Download citation
Download citation
link to html
In the title compound, (C7H10N)2[Cr2O7], the pyridinium cations and dichromate anion are linked by N—H...O hydrogen bonds. π–π stacking and C—H...O inter­actions play subordinate roles in forming the supramolecular structure.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536805041309/cf6477sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536805041309/cf6477Isup2.hkl
Contains datablock I

CCDC reference: 296525

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.007 Å
  • R factor = 0.042
  • wR factor = 0.100
  • Data-to-parameter ratio = 16.2

checkCIF/PLATON results

No syntax errors found



Alert level B PLAT111_ALERT_2_B ADDSYM Detects (Pseudo) Centre of Symmetry ..... 88 PerFit
Alert level C PLAT042_ALERT_1_C Calc. and Rep. MoietyFormula Strings Differ .... ? PLAT066_ALERT_1_C Predicted and Reported Transmissions Identical . ? PLAT199_ALERT_1_C Check the Reported _cell_measurement_temperature 293 K PLAT200_ALERT_1_C Check the Reported _diffrn_ambient_temperature . 293 K PLAT341_ALERT_3_C Low Bond Precision on C-C bonds (x 1000) Ang ... 7 PLAT380_ALERT_4_C Check Incorrectly? Oriented X(sp2)-Methyl Moiety C1 PLAT380_ALERT_4_C Check Incorrectly? Oriented X(sp2)-Methyl Moiety C7 PLAT790_ALERT_4_C Centre of Gravity not Within Unit Cell: Resd. # 1 C7 H10 N PLAT850_ALERT_2_C Check Flack Parameter Exact Value 0.00 and su .. 0.02
Alert level G REFLT03_ALERT_4_G Please check that the estimate of the number of Friedel pairs is correct. If it is not, please give the correct count in the _publ_section_exptl_refinement section of the submitted CIF. From the CIF: _diffrn_reflns_theta_max 27.49 From the CIF: _reflns_number_total 3660 Count of symmetry unique reflns 2182 Completeness (_total/calc) 167.74% TEST3: Check Friedels for noncentro structure Estimate of Friedel pairs measured 1478 Fraction of Friedel pairs measured 0.677 Are heavy atom types Z>Si present yes
0 ALERT level A = In general: serious problem 1 ALERT level B = Potentially serious problem 9 ALERT level C = Check and explain 1 ALERT level G = General alerts; check 4 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 2 ALERT type 2 Indicator that the structure model may be wrong or deficient 1 ALERT type 3 Indicator that the structure quality may be low 4 ALERT type 4 Improvement, methodology, query or suggestion

Comment top

The oxidation of primary alcohols to aldehydes and secondary alcohols to ketones with pridinium chromate is a well established procedure in organic synthesis, owing mainly to the mild conditions employed (Corey & Schmidt, 1979; Kanemoto et al., 1983; Corey et al., 1985). Nowadays the development of newer chromium(VI) reagents (Sarma & Mahanti, 1991; Li & Li 1998; Yli-Kauhaluoma et al., 1998) for the oxidation of organic substrates continues to be of interest. In our laboratory, the title salt, (I), has been synthesized.

Fig. 1 shows the asymmetric unit of (I), consisting of two 2,6-dimethylpyridinium (DMPM) cations and one dichromate anion. The dichromate has longer bridging Cr—O bonds than terminal Cr—O bonds (Table 1). The shorter distances correspond to double bonds and the longer distances to single bonds. They are in good agreement with those found in bipyridinium dichromates (Martín-Zarza et al., 1995), bis(octyltrimethylammonium) dichromate (Fossé et al., 1998) and tetramethylammonium dichromate (Fossé et al., 2001). The coordination geometry of each Cr atom is distorted tetrahedral.

The C—N—C angle of the pyridinium cation is always widened in comparison with the parent pyridine. For example, the C—N—C angles are 119.0 (3) and 120° for 2,6-dimethylpyridine (Bond et al., 2001) and the 1:1 2,6-dimethylpyridine–urea complex (Lee & Wallwork, 1965), respectively. However, this angle is widened to 123.83 (2), 123.92 (17) and 124.56 (19)° in 2,6-dimethylpyridinium hydrogen phthalate, fumarate and nitrate (Jin et al. 2000, 2003; Pan et al., 2001), respectively. A similar feature is also observed in the title salt (Table 1).

In the crystal structure, there are two pairs of bifurcated hydrogen bonds between the pyridinium and the dichromate ions (Table 2). Furthermore, the pyridinium and dichromate ions are linked by a number of C—H···O hydrogen bonds to form a network structure.

A packing diagram is shown in Fig. 2. The structure is stabilized by ππ interactions between pyridinium cations. The relevant centroid–centroid separations are between DMPM (N1/C2–C6) at (x, y, z) and DMPM (N1/C2–C6) at (x + 3/2, y + 1/2, z + 1) [3.471 (5) Å], and between DMPM (N2/C9–13) at (x, y, z) and DMPM (N2/C9–C13) at (x + 1/2, y + 1/2, z) [3.483 (5) Å].

Experimental top

2,6-Dimethylpyridine, CrO3 and H2O in a molar ratio of 1:1:8 were mixed together. Crystals of the title salt were formed in the resulting solution by slow evaporation at 293 K for a week.

Refinement top

All H atoms were placed in calculated positions and allowed to ride at distances of 0.93 (aromatic), 0.86 (NH) and 0.96 Å (methyl) from their parent atoms, with Uiso(H) values of 1.2–1.5 times Ueq(C,N).

Computing details top

Data collection: PROCESS-AUTO (Rigaku, 2001); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1998); software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. The structure of the title compound, showing 40% probability displacement ellipsoids and the atom-numbering scheme. Hydrogen bonds are indicated by dashed lines.
[Figure 2] Fig. 2. A packing diagram, viewed along the b axis. Hydrogen bonds are indicated by dashed lines.
Bis(2,6-dimethylpyridinium) dichromate top
Crystal data top
(C7H10N)2[Cr2O7]F(000) = 888.0
Mr = 432.32Dx = 1.615 Mg m3
Monoclinic, C2Mo Kα radiation, λ = 0.71073 Å
Hall symbol: C 2yCell parameters from 4141 reflections
a = 13.600 (3) Åθ = 3.5–27.5°
b = 8.3478 (17) ŵ = 1.26 mm1
c = 17.032 (3) ÅT = 293 K
β = 113.10 (3)°Prism, yellow
V = 1778.6 (7) Å30.35 × 0.32 × 0.30 mm
Z = 4
Data collection top
Rigaku Model? CCD area-detector
diffractometer
3660 independent reflections
Radiation source: fine-focus sealed tube2182 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
ϕ and ω scansθmax = 27.5°, θmin = 3.5°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 1714
Tmin = 0.650, Tmax = 0.685k = 1010
9945 measured reflectionsl = 2222
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.042H-atom parameters constrained
wR(F2) = 0.100 w = 1/[σ2(Fo2) + (0.0473P)2 + 2.3684P]
where P = (Fo2 + 2Fc2)/3
S = 1.10(Δ/σ)max < 0.001
3660 reflectionsΔρmax = 0.40 e Å3
226 parametersΔρmin = 0.43 e Å3
1 restraintAbsolute structure: Flack (1983), 1501 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.00 (2)
Crystal data top
(C7H10N)2[Cr2O7]V = 1778.6 (7) Å3
Mr = 432.32Z = 4
Monoclinic, C2Mo Kα radiation
a = 13.600 (3) ŵ = 1.26 mm1
b = 8.3478 (17) ÅT = 293 K
c = 17.032 (3) Å0.35 × 0.32 × 0.30 mm
β = 113.10 (3)°
Data collection top
Rigaku Model? CCD area-detector
diffractometer
3660 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
2182 reflections with I > 2σ(I)
Tmin = 0.650, Tmax = 0.685Rint = 0.030
9945 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.042H-atom parameters constrained
wR(F2) = 0.100Δρmax = 0.40 e Å3
S = 1.10Δρmin = 0.43 e Å3
3660 reflectionsAbsolute structure: Flack (1983), 1501 Friedel pairs
226 parametersAbsolute structure parameter: 0.00 (2)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cr10.23311 (4)0.64382 (5)0.28535 (3)0.02159 (16)
Cr20.26458 (4)0.98596 (6)0.21240 (3)0.02090 (15)
O10.2878 (2)0.6855 (3)0.38559 (17)0.0360 (7)
O20.2625 (2)0.4639 (3)0.26863 (18)0.0378 (6)
O30.10372 (19)0.6611 (3)0.25219 (16)0.0313 (6)
O40.2828 (2)0.7736 (3)0.22656 (17)0.0317 (6)
O50.3814 (2)1.0705 (4)0.25065 (18)0.0361 (6)
O60.2065 (3)1.0189 (3)0.11124 (17)0.0394 (8)
O70.1915 (2)1.0473 (4)0.26094 (18)0.0365 (6)
N10.5518 (2)1.1575 (4)0.3997 (2)0.0234 (6)
H10.50931.13780.34790.028*
N20.0484 (3)0.5429 (4)0.1064 (2)0.0244 (7)
H20.00810.56980.15770.029*
C10.5613 (4)0.8684 (5)0.4154 (3)0.0340 (9)
H1A0.51500.87680.35610.051*
H1B0.52460.81420.44560.051*
H1C0.62420.80910.42100.051*
C20.5926 (3)1.0318 (4)0.4517 (3)0.0270 (9)
C30.6586 (3)1.0620 (5)0.5351 (3)0.0303 (9)
H30.68880.97780.57260.036*
C40.6798 (4)1.2197 (6)0.5629 (3)0.0350 (10)
H40.72271.24130.61970.042*
C50.6377 (3)1.3430 (5)0.5068 (3)0.0331 (9)
H50.65291.44830.52560.040*
C60.5731 (3)1.3126 (5)0.4230 (3)0.0273 (8)
C70.5239 (3)1.4367 (5)0.3570 (3)0.0385 (10)
H7A0.48211.38600.30370.058*
H7B0.57911.50010.35040.058*
H7C0.47881.50440.37400.058*
C80.0680 (4)0.8283 (5)0.0814 (3)0.0415 (11)
H8A0.02120.82690.14070.062*
H8B0.13260.88420.07430.062*
H8C0.03330.88180.04930.062*
C90.0941 (3)0.6616 (5)0.0501 (2)0.0284 (8)
C100.1590 (3)0.6175 (6)0.0329 (3)0.0364 (10)
H100.19150.69590.07360.044*
C110.1753 (3)0.4590 (7)0.0547 (3)0.0406 (11)
H110.21910.43050.11030.049*
C120.1273 (3)0.3401 (6)0.0052 (3)0.0365 (10)
H120.13890.23260.00990.044*
C130.0615 (3)0.3837 (5)0.0880 (3)0.0280 (8)
C140.0044 (4)0.2694 (5)0.1585 (3)0.0397 (10)
H14A0.03520.32820.20960.060*
H14B0.04370.20510.14300.060*
H14C0.05550.20140.16810.060*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cr10.0205 (3)0.0230 (3)0.0173 (3)0.0014 (2)0.0031 (2)0.0028 (2)
Cr20.0191 (3)0.0250 (3)0.0151 (3)0.0033 (2)0.0029 (2)0.0021 (2)
O10.0426 (16)0.0357 (17)0.0181 (12)0.0076 (12)0.0007 (12)0.0021 (11)
O20.0435 (15)0.0262 (15)0.0400 (14)0.0041 (13)0.0125 (12)0.0026 (12)
O30.0218 (12)0.0410 (16)0.0289 (13)0.0048 (12)0.0076 (10)0.0019 (12)
O40.0375 (15)0.0255 (13)0.0391 (15)0.0013 (11)0.0225 (13)0.0079 (11)
O50.0244 (13)0.0408 (16)0.0359 (15)0.0111 (12)0.0041 (11)0.0057 (13)
O60.0470 (18)0.0385 (19)0.0205 (13)0.0025 (13)0.0002 (12)0.0073 (11)
O70.0386 (16)0.0380 (15)0.0373 (15)0.0062 (12)0.0195 (13)0.0047 (13)
N10.0189 (13)0.0268 (16)0.0232 (14)0.0019 (14)0.0068 (11)0.0030 (14)
N20.0206 (15)0.0309 (17)0.0198 (15)0.0007 (12)0.0058 (12)0.0022 (13)
C10.039 (2)0.023 (2)0.032 (2)0.0009 (17)0.0045 (17)0.0008 (17)
C20.0255 (19)0.029 (2)0.0298 (19)0.0018 (14)0.0146 (16)0.0042 (15)
C30.027 (2)0.037 (2)0.0249 (19)0.0001 (17)0.0087 (17)0.0022 (18)
C40.033 (2)0.048 (2)0.025 (2)0.0042 (19)0.0130 (17)0.0114 (18)
C50.034 (2)0.033 (2)0.038 (2)0.0107 (16)0.0198 (18)0.0136 (18)
C60.0228 (18)0.0268 (19)0.039 (2)0.0051 (15)0.0193 (16)0.0057 (17)
C70.036 (2)0.027 (2)0.052 (3)0.0002 (16)0.018 (2)0.0019 (18)
C80.038 (2)0.029 (2)0.051 (3)0.0033 (18)0.010 (2)0.009 (2)
C90.0202 (17)0.038 (2)0.0266 (18)0.0053 (16)0.0083 (15)0.0084 (17)
C100.028 (2)0.054 (3)0.026 (2)0.0005 (19)0.0097 (17)0.004 (2)
C110.028 (2)0.070 (3)0.0233 (18)0.010 (2)0.0104 (16)0.006 (2)
C120.035 (2)0.043 (3)0.037 (2)0.0104 (18)0.0197 (19)0.014 (2)
C130.0241 (19)0.033 (2)0.030 (2)0.0022 (17)0.0137 (16)0.0012 (18)
C140.047 (3)0.028 (2)0.043 (2)0.0034 (18)0.017 (2)0.0008 (18)
Geometric parameters (Å, º) top
Cr1—O21.608 (3)C4—H40.930
Cr1—O11.610 (3)C5—C61.375 (6)
Cr1—O31.630 (3)C5—H50.930
Cr1—O41.779 (3)C6—C71.481 (6)
Cr2—O71.606 (3)C7—H7A0.960
Cr2—O61.613 (3)C7—H7B0.960
Cr2—O51.623 (3)C7—H7C0.960
Cr2—O41.793 (3)C8—C91.482 (6)
N1—C21.344 (5)C8—H8A0.960
N1—C61.352 (5)C8—H8B0.960
N1—H10.860C8—H8C0.960
N2—C91.349 (5)C9—C101.390 (6)
N2—C131.361 (5)C10—C111.369 (8)
N2—H20.860C10—H100.930
C1—C21.489 (5)C11—C121.389 (7)
C1—H1A0.960C11—H110.930
C1—H1B0.960C12—C131.390 (6)
C1—H1C0.960C12—H120.930
C2—C31.374 (6)C13—C141.490 (6)
C3—C41.390 (6)C14—H14A0.960
C3—H30.930C14—H14B0.960
C4—C51.368 (7)C14—H14C0.960
O2—Cr1—O1110.25 (15)N1—C6—C5117.2 (4)
O2—Cr1—O3109.34 (15)N1—C6—C7117.7 (4)
O1—Cr1—O3109.57 (16)C5—C6—C7125.0 (4)
O2—Cr1—O4107.06 (15)C6—C7—H7A109.5
O1—Cr1—O4110.23 (14)C6—C7—H7B109.5
O3—Cr1—O4110.36 (13)H7A—C7—H7B109.5
O7—Cr2—O6110.66 (17)C6—C7—H7C109.5
O7—Cr2—O5111.14 (16)H7A—C7—H7C109.5
O6—Cr2—O5110.30 (16)H7B—C7—H7C109.5
O7—Cr2—O4109.07 (14)C9—C8—H8A109.5
O6—Cr2—O4107.24 (14)C9—C8—H8B109.5
O5—Cr2—O4108.31 (15)H8A—C8—H8B109.5
Cr1—O4—Cr2127.95 (16)C9—C8—H8C109.5
C2—N1—C6124.6 (3)H8A—C8—H8C109.5
C2—N1—H1117.7H8B—C8—H8C109.5
C6—N1—H1117.7N2—C9—C10117.3 (4)
C9—N2—C13124.9 (4)N2—C9—C8117.1 (4)
C9—N2—H2117.6C10—C9—C8125.5 (4)
C13—N2—H2117.6C11—C10—C9120.2 (4)
C2—C1—H1A109.5C11—C10—H10119.9
C2—C1—H1B109.5C9—C10—H10119.9
H1A—C1—H1B109.5C10—C11—C12120.8 (4)
C2—C1—H1C109.5C10—C11—H11119.6
H1A—C1—H1C109.5C12—C11—H11119.6
H1B—C1—H1C109.5C11—C12—C13119.3 (4)
N1—C2—C3118.2 (4)C11—C12—H12120.4
N1—C2—C1117.7 (3)C13—C12—H12120.4
C3—C2—C1124.2 (4)N2—C13—C12117.5 (4)
C2—C3—C4119.3 (4)N2—C13—C14117.4 (4)
C2—C3—H3120.3C12—C13—C14125.1 (4)
C4—C3—H3120.3C13—C14—H14A109.5
C5—C4—C3120.1 (4)C13—C14—H14B109.5
C5—C4—H4120.0H14A—C14—H14B109.5
C3—C4—H4120.0C13—C14—H14C109.5
C4—C5—C6120.6 (4)H14A—C14—H14C109.5
C4—C5—H5119.7H14B—C14—H14C109.5
C6—C5—H5119.7
O2—Cr1—O4—Cr2174.14 (19)C2—N1—C6—C7178.3 (4)
O1—Cr1—O4—Cr265.9 (2)C4—C5—C6—N11.3 (6)
O3—Cr1—O4—Cr255.2 (2)C4—C5—C6—C7179.6 (4)
O7—Cr2—O4—Cr11.1 (2)C13—N2—C9—C100.2 (6)
O6—Cr2—O4—Cr1121.0 (2)C13—N2—C9—C8178.4 (4)
O5—Cr2—O4—Cr1120.0 (2)N2—C9—C10—C110.5 (6)
C6—N1—C2—C31.6 (6)C8—C9—C10—C11178.6 (4)
C6—N1—C2—C1179.6 (4)C9—C10—C11—C120.3 (6)
N1—C2—C3—C40.8 (6)C10—C11—C12—C130.3 (6)
C1—C2—C3—C4178.0 (4)C9—N2—C13—C120.4 (6)
C2—C3—C4—C51.9 (7)C9—N2—C13—C14179.8 (4)
C3—C4—C5—C60.8 (6)C11—C12—C13—N20.6 (6)
C2—N1—C6—C52.6 (5)C11—C12—C13—C14179.6 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O50.861.962.779 (6)160
N1—H1···O3i0.862.452.865 (5)110
N2—H2···O30.861.892.719 (7)162
N2—H2···O5ii0.862.582.973 (5)110
C1—H1A···O50.962.573.364 (5)141
C3—H3···O1iii0.932.533.385 (5)153
C4—H4···O7iii0.932.503.164 (5)128
C5—H5···O1iv0.932.433.332 (5)163
C7—H7B···O7i0.962.583.412 (7)146
C8—H8A···O30.962.423.246 (5)143
C10—H10···O4v0.932.493.325 (5)149
C11—H11···O2v0.932.543.361 (6)147
C12—H12···O6vi0.932.403.257 (5)153
C14—H14B···O7vii0.962.583.152 (5)119
Symmetry codes: (i) x+1/2, y+1/2, z; (ii) x1/2, y1/2, z; (iii) x+1, y, z+1; (iv) x+1, y+1, z+1; (v) x, y, z; (vi) x, y1, z; (vii) x, y1, z.

Experimental details

Crystal data
Chemical formula(C7H10N)2[Cr2O7]
Mr432.32
Crystal system, space groupMonoclinic, C2
Temperature (K)293
a, b, c (Å)13.600 (3), 8.3478 (17), 17.032 (3)
β (°) 113.10 (3)
V3)1778.6 (7)
Z4
Radiation typeMo Kα
µ (mm1)1.26
Crystal size (mm)0.35 × 0.32 × 0.30
Data collection
DiffractometerRigaku Model? CCD area-detector
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.650, 0.685
No. of measured, independent and
observed [I > 2σ(I)] reflections
9945, 3660, 2182
Rint0.030
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.100, 1.10
No. of reflections3660
No. of parameters226
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.40, 0.43
Absolute structureFlack (1983), 1501 Friedel pairs
Absolute structure parameter0.00 (2)

Computer programs: PROCESS-AUTO (Rigaku, 2001), PROCESS-AUTO, CrystalStructure (Rigaku, 2003), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Bruker, 1998), SHELXTL.

Selected geometric parameters (Å, º) top
Cr1—O31.630 (3)N2—C91.349 (5)
Cr1—O41.779 (3)N2—C131.361 (5)
Cr2—O71.606 (3)C1—C21.489 (5)
Cr2—O41.793 (3)C2—C31.374 (6)
N1—C21.344 (5)C3—C41.390 (6)
N1—C61.352 (5)C4—C51.368 (7)
O2—Cr1—O1110.25 (15)O6—Cr2—O5110.30 (16)
O2—Cr1—O3109.34 (15)O7—Cr2—O4109.07 (14)
O1—Cr1—O3109.57 (16)O6—Cr2—O4107.24 (14)
O2—Cr1—O4107.06 (15)O5—Cr2—O4108.31 (15)
O1—Cr1—O4110.23 (14)Cr1—O4—Cr2127.95 (16)
O3—Cr1—O4110.36 (13)C2—N1—C6124.6 (3)
O7—Cr2—O6110.66 (17)C9—N2—C13124.9 (4)
O7—Cr2—O5111.14 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O50.861.962.779 (6)160
N1—H1···O3i0.862.452.865 (5)110
N2—H2···O30.861.892.719 (7)162
N2—H2···O5ii0.862.582.973 (5)110
C1—H1A···O50.962.573.364 (5)141
C3—H3···O1iii0.932.533.385 (5)153
C4—H4···O7iii0.932.503.164 (5)128
C5—H5···O1iv0.932.433.332 (5)163
C7—H7B···O7i0.962.583.412 (7)146
C8—H8A···O30.962.423.246 (5)143
C10—H10···O4v0.932.493.325 (5)149
C11—H11···O2v0.932.543.361 (6)147
C12—H12···O6vi0.932.403.257 (5)153
C14—H14B···O7vii0.962.5773.152 (5)119
Symmetry codes: (i) x+1/2, y+1/2, z; (ii) x1/2, y1/2, z; (iii) x+1, y, z+1; (iv) x+1, y+1, z+1; (v) x, y, z; (vi) x, y1, z; (vii) x, y1, z.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds