 | 1.4600 (17) | Cu1—OW1i | 2.4175 (18) |
O3—S1 | 1.4608 (18) | | |
| | | |
C2—C1—C6 | 120.6 (2) | Cu1—OW2—H2B | 122.3 (19) |
C2—C1—S1 | 118.77 (17) | H2A—OW2—H2B | 106 (3) |
C6—C1—S1 | 120.64 (17) | Cu1—OW3—H3A | 127.8 (19) |
C1—C2—C3 | 119.9 (2) | Cu1—OW3—H3B | 128.5 (19) |
C1—C2—H2 | 120.0 | H3A—OW3—H3B | 104 (3) |
C3—C2—H2 | 120.0 | H4A—OW4—H4B | 105 (3) |
C2—C3—C4 | 119.39 (19) | O2—S1—O3 | 111.03 (11) |
C2—C3—C7 | 120.5 (2) | O2—S1—O1 | 110.55 (11) |
C4—C3—C7 | 120.11 (19) | O3—S1—O1 | 113.44 (13) |
O6—C4—C5 | 117.6 (2) | O2—S1—C1 | 108.60 (10) |
O6—C4—C3 | 122.5 (2) | O3—S1—C1 | 106.18 (10) |
C5—C4—C3 | 119.9 (2) | O1—S1—C1 | 106.73 (11) |
C6—C5—C4 | 120.3 (2) | OW2i—Cu1—OW2 | 180.0 |
C6—C5—H5 | 119.8 | OW2i—Cu1—OW3 | 89.33 (8) |
C4—C5—H5 | 119.8 | OW2—Cu1—OW3 | 90.67 (8) |
C5—C6—C1 | 119.9 (2) | OW2i—Cu1—OW3i | 90.67 (8) |
C5—C6—H6 | 120.1 | OW2—Cu1—OW3i | 89.33 (8) |
C1—C6—H6 | 120.1 | OW3—Cu1—OW3i | 180.0 |
O5—C7—O4 | 123.6 (2) | OW2i—Cu1—OW1 | 87.81 (7) |
O5—C7—C3 | 123.0 (2) | OW2—Cu1—OW1 | 92.19 (7) |
O4—C7—C3 | 113.37 (19) | OW3—Cu1—OW1 | 89.13 (7) |
C7—O4—H4 | 109.5 | OW3i—Cu1—OW1 | 90.87 (7) |
C4—O6—H6A | 109.5 | OW2i—Cu1—OW1i | 92.19 (7) |
Cu1—OW1—H1A | 117.9 (18) | OW2—Cu1—OW1i | 87.81 (7) |
Cu1—OW1—H1B | 105.7 (19) | OW3—Cu1—OW1i | 90.87 (7) |
H1A—OW1—H1B | 102 (3) | OW3i—Cu1—OW1i | 89.13 (7) |
Cu1—OW2—H2A | 116 (2) | OW1—Cu1—OW1i | 180.0 |
| | | |
C6—C1—C2—C3 | 0.7 (4) | S1—C1—C6—C5 | 178.72 (19) |
S1—C1—C2—C3 | −179.52 (17) | C2—C3—C7—O5 | −179.5 (2) |
C1—C2—C3—C4 | 0.8 (3) | C4—C3—C7—O5 | 0.5 (4) |
C1—C2—C3—C7 | −179.2 (2) | C2—C3—C7—O4 | 0.3 (3) |
C2—C3—C4—O6 | 178.5 (2) | C4—C3—C7—O4 | −179.7 (2) |
C7—C3—C4—O6 | −1.5 (4) | C2—C1—S1—O2 | −64.7 (2) |
C2—C3—C4—C5 | −1.4 (4) | C6—C1—S1—O2 | 115.0 (2) |
C7—C3—C4—C5 | 178.6 (2) | C2—C1—S1—O3 | 175.79 (19) |
O6—C4—C5—C6 | −179.3 (2) | C6—C1—S1—O3 | −4.4 (2) |
C3—C4—C5—C6 | 0.6 (4) | C2—C1—S1—O1 | 54.5 (2) |
C4—C5—C6—C1 | 0.8 (4) | C6—C1—S1—O1 | −125.7 (2) |
C2—C1—C6—C5 | −1.5 (4) | | |
Symmetry code: (i) −x+1, −y, −z+2. |
Hydrogen-bond geometry (Å, º) top
D—H···A | D—H | H···A | D···A | D—H···A |
OW1—H1A···O2ii | 0.89 (2) | 1.89 (2) | 2.774 (2) | 173 (3) |
OW1—H1B···O1 | 0.88 (2) | 1.97 (2) | 2.824 (3) | 164 (3) |
OW2—H2A···O3iii | 0.88 (2) | 1.90 (2) | 2.777 (3) | 177 (3) |
OW2—H2B···OW4iii | 0.87 (2) | 1.88 (2) | 2.752 (3) | 177 (3) |
OW3—H3A···OW4iv | 0.88 (2) | 1.79 (2) | 2.668 (3) | 177 (3) |
OW3—H3B···O1 | 0.87 (2) | 1.95 (2) | 2.748 (3) | 151 (3) |
OW4—H4A···O3iii | 0.88 (2) | 1.90 (2) | 2.770 (3) | 169 (3) |
OW4—H4B···OW1 | 0.88 (2) | 1.95 (2) | 2.794 (3) | 160 (3) |
O4—H4···O2v | 0.82 | 1.96 | 2.726 (2) | 154 |
O6—H6A···O5 | 0.82 | 1.91 | 2.627 (3) | 146 |
Symmetry codes: (ii) x+1, y, z; (iii) −x+1, −y+1, −z+2; (iv) x−1, y−1, z; (v) −x, −y, −z+1. |
Experimental details
Crystal data |
Chemical formula | [Cu(H2O)6](C7H5O6S)2·2H2O |
Mr | 642.01 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 293 |
a, b, c (Å) | 7.0298 (9), 7.0749 (15), 13.288 (4) |
α, β, γ (°) | 92.16 (2), 90.259 (18), 112.236 (12) |
V (Å3) | 611.2 (2) |
Z | 1 |
Radiation type | Mo Kα |
µ (mm−1) | 1.16 |
Crystal size (mm) | 0.50 × 0.36 × 0.34 |
|
Data collection |
Diffractometer | Siemens P4 diffractometer |
Absorption correction | – |
No. of measured, independent and observed [I > 2σ(I)] reflections | 3134, 2413, 2140 |
Rint | 0.017 |
(sin θ/λ)max (Å−1) | 0.617 |
|
Refinement |
R[F2 > 2σ(F2)], wR(F2), S | 0.032, 0.093, 1.10 |
No. of reflections | 2413 |
No. of parameters | 193 |
No. of restraints | 8 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.30, −0.52 |
Selected geometric parameters (Å, º) topC4—O6 | 1.340 (3) | O3—S1 | 1.4608 (18) |
C7—O5 | 1.221 (3) | OW1—Cu1 | 2.4175 (18) |
C7—O4 | 1.310 (3) | OW2—Cu1 | 1.9527 (18) |
O1—S1 | 1.462 (2) | OW3—Cu1 | 1.9596 (18) |
O2—S1 | 1.4600 (17) | | |
| | | |
O5—C7—O4 | 123.6 (2) | OW2—Cu1—OW3 | 90.67 (8) |
O2—S1—O3 | 111.03 (11) | OW2—Cu1—OW1 | 92.19 (7) |
O2—S1—O1 | 110.55 (11) | OW3—Cu1—OW1 | 89.13 (7) |
O3—S1—O1 | 113.44 (13) | | |
Hydrogen-bond geometry (Å, º) top
D—H···A | D—H | H···A | D···A | D—H···A |
OW1—H1A···O2i | 0.888 (18) | 1.890 (18) | 2.774 (2) | 173 (3) |
OW1—H1B···O1 | 0.884 (18) | 1.965 (18) | 2.824 (3) | 164 (3) |
OW2—H2A···O3ii | 0.876 (18) | 1.902 (18) | 2.777 (3) | 177 (3) |
OW2—H2B···OW4ii | 0.873 (17) | 1.880 (18) | 2.752 (3) | 177 (3) |
OW3—H3A···OW4iii | 0.879 (18) | 1.790 (18) | 2.668 (3) | 177 (3) |
OW3—H3B···O1 | 0.871 (17) | 1.953 (18) | 2.748 (3) | 151 (3) |
OW4—H4A···O3ii | 0.882 (17) | 1.898 (18) | 2.770 (3) | 169 (3) |
OW4—H4B···OW1 | 0.879 (18) | 1.950 (19) | 2.794 (3) | 160 (3) |
O4—H4···O2iv | 0.82 | 1.96 | 2.726 (2) | 154 |
O6—H6A···O5 | 0.82 | 1.91 | 2.627 (3) | 146 |
Symmetry codes: (i) x+1, y, z; (ii) −x+1, −y+1, −z+2; (iii) x−1, y−1, z; (iv) −x, −y, −z+1. |
The crystal structures of five transition metal (Mn, Co, Ni, Cu and Zn) 3-carboxy-4-hydroxybenzenesulfonates have been determined. The structures of the manganese (Ma et al., 2003a), cobalt (Ma et al., 2003b) and nickel compound (Ma et al., 2003c) have been reported in the preceding papers. The crystal structure of the copper compound, (I), is presented here. The crystal structure of the related zinc compound is reported in the following paper.
The CuII atom is located on an inversion center, and all other atoms are in general positions. Selected bond lengths and angles are given in Table 1. Fig. 1 shows the asymmetric unit, together with the complete coordination environment of the CuII cation. Each CuII cation is coordinated by six water molecules, like the Mn(II) cation of the manganese compound (Ma et al., 2003a). Due to the Jahn–Teller effect, the Cu1—Ow1 distance, 2.4175 (18) Å, is much longer than those for Cu1—Ow2, 1.9527 (18) Å, and Cu1—Ow3, 1.9596 (18) Å.
The crystal structure of (I) is composed of alternating layers of [Cu(H2O)6]2+ cations and sulfonate anions, as shown in Fig. 2. Within the sulfonate layer, there are rows of anions with alternating orientations of the organic group. The phenyl ring is almost perpendicular to the the layer of cations with a dihedral angle of 86.3°, which is larger than the value for the manganese compound, 78.2° (Ma et al., 2003a).
The [Cu(H2O)6]2+ cations, water molecules and L− anions are connected through a complex pattern of hydrogen-bonding interactions. Selected hydrogen-bond parameters are listed in Table 2.