Download citation
Download citation
link to html
The phthal­imide and naphthalene moieties of the title compound, C18H7Cl4NO2·C3H6O, are oriented almost perpendicular to each other. The crystal structure is stabilized by weak π–π, C—H...π and van der Waals interactions.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536803014077/ci6239sup1.cif
Contains datablocks DS, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536803014077/ci6239Isup2.hkl
Contains datablock I

CCDC reference: 217621

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.004 Å
  • R factor = 0.040
  • wR factor = 0.105
  • Data-to-parameter ratio = 13.5

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry








Comment top

N-Phthaloyl derivatization is one of the most frequently used methods of protection in synthesis involving compounds with primary amino group (Falck et al., 1995). Phthalimides have also served as starting materials and intermediates for the syntheses of alkaloids (Couture et al., 1998) and pharmacophores (Couture et al., 1997). They have cytotoxicity (Hall et al., 1995) and anti-HIV activity (van Derpoorten et al., 1997). In this paper, we report the structure of the title compound, (I).

The molecular structure of (I) is illustrated in Fig. 1. The isoindole moiety is planar with N1 deviating a maximum of 0.038 (2) Å and the naphthalene ring system is planar within ±0.012 (3) Å. The dihedral angle between these two planes [84.2 (1)°] shows that they are orthogonal. The bond lengths and angles in the phthalimide moiety are comparable to those reported for phthalimide (Ng, 1992). The C—Cl bond lengths are in the range 1.713 (2)–1.716 (2) Å, which are in agreement with the values reported in the literature (Busetti et al., 1980). In the solid state, the naphthalene ring system of the inversion-related (x, 1 − y, −z) molecules are stacked with partial overlap, such that the centroids of the benzene ring (C9–C13/C18) and its inversion equivalent are separated by 3.693 (2) Å. The crystal structure is further stabilized by weak C—H···π interactions (Table 2) ivolving the solvent molecule, Cl···O [Cl2···O3 = 3.152 (4) Å and Cl4···O1(x − 1, y − 1, z) = 3.250 (2) Å] short contacts and van der Waals forces (Fig. 2). In Table 2, Cg1, Cg2 and Cg3 denote the centroids of the benzene rings A (C2–C7), B (C9–C13/C18) and C (C13–C18), respectively.

Experimental top

A mixture of tetrachloraphthalic anhydride (10 mmol) and 1-naphthylamine (10 mmol) were refluxed in acetic acid (40 ml) until the disappearance of the starting materials as evidenced by thin-layer chromatography. After the reaction was complete, the yellow precipitate was filtered off and washed with a minimum amount of water to give the title compound (I). M.p. 551–552 K; IR (KBr): 1719.3 cm−1 (CO); 1H NMR (CDCl3, p.p.m.): 6.55–7.66 (m, 7 H); 20 mg of (I) was dissolved in 15 ml acetone and ether mixed solvent and the solution was kept at room temperature for 10 d to give colorless single crystals of (I) by slow evaporation.

Refinement top

H atoms were fixed geometrically and were treated as riding atoms on the parent C atoms with aromatic C—H = 0.93 Å and methyl C—H = 0.96 Å. The Uiso(H) values were set equal to 1.2Ueq of the carrier atom for the aromatic H atoms and at 1.5Ueq for the methyl H atoms.

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SMART; data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1997); software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. The structure of (I), showing 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. The molecular packing of (I), viewed down the a axis.
4,5,6,7-Tetrachloro-2-(naphthalen-1-yl)isoindole-1,3-dione acetone solvate top
Crystal data top
C18H7Cl4NO2·C3H6OZ = 2
Mr = 469.12F(000) = 476
Triclinic, P1Dx = 1.535 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.706 (3) ÅCell parameters from 899 reflections
b = 9.007 (3) Åθ = 2.5–26.2°
c = 16.213 (6) ŵ = 0.61 mm1
α = 94.985 (6)°T = 293 K
β = 91.165 (6)°Plate, colorless
γ = 114.879 (5)°0.40 × 0.35 × 0.10 mm
V = 1015.0 (6) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
3567 independent reflections
Radiation source: fine-focus sealed tube2748 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.017
ϕ and ω scansθmax = 25.0°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 98
Tmin = 0.784, Tmax = 0.941k = 1010
4239 measured reflectionsl = 1910
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.040 w = 1/[σ2(Fo2) + (0.084P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.105(Δ/σ)max < 0.001
S = 1.04Δρmax = 0.24 e Å3
3567 reflectionsΔρmin = 0.33 e Å3
264 parameters
Crystal data top
C18H7Cl4NO2·C3H6Oγ = 114.879 (5)°
Mr = 469.12V = 1015.0 (6) Å3
Triclinic, P1Z = 2
a = 7.706 (3) ÅMo Kα radiation
b = 9.007 (3) ŵ = 0.61 mm1
c = 16.213 (6) ÅT = 293 K
α = 94.985 (6)°0.40 × 0.35 × 0.10 mm
β = 91.165 (6)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3567 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2748 reflections with I > 2σ(I)
Tmin = 0.784, Tmax = 0.941Rint = 0.017
4239 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.105H-atom parameters constrained
S = 1.04Δρmax = 0.24 e Å3
3567 reflectionsΔρmin = 0.33 e Å3
264 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.49679 (10)0.76588 (8)0.48951 (4)0.0536 (2)
Cl20.31412 (11)0.50661 (9)0.61486 (4)0.0544 (2)
Cl30.03320 (11)0.17536 (9)0.55758 (4)0.0573 (2)
Cl40.19612 (10)0.09529 (8)0.37237 (4)0.0558 (2)
O10.4191 (3)0.7739 (2)0.30108 (11)0.0549 (5)
O20.0896 (3)0.2890 (3)0.21518 (12)0.0712 (6)
N10.1592 (3)0.5473 (2)0.23976 (12)0.0462 (5)
C10.2910 (4)0.6421 (3)0.30486 (14)0.0409 (6)
C20.2325 (3)0.5428 (3)0.37693 (14)0.0372 (5)
C30.3078 (3)0.5805 (3)0.45807 (14)0.0385 (6)
C40.2238 (4)0.4645 (3)0.51372 (14)0.0398 (6)
C50.0683 (4)0.3147 (3)0.48757 (14)0.0402 (6)
C60.0059 (4)0.2789 (3)0.40504 (15)0.0403 (6)
C70.0789 (3)0.3952 (3)0.35112 (14)0.0384 (6)
C80.0309 (4)0.3942 (3)0.26106 (16)0.0467 (6)
C90.1645 (4)0.6001 (3)0.15810 (15)0.0466 (7)
C100.2875 (4)0.5795 (4)0.10489 (17)0.0568 (7)
H100.36660.53110.12080.068*
C110.2946 (5)0.6322 (4)0.02529 (18)0.0657 (9)
H110.37860.61830.01170.079*
C120.1798 (5)0.7029 (4)0.00234 (18)0.0641 (9)
H120.18630.73710.05050.077*
C130.0511 (4)0.7259 (3)0.05631 (17)0.0544 (7)
C140.0696 (5)0.8000 (4)0.0337 (2)0.0744 (10)
H140.06570.83380.01900.089*
C150.1906 (6)0.8227 (5)0.0873 (3)0.0851 (11)
H150.26730.87330.07130.102*
C160.2012 (5)0.7703 (5)0.1665 (2)0.0798 (10)
H160.28510.78580.20290.096*
C170.0882 (4)0.6962 (4)0.19053 (19)0.0626 (8)
H170.09700.66130.24320.075*
C180.0402 (4)0.6720 (3)0.13719 (16)0.0474 (7)
O30.5994 (5)0.6625 (4)0.7731 (2)0.1259 (12)
C190.7113 (6)0.9027 (4)0.7079 (2)0.0831 (11)
H19A0.71920.83180.66180.125*
H19B0.83750.98450.72580.125*
H19C0.63310.95570.69130.125*
C200.6253 (5)0.8046 (4)0.7767 (2)0.0684 (9)
C210.5669 (7)0.8878 (6)0.8460 (3)0.1204 (18)
H21A0.49470.94190.82430.181*
H21B0.67890.96760.87770.181*
H21C0.48920.80780.88100.181*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0539 (4)0.0534 (4)0.0449 (4)0.0154 (3)0.0059 (3)0.0018 (3)
Cl20.0648 (5)0.0729 (5)0.0335 (4)0.0364 (4)0.0010 (3)0.0104 (3)
Cl30.0759 (5)0.0582 (4)0.0467 (4)0.0326 (4)0.0164 (3)0.0267 (3)
Cl40.0561 (4)0.0444 (4)0.0555 (4)0.0084 (3)0.0040 (3)0.0152 (3)
O10.0572 (12)0.0448 (11)0.0464 (11)0.0047 (10)0.0012 (9)0.0118 (8)
O20.0739 (15)0.0580 (12)0.0472 (12)0.0058 (11)0.0144 (10)0.0117 (9)
N10.0529 (13)0.0443 (12)0.0331 (11)0.0107 (10)0.0004 (9)0.0144 (9)
C10.0434 (15)0.0431 (14)0.0355 (14)0.0166 (12)0.0025 (10)0.0095 (10)
C20.0391 (14)0.0404 (13)0.0352 (13)0.0189 (11)0.0037 (10)0.0083 (10)
C30.0387 (14)0.0459 (14)0.0354 (13)0.0221 (12)0.0023 (10)0.0056 (10)
C40.0462 (15)0.0522 (15)0.0319 (13)0.0305 (13)0.0032 (10)0.0094 (11)
C50.0480 (15)0.0474 (14)0.0374 (14)0.0293 (13)0.0101 (11)0.0170 (11)
C60.0413 (14)0.0404 (13)0.0435 (15)0.0202 (12)0.0049 (11)0.0099 (11)
C70.0397 (14)0.0418 (14)0.0368 (13)0.0187 (12)0.0040 (10)0.0120 (10)
C80.0499 (16)0.0441 (15)0.0412 (15)0.0137 (13)0.0006 (12)0.0126 (12)
C90.0527 (16)0.0422 (14)0.0324 (14)0.0066 (13)0.0029 (11)0.0119 (10)
C100.0613 (19)0.0579 (17)0.0459 (17)0.0184 (15)0.0046 (14)0.0146 (13)
C110.073 (2)0.068 (2)0.0423 (17)0.0146 (17)0.0138 (15)0.0124 (14)
C120.074 (2)0.0605 (18)0.0366 (16)0.0059 (16)0.0028 (14)0.0185 (13)
C130.0586 (18)0.0445 (15)0.0438 (16)0.0044 (13)0.0084 (13)0.0157 (12)
C140.080 (2)0.064 (2)0.069 (2)0.0171 (18)0.0193 (18)0.0287 (17)
C150.074 (3)0.080 (2)0.104 (3)0.032 (2)0.013 (2)0.030 (2)
C160.066 (2)0.083 (2)0.093 (3)0.033 (2)0.0063 (19)0.017 (2)
C170.060 (2)0.0660 (19)0.0534 (18)0.0169 (16)0.0002 (14)0.0155 (14)
C180.0479 (16)0.0405 (14)0.0390 (14)0.0034 (12)0.0041 (12)0.0105 (11)
O30.171 (3)0.092 (2)0.128 (3)0.064 (2)0.003 (2)0.0416 (18)
C190.099 (3)0.074 (2)0.077 (2)0.036 (2)0.012 (2)0.0149 (18)
C200.067 (2)0.065 (2)0.065 (2)0.0207 (17)0.0143 (16)0.0112 (16)
C210.109 (4)0.122 (4)0.079 (3)0.000 (3)0.024 (2)0.005 (3)
Geometric parameters (Å, º) top
Cl1—C31.716 (3)C11—H110.93
Cl2—C41.715 (2)C12—C131.403 (4)
Cl3—C51.713 (2)C12—H120.93
Cl4—C61.715 (3)C13—C141.412 (5)
O1—C11.190 (3)C13—C181.429 (4)
O2—C81.192 (3)C14—C151.352 (5)
N1—C11.394 (3)C14—H140.93
N1—C81.396 (3)C15—C161.399 (5)
N1—C91.441 (3)C15—H150.93
C1—C21.494 (3)C16—C171.369 (4)
C2—C71.379 (3)C16—H160.93
C2—C31.381 (3)C17—C181.399 (4)
C3—C41.394 (3)C17—H170.93
C4—C51.398 (4)O3—C201.206 (4)
C5—C61.400 (3)C19—C201.474 (5)
C6—C71.376 (3)C19—H19A0.96
C7—C81.497 (3)C19—H19B0.96
C9—C101.353 (4)C19—H19C0.96
C9—C181.414 (4)C20—C211.478 (5)
C10—C111.407 (4)C21—H21A0.96
C10—H100.93C21—H21B0.96
C11—C121.352 (5)C21—H21C0.96
C1—N1—C8112.9 (2)C11—C12—C13121.6 (3)
C1—N1—C9122.8 (2)C11—C12—H12119.2
C8—N1—C9124.2 (2)C13—C12—H12119.2
O1—C1—N1125.6 (2)C12—C13—C14122.5 (3)
O1—C1—C2129.5 (2)C12—C13—C18119.1 (3)
N1—C1—C2104.9 (2)C14—C13—C18118.4 (3)
C7—C2—C3121.4 (2)C15—C14—C13121.4 (3)
C7—C2—C1108.8 (2)C15—C14—H14119.3
C3—C2—C1129.8 (2)C13—C14—H14119.3
C2—C3—C4118.0 (2)C14—C15—C16120.3 (4)
C2—C3—Cl1120.86 (19)C14—C15—H15119.8
C4—C3—Cl1121.14 (19)C16—C15—H15119.8
C3—C4—C5120.6 (2)C17—C16—C15120.2 (4)
C3—C4—Cl2119.3 (2)C17—C16—H16119.9
C5—C4—Cl2120.11 (18)C15—C16—H16119.9
C4—C5—C6120.5 (2)C16—C17—C18121.2 (3)
C4—C5—Cl3119.53 (18)C16—C17—H17119.4
C6—C5—Cl3119.9 (2)C18—C17—H17119.4
C7—C6—C5118.0 (2)C17—C18—C9124.5 (2)
C7—C6—Cl4121.2 (2)C17—C18—C13118.6 (3)
C5—C6—Cl4120.83 (18)C9—C18—C13116.9 (3)
C6—C7—C2121.5 (2)C20—C19—H19A109.5
C6—C7—C8130.4 (2)C20—C19—H19B109.5
C2—C7—C8108.1 (2)H19A—C19—H19B109.5
O2—C8—N1125.5 (2)C20—C19—H19C109.5
O2—C8—C7129.4 (2)H19A—C19—H19C109.5
N1—C8—C7105.1 (2)H19B—C19—H19C109.5
C10—C9—C18122.8 (2)O3—C20—C19120.0 (4)
C10—C9—N1119.1 (3)O3—C20—C21123.5 (4)
C18—C9—N1118.2 (2)C19—C20—C21116.5 (3)
C9—C10—C11119.4 (3)C20—C21—H21A109.5
C9—C10—H10120.3C20—C21—H21B109.5
C11—C10—H10120.3H21A—C21—H21B109.5
C12—C11—C10120.3 (3)C20—C21—H21C109.5
C12—C11—H11119.9H21A—C21—H21C109.5
C10—C11—H11119.9H21B—C21—H21C109.5
C8—N1—C1—O1176.8 (3)C9—N1—C8—O20.2 (5)
C9—N1—C1—O10.3 (4)C1—N1—C8—C73.5 (3)
C8—N1—C1—C23.8 (3)C9—N1—C8—C7179.9 (2)
C9—N1—C1—C2179.6 (2)C6—C7—C8—O22.4 (5)
O1—C1—C2—C7178.1 (3)C2—C7—C8—O2178.6 (3)
N1—C1—C2—C72.6 (3)C6—C7—C8—N1177.3 (3)
O1—C1—C2—C32.3 (5)C2—C7—C8—N11.7 (3)
N1—C1—C2—C3177.0 (2)C1—N1—C9—C1081.4 (3)
C7—C2—C3—C40.0 (3)C8—N1—C9—C1094.8 (3)
C1—C2—C3—C4179.5 (2)C1—N1—C9—C1898.4 (3)
C7—C2—C3—Cl1179.10 (19)C8—N1—C9—C1885.5 (3)
C1—C2—C3—Cl10.4 (4)C18—C9—C10—C110.4 (4)
C2—C3—C4—C50.2 (3)N1—C9—C10—C11179.4 (2)
Cl1—C3—C4—C5179.21 (18)C9—C10—C11—C120.1 (4)
C2—C3—C4—Cl2179.71 (18)C10—C11—C12—C130.1 (5)
Cl1—C3—C4—Cl21.2 (3)C11—C12—C13—C14179.8 (3)
C3—C4—C5—C60.2 (4)C11—C12—C13—C180.5 (4)
Cl2—C4—C5—C6179.71 (19)C12—C13—C14—C15179.1 (3)
C3—C4—C5—Cl3179.45 (18)C18—C13—C14—C151.1 (5)
Cl2—C4—C5—Cl31.0 (3)C13—C14—C15—C161.0 (6)
C4—C5—C6—C70.0 (4)C14—C15—C16—C170.3 (6)
Cl3—C5—C6—C7179.33 (19)C15—C16—C17—C180.4 (5)
C4—C5—C6—Cl4179.82 (19)C16—C17—C18—C9178.5 (3)
Cl3—C5—C6—Cl40.9 (3)C16—C17—C18—C130.2 (4)
C5—C6—C7—C20.1 (4)C10—C9—C18—C17179.6 (3)
Cl4—C6—C7—C2179.70 (19)N1—C9—C18—C170.1 (4)
C5—C6—C7—C8178.9 (2)C10—C9—C18—C130.9 (4)
Cl4—C6—C7—C81.4 (4)N1—C9—C18—C13178.9 (2)
C3—C2—C7—C60.1 (4)C12—C13—C18—C17179.8 (3)
C1—C2—C7—C6179.7 (2)C14—C13—C18—C170.5 (4)
C3—C2—C7—C8179.1 (2)C12—C13—C18—C90.9 (4)
C1—C2—C7—C80.5 (3)C14—C13—C18—C9179.3 (2)
C1—N1—C8—O2176.8 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C19—H19A···Cg1i0.963.214.101 (4)156
C21—H21B···Cg2ii0.963.123.831 (5)132
C21—H21B···Cg3ii0.963.053.913 (6)151
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y+2, z+1.

Experimental details

Crystal data
Chemical formulaC18H7Cl4NO2·C3H6O
Mr469.12
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)7.706 (3), 9.007 (3), 16.213 (6)
α, β, γ (°)94.985 (6), 91.165 (6), 114.879 (5)
V3)1015.0 (6)
Z2
Radiation typeMo Kα
µ (mm1)0.61
Crystal size (mm)0.40 × 0.35 × 0.10
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.784, 0.941
No. of measured, independent and
observed [I > 2σ(I)] reflections
4239, 3567, 2748
Rint0.017
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.105, 1.04
No. of reflections3567
No. of parameters264
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.24, 0.33

Computer programs: SMART (Bruker, 1997), SMART, SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Bruker, 1997), SHELXTL.

Selected geometric parameters (Å, º) top
Cl1—C31.716 (3)N1—C11.394 (3)
Cl2—C41.715 (2)N1—C81.396 (3)
Cl3—C51.713 (2)N1—C91.441 (3)
Cl4—C61.715 (3)O3—C201.206 (4)
O1—C11.190 (3)C19—C201.474 (5)
O2—C81.192 (3)C20—C211.478 (5)
C1—N1—C8112.9 (2)C3—C2—C1129.8 (2)
C1—N1—C9122.8 (2)C6—C7—C8130.4 (2)
C8—N1—C9124.2 (2)O2—C8—N1125.5 (2)
O1—C1—N1125.6 (2)O2—C8—C7129.4 (2)
O1—C1—C2129.5 (2)
C1—N1—C9—C1081.4 (3)C1—N1—C9—C1898.4 (3)
C8—N1—C9—C1094.8 (3)C8—N1—C9—C1885.5 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C19—H19A···Cg1i0.963.214.101 (4)156
C21—H21B···Cg2ii0.963.123.831 (5)132
C21—H21B···Cg3ii0.963.053.913 (6)151
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y+2, z+1.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds