Download citation
Download citation
link to html
In the title compound, [Mn(H2O)6]L2·2H2O, where HL is 3-carboxy-4-hydroxy­benzene­sulfonic acid (C7H6O6S), each MnII cation lies on an inversion center and is octahedrally coordinated by six water mol­ecules. The L- anions do not coordinate to manganese, but act as counter-anions. The crystal structure is composed of alternating layers of [Mn(H2O)6]2+ cations and sulfonate anions. The [Mn(H2O)6]2+ cations, water mol­ecules and L- anions are connected through a complex pattern of H-bonding interactions.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536803013059/cf6253sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536803013059/cf6253Isup2.hkl
Contains datablock I

CCDC reference: 217375

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.004 Å
  • R factor = 0.031
  • wR factor = 0.089
  • Data-to-parameter ratio = 12.3

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry








Comment top

Metal phosphonate chemistry has been developed rapidly. By constrast, the coordination chemistry of transition metal sulfonates is not well explored or rationalized, owing to the preconception that sulfonates are weakly coordinating ligands (Yu et al., 2001). In some cases, a sulfonate group can compete with water molecules in coordinating to a metal ion (Shimizu et al., 1998; Smith et al., 1998; Sundberg & Sillanpaa, 1993). Squattrito and co-workers have studied the structures of some transition metal sulfonates, in which the metal is coordinated by water molecules, the sulfonate anions remaining uncoordinated (Gunderman et al., 1997; Kosnic et al., 1992; Shubnell et al., 1994). We have determined the crystal structures of five transition metal (Mn, Co, Ni, Cu and Zn) 3-carboxy-4-hydroxybenzenesulfonates. The crystal structure of the manganese compound, (I), is presented here, and the crystal structures of the other four related compounds are reported in the following papers.

The Mn atom is located on an inversion center, and all other atoms are in general positions. Selected bond lengths and angles are given in Table 1. Fig. 1 shows the asymmetric unit, together with the complete coordination environment of the MnII cation. Each MnII cation is coordinated by six water molecules, giving an octahedral coordination geometry. The average Mn—O distance of 2.173 Å is similar to values in other manganese compounds (Wu et al., 1995). Owing to the weak coordinating ability of sulfonate ions toward transition metal ions, the sulfonate ions are non-coordinating. The crystal structure of (I) is composed of alternating layers of [Mn(H2O)6]2+ cations and sulfonate anions, as shown in Fig. 2. Within the sulfonate layer, there are rows of anions with alternating orientations of the organic group.

There is one additional uncoordinated water molecule in the asymmetric unit. The [Mn(H2O)6]2+ cations, water molecules and L anions are connected through a complex pattern of hydrogen-bonding interactions. Selected hydrogen-bond parameters are listed in Table 2. There are 10 H atoms available for hydrogen bonding in the asymmetric unit. Some of the water molecules play a role as both acceptor and donor, while the hydroxyl and carboxyl OH groups are only donors, and the sulfonate and carboxyl O atoms are necessarily only acceptors.

Experimental top

A mixture of 3-carboxy-4-hydroxybenzenesulfonic acid (0.44 g, 2 mmol) and MnCO3 (0.12 g, 1 mmol) in water (10 ml) was stirred at room temperature for 30 min. Colorless crystals of compound (I) were obtained after leaving the solution to stand at room temperature for several days. Analysis calculated for C14H26MnO20S2: C 26.55, H 4.14%; found: C 26.62, H 4.18%.

Refinement top

All H atoms on C atoms were positioned geometrically and refined as riding atoms, with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C). The H atoms of the carboxyl group and hydroxyl group were also positioned geometrically and refined as riding atoms, with O—H = 0.82 Å and Uiso(H) = 1.5Ueq(O). The water H atoms were located in a difference Fourier map and refined with Uiso(H) = 1.5Ueq(O).

Computing details top

Data collection: XSCANS (Siemens, 1994); cell refinement: XSCANS; data reduction: XSCANS; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97; molecular graphics: SHELXTL-Plus (Sheldrick, 1990); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. View of the asymmetric unit, expanded to show the complete coordination of MnII, with the atomic numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. View of the alternating layers of cations and anions, along the a axis.
(I) top
Crystal data top
[Mn(H2O)6](C7H5O6S)2·2H2OZ = 1
Mr = 633.41F(000) = 327
Triclinic, P1Dx = 1.723 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.0608 (19) ÅCell parameters from 19 reflections
b = 7.1535 (19) Åθ = 5.5–9.9°
c = 13.836 (3) ŵ = 0.81 mm1
α = 90.49 (2)°T = 293 K
β = 90.49 (2)°Block, colorless
γ = 119.118 (17)°0.50 × 0.32 × 0.28 mm
V = 610.4 (3) Å3
Data collection top
Siemens P4
diffractometer
1961 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.022
Graphite monochromatorθmax = 26.0°, θmin = 2.9°
ω scansh = 18
Absorption correction: ψ scan
(North et al., 1968)
k = 88
Tmin = 0.645, Tmax = 0.798l = 1717
3086 measured reflections3 standard reflections every 97 reflections
2384 independent reflections intensity decay: none
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.031H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.089 w = 1/[σ2(Fo2) + (0.0508P)2 + 0.0568P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
2384 reflectionsΔρmax = 0.26 e Å3
194 parametersΔρmin = 0.31 e Å3
8 restraintsExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.264 (10)
Crystal data top
[Mn(H2O)6](C7H5O6S)2·2H2Oγ = 119.118 (17)°
Mr = 633.41V = 610.4 (3) Å3
Triclinic, P1Z = 1
a = 7.0608 (19) ÅMo Kα radiation
b = 7.1535 (19) ŵ = 0.81 mm1
c = 13.836 (3) ÅT = 293 K
α = 90.49 (2)°0.50 × 0.32 × 0.28 mm
β = 90.49 (2)°
Data collection top
Siemens P4
diffractometer
1961 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.022
Tmin = 0.645, Tmax = 0.7983 standard reflections every 97 reflections
3086 measured reflections intensity decay: none
2384 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0318 restraints
wR(F2) = 0.089H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.26 e Å3
2384 reflectionsΔρmin = 0.31 e Å3
194 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.8900 (3)0.1678 (3)0.17333 (15)0.0268 (5)
C20.8119 (3)0.1904 (3)0.08565 (15)0.0263 (4)
H20.67140.16950.08080.032*
C30.9400 (3)0.2443 (3)0.00381 (15)0.0261 (5)
C41.1539 (4)0.2807 (4)0.01224 (17)0.0312 (5)
C51.2324 (4)0.2598 (4)0.10198 (18)0.0362 (5)
H51.37410.28490.10790.043*
C61.1023 (4)0.2026 (4)0.18168 (17)0.0330 (5)
H61.15530.18710.24110.040*
C70.8519 (4)0.2561 (3)0.09135 (15)0.0292 (5)
O10.8419 (3)0.1192 (3)0.35883 (12)0.0451 (5)
O20.5700 (3)0.1536 (2)0.25555 (11)0.0332 (4)
O30.5851 (3)0.1886 (3)0.26742 (13)0.0430 (4)
O40.6524 (3)0.2231 (3)0.08789 (12)0.0392 (4)
H40.61100.23150.14240.059*
O50.9526 (3)0.2908 (3)0.16613 (12)0.0417 (4)
O61.2851 (3)0.3311 (3)0.06414 (13)0.0465 (5)
H6A1.22100.33800.11250.070*
OW10.3545 (4)0.1569 (3)0.48723 (13)0.0485 (5)
OW20.7916 (3)0.5192 (3)0.55984 (15)0.0488 (5)
OW30.6469 (3)0.5564 (3)0.35531 (12)0.0369 (4)
OW40.8706 (3)0.2019 (3)0.63169 (13)0.0419 (4)
S10.71093 (9)0.07782 (8)0.27139 (4)0.02835 (18)
Mn10.50000.50000.50000.02785 (18)
H1A0.301 (4)0.065 (4)0.4383 (16)0.042*
H1B0.286 (4)0.073 (4)0.5367 (16)0.042*
H2A0.818 (4)0.418 (4)0.579 (2)0.042*
H2B0.902 (4)0.631 (4)0.5872 (19)0.042*
H3A0.636 (4)0.449 (4)0.3207 (18)0.042*
H3B0.614 (4)0.634 (4)0.3169 (18)0.042*
H4A0.857 (4)0.210 (4)0.6940 (13)0.042*
H4B1.010 (3)0.274 (4)0.625 (2)0.042*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0317 (11)0.0233 (10)0.0239 (10)0.0123 (9)0.0017 (9)0.0007 (8)
C20.0253 (10)0.0246 (10)0.0267 (10)0.0104 (8)0.0001 (8)0.0014 (8)
C30.0296 (11)0.0204 (10)0.0252 (10)0.0098 (9)0.0023 (8)0.0011 (8)
C40.0294 (11)0.0283 (11)0.0312 (11)0.0104 (9)0.0029 (9)0.0020 (9)
C50.0281 (11)0.0382 (13)0.0422 (13)0.0161 (10)0.0040 (10)0.0004 (10)
C60.0346 (12)0.0332 (12)0.0306 (11)0.0161 (10)0.0085 (9)0.0004 (9)
C70.0325 (12)0.0227 (10)0.0262 (11)0.0085 (9)0.0013 (9)0.0000 (8)
O10.0435 (10)0.0466 (10)0.0236 (8)0.0051 (8)0.0070 (7)0.0026 (7)
O20.0361 (9)0.0280 (8)0.0288 (8)0.0104 (7)0.0038 (7)0.0040 (6)
O30.0548 (11)0.0441 (10)0.0384 (9)0.0305 (9)0.0087 (8)0.0001 (8)
O40.0375 (9)0.0494 (10)0.0273 (8)0.0186 (8)0.0069 (7)0.0045 (7)
O50.0448 (10)0.0472 (10)0.0254 (8)0.0162 (8)0.0030 (7)0.0031 (7)
O60.0359 (9)0.0611 (12)0.0386 (10)0.0205 (9)0.0089 (8)0.0012 (8)
OW10.0766 (14)0.0271 (9)0.0276 (9)0.0142 (9)0.0007 (9)0.0006 (7)
OW20.0381 (10)0.0397 (10)0.0654 (13)0.0169 (8)0.0211 (9)0.0031 (9)
OW30.0548 (11)0.0380 (9)0.0268 (8)0.0296 (9)0.0027 (7)0.0024 (7)
OW40.0415 (10)0.0512 (11)0.0291 (9)0.0197 (9)0.0010 (8)0.0047 (8)
S10.0335 (3)0.0274 (3)0.0200 (3)0.0116 (2)0.0016 (2)0.00021 (19)
Mn10.0304 (3)0.0278 (3)0.0239 (3)0.0131 (2)0.00111 (18)0.00084 (17)
Geometric parameters (Å, º) top
C1—C21.372 (3)O4—H40.820
C1—C61.398 (3)O6—H6A0.820
C1—S11.762 (2)OW1—Mn12.1556 (18)
C2—C31.391 (3)OW1—H1A0.881 (17)
C2—H20.930OW1—H1B0.892 (17)
C3—C41.405 (3)OW2—Mn12.1534 (19)
C3—C71.472 (3)OW2—H2A0.876 (17)
C4—O61.343 (3)OW2—H2B0.879 (18)
C4—C51.394 (3)OW3—Mn12.2110 (17)
C5—C61.373 (3)OW3—H3A0.871 (17)
C5—H50.930OW3—H3B0.879 (17)
C6—H60.930OW4—H4A0.873 (17)
C7—O51.218 (3)OW4—H4B0.866 (18)
C7—O41.311 (3)Mn1—OW2i2.1534 (19)
O1—S11.4544 (17)Mn1—OW1i2.1556 (18)
O2—S11.4716 (16)Mn1—OW3i2.2110 (17)
O3—S11.4511 (19)
C2—C1—C6120.0 (2)Mn1—OW2—H2B127.9 (19)
C2—C1—S1118.16 (17)H2A—OW2—H2B100 (3)
C6—C1—S1121.69 (17)Mn1—OW3—H3A120.0 (19)
C1—C2—C3120.9 (2)Mn1—OW3—H3B115.1 (19)
C1—C2—H2119.6H3A—OW3—H3B107 (3)
C3—C2—H2119.6H4A—OW4—H4B103 (3)
C2—C3—C4119.2 (2)O3—S1—O1114.68 (12)
C2—C3—C7120.81 (19)O3—S1—O2110.54 (11)
C4—C3—C7120.0 (2)O1—S1—O2110.72 (10)
O6—C4—C5118.5 (2)O3—S1—C1107.02 (10)
O6—C4—C3122.1 (2)O1—S1—C1107.21 (11)
C5—C4—C3119.4 (2)O2—S1—C1106.19 (10)
C6—C5—C4120.6 (2)OW2i—Mn1—OW2180.0
C6—C5—H5119.7OW2i—Mn1—OW189.48 (8)
C4—C5—H5119.7OW2—Mn1—OW190.52 (8)
C5—C6—C1119.9 (2)OW2i—Mn1—OW1i90.52 (8)
C5—C6—H6120.1OW2—Mn1—OW1i89.48 (8)
C1—C6—H6120.1OW1—Mn1—OW1i180.0
O5—C7—O4123.1 (2)OW2i—Mn1—OW391.05 (8)
O5—C7—C3123.6 (2)OW2—Mn1—OW388.95 (8)
O4—C7—C3113.24 (19)OW1—Mn1—OW393.83 (7)
C7—O4—H4109.5OW1i—Mn1—OW386.17 (7)
C4—O6—H6A109.5OW2i—Mn1—OW3i88.95 (8)
Mn1—OW1—H1A133.7 (18)OW2—Mn1—OW3i91.05 (8)
Mn1—OW1—H1B121.0 (18)OW1—Mn1—OW3i86.17 (7)
H1A—OW1—H1B101 (2)OW1i—Mn1—OW3i93.83 (7)
Mn1—OW2—H2A130.2 (19)OW3—Mn1—OW3i180.0
C6—C1—C2—C31.1 (3)S1—C1—C6—C5175.92 (17)
S1—C1—C2—C3174.83 (15)C2—C3—C7—O5175.8 (2)
C1—C2—C3—C41.5 (3)C4—C3—C7—O52.1 (3)
C1—C2—C3—C7176.38 (19)C2—C3—C7—O43.5 (3)
C2—C3—C4—O6179.34 (19)C4—C3—C7—O4178.64 (19)
C7—C3—C4—O61.4 (3)C2—C1—S1—O342.3 (2)
C2—C3—C4—C50.7 (3)C6—C1—S1—O3141.84 (19)
C7—C3—C4—C5177.2 (2)C2—C1—S1—O1165.77 (17)
O6—C4—C5—C6178.2 (2)C6—C1—S1—O118.3 (2)
C3—C4—C5—C60.5 (3)C2—C1—S1—O275.83 (18)
C4—C5—C6—C10.9 (4)C6—C1—S1—O2100.1 (2)
C2—C1—C6—C50.1 (3)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
OW1—H1A···OW4ii0.88 (2)1.94 (2)2.781 (3)160 (3)
OW1—H1B···O1ii0.89 (2)1.91 (2)2.796 (3)174 (3)
OW2—H2B···O1iii0.88 (2)1.96 (2)2.836 (3)177 (3)
OW2—H2A···OW40.88 (2)1.90 (2)2.777 (3)176 (3)
OW3—H3B···O2iv0.88 (2)1.90 (2)2.763 (2)168 (3)
OW3—H3A···O30.87 (2)1.86 (2)2.722 (3)169 (3)
OW4—H4A···O5v0.87 (2)2.03 (2)2.855 (2)158 (3)
OW4—H4B···OW3iii0.87 (2)2.13 (2)2.980 (3)166 (3)
O4—H4···O2vi0.821.912.693 (2)159
O6—H6A···O50.821.902.619 (3)146
Symmetry codes: (ii) x+1, y, z+1; (iii) x+2, y+1, z+1; (iv) x, y+1, z; (v) x, y, z+1; (vi) x+1, y, z.

Experimental details

Crystal data
Chemical formula[Mn(H2O)6](C7H5O6S)2·2H2O
Mr633.41
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)7.0608 (19), 7.1535 (19), 13.836 (3)
α, β, γ (°)90.49 (2), 90.49 (2), 119.118 (17)
V3)610.4 (3)
Z1
Radiation typeMo Kα
µ (mm1)0.81
Crystal size (mm)0.50 × 0.32 × 0.28
Data collection
DiffractometerSiemens P4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.645, 0.798
No. of measured, independent and
observed [I > 2σ(I)] reflections
3086, 2384, 1961
Rint0.022
(sin θ/λ)max1)0.616
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.089, 1.04
No. of reflections2384
No. of parameters194
No. of restraints8
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.26, 0.31

Computer programs: XSCANS (Siemens, 1994), XSCANS, SHELXS97 (Sheldrick, 1997), SHELXL97, SHELXTL-Plus (Sheldrick, 1990).

Selected geometric parameters (Å, º) top
C4—O61.343 (3)O3—S11.4511 (19)
C7—O51.218 (3)OW1—Mn12.1556 (18)
C7—O41.311 (3)OW2—Mn12.1534 (19)
O1—S11.4544 (17)OW3—Mn12.2110 (17)
O2—S11.4716 (16)
O5—C7—O4123.1 (2)OW2—Mn1—OW190.52 (8)
O3—S1—O1114.68 (12)OW2—Mn1—OW388.95 (8)
O3—S1—O2110.54 (11)OW1—Mn1—OW393.83 (7)
O1—S1—O2110.72 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
OW1—H1A···OW4i0.881 (17)1.938 (19)2.781 (3)160 (3)
OW1—H1B···O1i0.892 (17)1.908 (18)2.796 (3)174 (3)
OW2—H2B···O1ii0.879 (18)1.958 (18)2.836 (3)177 (3)
OW2—H2A···OW40.876 (17)1.903 (18)2.777 (3)176 (3)
OW3—H3B···O2iii0.879 (17)1.898 (19)2.763 (2)168 (3)
OW3—H3A···O30.871 (17)1.863 (18)2.722 (3)169 (3)
OW4—H4A···O5iv0.873 (17)2.028 (19)2.855 (2)158 (3)
OW4—H4B···OW3ii0.866 (18)2.133 (19)2.980 (3)166 (3)
O4—H4···O2v0.821.912.693 (2)159
O6—H6A···O50.821.902.619 (3)146
Symmetry codes: (i) x+1, y, z+1; (ii) x+2, y+1, z+1; (iii) x, y+1, z; (iv) x, y, z+1; (v) x+1, y, z.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds