Download citation
Download citation
link to html
In the title compound, [Cu(H2O)6]L2·2H2O, where HL = 3-carboxy-4-hydroxy­benzene­sulfonic acid (C7H6O6S), each CuII cation lies on an inversion center and is octahedrally coordinated by six water mol­ecules. The L- anions do not coordinate to copper, but act as counter-anions. The crystal structure is composed of alternating layers of [Cu(H2O)6]2+ cations and sulfonate anions. The [Cu(H2O)6]2+ cations, water mol­ecules and L- anions are connected through a complex pattern of hydrogen-bonding interactions.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536803013084/cf6252sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536803013084/cf6252Isup2.hkl
Contains datablock I

CCDC reference: 217378

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.003 Å
  • R factor = 0.032
  • wR factor = 0.093
  • Data-to-parameter ratio = 12.5

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry








Comment top

The crystal structures of five transition metal (Mn, Co, Ni, Cu and Zn) 3-carboxy-4-hydroxybenzenesulfonates have been determined. The structures of the manganese (Ma et al., 2003a), cobalt (Ma et al., 2003b) and nickel compound (Ma et al., 2003c) have been reported in the preceding papers. The crystal structure of the copper compound, (I), is presented here. The crystal structure of the related zinc compound is reported in the following paper.

The CuII atom is located on an inversion center, and all other atoms are in general positions. Selected bond lengths and angles are given in Table 1. Fig. 1 shows the asymmetric unit, together with the complete coordination environment of the CuII cation. Each CuII cation is coordinated by six water molecules, like the Mn(II) cation of the manganese compound (Ma et al., 2003a). Due to the Jahn–Teller effect, the Cu1—Ow1 distance, 2.4175 (18) Å, is much longer than those for Cu1—Ow2, 1.9527 (18) Å, and Cu1—Ow3, 1.9596 (18) Å.

The crystal structure of (I) is composed of alternating layers of [Cu(H2O)6]2+ cations and sulfonate anions, as shown in Fig. 2. Within the sulfonate layer, there are rows of anions with alternating orientations of the organic group. The phenyl ring is almost perpendicular to the the layer of cations with a dihedral angle of 86.3°, which is larger than the value for the manganese compound, 78.2° (Ma et al., 2003a).

The [Cu(H2O)6]2+ cations, water molecules and L anions are connected through a complex pattern of hydrogen-bonding interactions. Selected hydrogen-bond parameters are listed in Table 2.

Experimental top

A mixture of 3-carboxy-4-hydroxybenzenesulfonic acid (0.44 g, 2 mmol) and CuO (0.080 g, 1 mmol) in water (10 ml) was stirred at room temperature for 30 min. Blue crystals of compound (I) were obtained after leaving the solution to stand at room temperature for several days. Analysis calculated for C14H26CuO20S2: C 26.19, H 4.08%; found: C 26.25, H 4.03%.

Refinement top

All H atoms on C atoms were positioned geometrically and refined as riding atoms, with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C). The H atoms of the carboxyl group and hydroxyl group were also positioned geometrically and refined as riding atoms, with O—H = 0.82 Å and Uiso(H) = 1.5Ueq(O). The water H atoms were located in a difference Fourier map and refined with Uiso(H) = 1.5Ueq(O).

Computing details top

Data collection: XSCANS (Siemens, 1994); cell refinement: XSCANS; data reduction: XSCANS; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL-Plus (Sheldrick, 1990); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. View of the asymmetric unit, expanded to show the complete coordination of CuII, with the atomic numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. View of the alternating layers of cations and anions, along the b axis.
(I) top
Crystal data top
[Cu(H2O)6](C7H5O6S)2·2H2OZ = 1
Mr = 642.01F(000) = 331
Triclinic, P1Dx = 1.744 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.0298 (9) ÅCell parameters from 20 reflections
b = 7.0749 (15) Åθ = 5.4–9.9°
c = 13.288 (4) ŵ = 1.16 mm1
α = 92.16 (2)°T = 293 K
β = 90.259 (18)°Block, blue
γ = 112.236 (12)°0.50 × 0.36 × 0.34 mm
V = 611.2 (2) Å3
Data collection top
Siemens P4
diffractometer
Rint = 0.017
Radiation source: fine-focus sealed tubeθmax = 26.0°, θmin = 1.5°
Graphite monochromatorh = 18
ω scansk = 88
3134 measured reflectionsl = 1616
2413 independent reflections3 standard reflections every 97 reflections
2140 reflections with I > 2σ(I) intensity decay: none
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.093H atoms treated by a mixture of independent and constrained refinement
S = 1.10 w = 1/[σ2(Fo2) + (0.0566P)2]
where P = (Fo2 + 2Fc2)/3
2413 reflections(Δ/σ)max < 0.001
193 parametersΔρmax = 0.30 e Å3
8 restraintsΔρmin = 0.52 e Å3
Crystal data top
[Cu(H2O)6](C7H5O6S)2·2H2Oγ = 112.236 (12)°
Mr = 642.01V = 611.2 (2) Å3
Triclinic, P1Z = 1
a = 7.0298 (9) ÅMo Kα radiation
b = 7.0749 (15) ŵ = 1.16 mm1
c = 13.288 (4) ÅT = 293 K
α = 92.16 (2)°0.50 × 0.36 × 0.34 mm
β = 90.259 (18)°
Data collection top
Siemens P4
diffractometer
Rint = 0.017
3134 measured reflections3 standard reflections every 97 reflections
2413 independent reflections intensity decay: none
2140 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0328 restraints
wR(F2) = 0.093H atoms treated by a mixture of independent and constrained refinement
S = 1.10Δρmax = 0.30 e Å3
2413 reflectionsΔρmin = 0.52 e Å3
193 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.2205 (3)0.4403 (3)0.65438 (15)0.0244 (4)
C20.2004 (3)0.3313 (3)0.56410 (15)0.0243 (4)
H20.16380.19040.56340.029*
C30.2352 (3)0.4327 (3)0.47369 (15)0.0241 (4)
C40.2928 (4)0.6457 (4)0.47607 (17)0.0284 (5)
C50.3103 (4)0.7531 (3)0.56800 (18)0.0322 (5)
H50.34720.89410.56950.039*
C60.2734 (4)0.6517 (3)0.65644 (17)0.0301 (5)
H60.28350.72370.71760.036*
C70.2117 (4)0.3171 (4)0.37601 (17)0.0305 (5)
O10.3123 (3)0.1933 (3)0.76643 (13)0.0416 (5)
O20.0378 (3)0.1691 (2)0.76838 (12)0.0308 (4)
O30.2249 (3)0.4634 (3)0.84896 (12)0.0444 (5)
O40.1564 (3)0.1200 (3)0.38535 (12)0.0418 (5)
H40.14520.06340.32940.063*
O50.2416 (4)0.3988 (3)0.29508 (12)0.0467 (5)
O60.3330 (3)0.7531 (3)0.39242 (14)0.0448 (5)
H6A0.31810.67540.34310.067*
OW10.6723 (3)0.2571 (3)0.88095 (12)0.0317 (4)
OW20.4356 (3)0.1959 (3)1.08673 (14)0.0378 (4)
OW30.2426 (3)0.0653 (3)0.92333 (14)0.0378 (4)
OW40.8673 (3)0.6598 (3)0.95578 (13)0.0338 (4)
S10.17750 (9)0.30792 (8)0.76709 (4)0.02569 (16)
Cu10.50000.00001.00000.02392 (14)
H1A0.766 (4)0.237 (4)0.8420 (19)0.036*
H1B0.577 (4)0.252 (4)0.8364 (18)0.036*
H2A0.540 (4)0.304 (3)1.109 (2)0.036*
H2B0.339 (4)0.239 (4)1.071 (2)0.036*
H3A0.121 (3)0.157 (4)0.936 (2)0.036*
H3B0.222 (4)0.015 (4)0.8674 (16)0.036*
H4A0.854 (4)0.621 (4)1.0185 (15)0.036*
H4B0.819 (4)0.545 (3)0.9187 (18)0.036*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0243 (11)0.0238 (10)0.0227 (10)0.0063 (9)0.0005 (8)0.0025 (8)
C20.0254 (11)0.0200 (10)0.0252 (10)0.0057 (9)0.0013 (9)0.0012 (8)
C30.0234 (11)0.0242 (11)0.0225 (10)0.0064 (9)0.0005 (8)0.0020 (8)
C40.0256 (12)0.0290 (11)0.0301 (11)0.0092 (9)0.0015 (9)0.0091 (9)
C50.0387 (14)0.0182 (10)0.0387 (12)0.0095 (10)0.0005 (11)0.0009 (9)
C60.0343 (13)0.0247 (11)0.0283 (11)0.0084 (10)0.0016 (10)0.0053 (8)
C70.0265 (12)0.0334 (12)0.0261 (11)0.0052 (10)0.0003 (9)0.0004 (9)
O10.0390 (11)0.0545 (12)0.0377 (9)0.0231 (9)0.0038 (8)0.0196 (8)
O20.0283 (9)0.0295 (8)0.0276 (8)0.0034 (7)0.0025 (7)0.0023 (6)
O30.0568 (13)0.0339 (9)0.0229 (8)0.0043 (9)0.0022 (8)0.0050 (7)
O40.0582 (13)0.0291 (9)0.0278 (8)0.0058 (9)0.0037 (8)0.0083 (7)
O50.0675 (14)0.0458 (11)0.0217 (8)0.0155 (10)0.0049 (8)0.0043 (7)
O60.0637 (14)0.0354 (10)0.0351 (9)0.0171 (10)0.0081 (9)0.0148 (7)
OW10.0306 (9)0.0335 (9)0.0317 (8)0.0130 (8)0.0021 (7)0.0023 (7)
OW20.0317 (10)0.0322 (9)0.0490 (10)0.0132 (8)0.0053 (8)0.0143 (8)
OW30.0268 (9)0.0374 (10)0.0413 (9)0.0021 (8)0.0092 (8)0.0139 (8)
OW40.0344 (10)0.0301 (9)0.0315 (8)0.0067 (8)0.0005 (7)0.0037 (7)
S10.0267 (3)0.0267 (3)0.0189 (3)0.0047 (2)0.0018 (2)0.0008 (2)
Cu10.0228 (2)0.0199 (2)0.0276 (2)0.00665 (16)0.00385 (15)0.00162 (14)
Geometric parameters (Å, º) top
C1—C21.379 (3)O4—H40.820
C1—C61.397 (3)O6—H6A0.820
C1—S11.763 (2)OW1—Cu12.4175 (18)
C2—C31.397 (3)OW1—H1A0.888 (18)
C2—H20.930OW1—H1B0.884 (18)
C3—C41.403 (3)OW2—Cu11.9527 (18)
C3—C71.482 (3)OW2—H2A0.876 (18)
C4—O61.340 (3)OW2—H2B0.873 (17)
C4—C51.394 (3)OW3—Cu11.9596 (18)
C5—C61.374 (3)OW3—H3A0.879 (18)
C5—H50.930OW3—H3B0.871 (17)
C6—H60.930OW4—H4A0.882 (17)
C7—O51.221 (3)OW4—H4B0.879 (18)
C7—O41.310 (3)Cu1—OW2i1.9527 (18)
O1—S11.462 (2)Cu1—OW3i1.9596 (18)
O2—S11.4600 (17)Cu1—OW1i2.4175 (18)
O3—S11.4608 (18)
C2—C1—C6120.6 (2)Cu1—OW2—H2B122.3 (19)
C2—C1—S1118.77 (17)H2A—OW2—H2B106 (3)
C6—C1—S1120.64 (17)Cu1—OW3—H3A127.8 (19)
C1—C2—C3119.9 (2)Cu1—OW3—H3B128.5 (19)
C1—C2—H2120.0H3A—OW3—H3B104 (3)
C3—C2—H2120.0H4A—OW4—H4B105 (3)
C2—C3—C4119.39 (19)O2—S1—O3111.03 (11)
C2—C3—C7120.5 (2)O2—S1—O1110.55 (11)
C4—C3—C7120.11 (19)O3—S1—O1113.44 (13)
O6—C4—C5117.6 (2)O2—S1—C1108.60 (10)
O6—C4—C3122.5 (2)O3—S1—C1106.18 (10)
C5—C4—C3119.9 (2)O1—S1—C1106.73 (11)
C6—C5—C4120.3 (2)OW2i—Cu1—OW2180.0
C6—C5—H5119.8OW2i—Cu1—OW389.33 (8)
C4—C5—H5119.8OW2—Cu1—OW390.67 (8)
C5—C6—C1119.9 (2)OW2i—Cu1—OW3i90.67 (8)
C5—C6—H6120.1OW2—Cu1—OW3i89.33 (8)
C1—C6—H6120.1OW3—Cu1—OW3i180.0
O5—C7—O4123.6 (2)OW2i—Cu1—OW187.81 (7)
O5—C7—C3123.0 (2)OW2—Cu1—OW192.19 (7)
O4—C7—C3113.37 (19)OW3—Cu1—OW189.13 (7)
C7—O4—H4109.5OW3i—Cu1—OW190.87 (7)
C4—O6—H6A109.5OW2i—Cu1—OW1i92.19 (7)
Cu1—OW1—H1A117.9 (18)OW2—Cu1—OW1i87.81 (7)
Cu1—OW1—H1B105.7 (19)OW3—Cu1—OW1i90.87 (7)
H1A—OW1—H1B102 (3)OW3i—Cu1—OW1i89.13 (7)
Cu1—OW2—H2A116 (2)OW1—Cu1—OW1i180.0
C6—C1—C2—C30.7 (4)S1—C1—C6—C5178.72 (19)
S1—C1—C2—C3179.52 (17)C2—C3—C7—O5179.5 (2)
C1—C2—C3—C40.8 (3)C4—C3—C7—O50.5 (4)
C1—C2—C3—C7179.2 (2)C2—C3—C7—O40.3 (3)
C2—C3—C4—O6178.5 (2)C4—C3—C7—O4179.7 (2)
C7—C3—C4—O61.5 (4)C2—C1—S1—O264.7 (2)
C2—C3—C4—C51.4 (4)C6—C1—S1—O2115.0 (2)
C7—C3—C4—C5178.6 (2)C2—C1—S1—O3175.79 (19)
O6—C4—C5—C6179.3 (2)C6—C1—S1—O34.4 (2)
C3—C4—C5—C60.6 (4)C2—C1—S1—O154.5 (2)
C4—C5—C6—C10.8 (4)C6—C1—S1—O1125.7 (2)
C2—C1—C6—C51.5 (4)
Symmetry code: (i) x+1, y, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
OW1—H1A···O2ii0.89 (2)1.89 (2)2.774 (2)173 (3)
OW1—H1B···O10.88 (2)1.97 (2)2.824 (3)164 (3)
OW2—H2A···O3iii0.88 (2)1.90 (2)2.777 (3)177 (3)
OW2—H2B···OW4iii0.87 (2)1.88 (2)2.752 (3)177 (3)
OW3—H3A···OW4iv0.88 (2)1.79 (2)2.668 (3)177 (3)
OW3—H3B···O10.87 (2)1.95 (2)2.748 (3)151 (3)
OW4—H4A···O3iii0.88 (2)1.90 (2)2.770 (3)169 (3)
OW4—H4B···OW10.88 (2)1.95 (2)2.794 (3)160 (3)
O4—H4···O2v0.821.962.726 (2)154
O6—H6A···O50.821.912.627 (3)146
Symmetry codes: (ii) x+1, y, z; (iii) x+1, y+1, z+2; (iv) x1, y1, z; (v) x, y, z+1.

Experimental details

Crystal data
Chemical formula[Cu(H2O)6](C7H5O6S)2·2H2O
Mr642.01
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)7.0298 (9), 7.0749 (15), 13.288 (4)
α, β, γ (°)92.16 (2), 90.259 (18), 112.236 (12)
V3)611.2 (2)
Z1
Radiation typeMo Kα
µ (mm1)1.16
Crystal size (mm)0.50 × 0.36 × 0.34
Data collection
DiffractometerSiemens P4
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
3134, 2413, 2140
Rint0.017
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.093, 1.10
No. of reflections2413
No. of parameters193
No. of restraints8
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.30, 0.52

Computer programs: XSCANS (Siemens, 1994), XSCANS, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL-Plus (Sheldrick, 1990), SHELXL97.

Selected geometric parameters (Å, º) top
C4—O61.340 (3)O3—S11.4608 (18)
C7—O51.221 (3)OW1—Cu12.4175 (18)
C7—O41.310 (3)OW2—Cu11.9527 (18)
O1—S11.462 (2)OW3—Cu11.9596 (18)
O2—S11.4600 (17)
O5—C7—O4123.6 (2)OW2—Cu1—OW390.67 (8)
O2—S1—O3111.03 (11)OW2—Cu1—OW192.19 (7)
O2—S1—O1110.55 (11)OW3—Cu1—OW189.13 (7)
O3—S1—O1113.44 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
OW1—H1A···O2i0.888 (18)1.890 (18)2.774 (2)173 (3)
OW1—H1B···O10.884 (18)1.965 (18)2.824 (3)164 (3)
OW2—H2A···O3ii0.876 (18)1.902 (18)2.777 (3)177 (3)
OW2—H2B···OW4ii0.873 (17)1.880 (18)2.752 (3)177 (3)
OW3—H3A···OW4iii0.879 (18)1.790 (18)2.668 (3)177 (3)
OW3—H3B···O10.871 (17)1.953 (18)2.748 (3)151 (3)
OW4—H4A···O3ii0.882 (17)1.898 (18)2.770 (3)169 (3)
OW4—H4B···OW10.879 (18)1.950 (19)2.794 (3)160 (3)
O4—H4···O2iv0.821.962.726 (2)154
O6—H6A···O50.821.912.627 (3)146
Symmetry codes: (i) x+1, y, z; (ii) x+1, y+1, z+2; (iii) x1, y1, z; (iv) x, y, z+1.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds