Download citation
Download citation
link to html
The crystal structure of the title compound, K2[Cu(C6H2N2O4)2(H2O)]·6H2O, consists of mononuclear [Cu(pzdc)2­(H2O)]2− complex anions (pzdc is pyrazine-2,3-di­carboxyl­ate), K+ cations and water mol­ecules, held together by means of K—O/OW bonds and an extended OW—H...O/OW and OW—H...N hydrogen-bond network. The distorted square-pyramidal coordination of the Cu atom is achieved by two N and two O donor atoms from two bidentate pzdc ligands in the basal plane, while a water mol­ecule occupies the apical position with a longer metal–O distance.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S160053680301732X/ci6247sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S160053680301732X/ci6247Isup2.hkl
Contains datablock I

CCDC reference: 222825

Key indicators

  • Single-crystal X-ray study
  • T = 294 K
  • Mean [sigma](C-C) = 0.004 Å
  • R factor = 0.054
  • wR factor = 0.158
  • Data-to-parameter ratio = 19.1

checkCIF/PLATON results

No syntax errors found



Alert level B PLAT420_ALERT_2_B D-H Without Acceptor O5W - H52W ... ?
Alert level C PLAT029_ALERT_3_C _diffrn_measured_fraction_theta_full Low ....... 0.99 PLAT241_ALERT_2_C Check High U(eq) as Compared to Neighbors .... O172
0 ALERT level A = In general: serious problem 1 ALERT level B = Potentially serious problem 2 ALERT level C = Check and explain 0 ALERT level G = General alerts; check 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 2 ALERT type 2 Indicator that the structure model may be wrong or deficient 1 ALERT type 3 Indicator that the structure quality may be low 0 ALERT type 4 Improvement, methodology, query or suggestion

Comment top

Pyrazine-2,3-dicarboxylic acid (H2pzdc; Takusagawa & Shimada, 1973) and its dianion (Richard et al., 1973; Nepveu & Berkaoui, 1993) have proved to be well suited for the construction of multidimensional frameworks (nD, n = 1–3), due to the presence of two adjacent carboxylate groups (O donor atoms) as substituents in the N-heterocyclic pyrazine ring (N donor atoms). This permits multiple coordination modes and the usual non-coplanarity of these carboxylate groups, which favours the construction of high-dimensional covalent networks (O'Connor et al., 1982; Kondo et al., 1999; Zou et al., 1999; Kitaura et al., 2002). One approach to the design of extended homo- and heterometallic coordination polymers is to use mononuclear transition metal complexes possessing multidentate terminal ligands with free coordination sites, which can further connect a second metal centre, increasing the dimensionality of the coordination network (Pilkington et al., 2001; Ciurtin et al., 2003). This paper reports the synthesis and crystal structure of the potassium salt of one of these complexes, namely, K2[Cu(C6H2N2O4)2(H2O)]·6H2O, (I). This compound is a potential building block in the design of extended metal-organic networks, by replacing the K+ cations by transition metal ions.

As shown in Fig. 1, the CuII atom of (I), located on a general position, is surrounded by two N,O-bidentate pzdc ligands and a water molecule, which imposes a distorted square-pyramidal CuN2O3 environment. The two pzdc anions coordinate to the metal centre via one N-pyrazine atom and one O atom from the adjacent carboxylate group, forming a five-membered ring. These four donor atoms form the basal plane [maximum deviation from the mean plane 0.074 (3) Å for atom N21], while the Cu atom is displaced by 0.1612 (4) Å from this plane towards the apical position filled by a water molecule. The Cu—O1W bond distance of 2.203 (3) Å is substantially longer than the equatorial Cu—O/N distances (<2.00 Å). The coordination distances (Table 1) are similar to those reported for analogous CuII complexes containing the pzdc ligand (Kondo et al., 1999; Kitaura et al., 2002; Wang et al., 2003). The remaining O atoms of the carboxylate groups are connected to K+ cations (Fig. 2). The C—O bond distances of the K-bound O atoms are somewhat shorter (<1.25 Å) than those involving the O atoms attached to the Cu centres (>1.28 Å).

For both pzdc ligands, the carboxylate group coordinated to the Cu atoms is nearly coplanar with the pyrazine ring [dihedral angles 5.5 (1) and 4.5 (1)°], while the remaining one is twisted by 85.0 (1) and 82.5 (1)°, respectively. Both K+ cations are surrounded by nine O atoms, six from four carboxylate groups and three from free water molecules, with K—O distances ranging from 2.688 (3) to 3.221 (3) Å. An extensive OW—H···O, OW—H···N and OW—H···OW hydrogen-bond network involving the water molecules and the heteroatoms of the pzdc ligands further stabilizes the crystal packing (Table 2).

Experimental top

Blue crystals of (I) suitable for X-ray analysis were obtained by slow diffusion of a water-methanol mixture of pyrazine-2,3-dicarboxylic acid (84 mg, 0.5 mmol), adjusted to pH ca 7 with 1 N KOH, into an aqueous solution containing Cu(NO3)2·3H2O (60 mg, 0.25 mmol) (yield 60–70%, based on metal). Elemental analysis (C/H/N/Cu), found: 24.32, 3.08, 9.28, 10.50%; calculated for C12H18Cu K2N4O15: 24.02, 3.02, 9.34, 10.59%.

Refinement top

The water H atoms were located and refined subject to the restraints O—H = 0.85 (3) Å and H···H = 1.35 (3) Å, and Uiso(H) = 1.2Ueq(O). The C-bound H atoms were positioned geometrically, with C—H = 0.93 Å, and were included in the refinement in the riding-model approximation, with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2002); cell refinement: CrysAlis RED (Oxford Diffraction, 2002); data reduction: CrysAlis RED; program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. A view of the trans-[Cu(C6H2N2O4)2(H2O)]2− complex anion in (I). Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 2] Fig. 2. The crystal structure of (I), viewed along the a axis. H atoms have been omitted for clarity. The coordination environment of the K+ cations is shown by dotted lines.
Dipotassium aquabis(pyrazine-2,3-dicarboxylato-κ2N,O)cuprate(II) hexahydrate top
Crystal data top
K2[Cu(C6H2N2O4)2(H2O)]·6H2OZ = 2
Mr = 600.05F(000) = 610
Triclinic, P1Dx = 1.822 Mg m3
Dm = 1.82 (1) Mg m3
Dm measured by flotation in ?
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.830 (1) ÅCell parameters from 6673 reflections
b = 11.339 (2) Åθ = 3.2–30.6°
c = 14.627 (2) ŵ = 1.46 mm1
α = 94.58 (1)°T = 294 K
β = 95.92 (1)°Hexagonal plate, blue
γ = 102.54 (2)°0.4 × 0.4 × 0.1 mm
V = 1093.8 (3) Å3
Data collection top
Oxford Diffraction Xcalibur
diffractometer
6673 independent reflections
Radiation source: Fine-focus sealed tube3580 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.091
Detector resolution: 1024 × 1024 with blocks 2 × 2 pixels mm-1θmax = 30.6°, θmin = 3.2°
ω scansh = 98
Absorption correction: analytical
(CrysAlis RED; Oxford Diffraction, 2002)
k = 1616
Tmin = 0.572, Tmax = 0.854l = 2020
11367 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.158H-atom parameters constrained
S = 0.94 w = 1/[σ2(Fo2) + (0.0638P)2]
where P = (Fo2 + 2Fc2)/3
6673 reflections(Δ/σ)max = 0.002
349 parametersΔρmax = 1.01 e Å3
21 restraintsΔρmin = 0.94 e Å3
Crystal data top
K2[Cu(C6H2N2O4)2(H2O)]·6H2Oγ = 102.54 (2)°
Mr = 600.05V = 1093.8 (3) Å3
Triclinic, P1Z = 2
a = 6.830 (1) ÅMo Kα radiation
b = 11.339 (2) ŵ = 1.46 mm1
c = 14.627 (2) ÅT = 294 K
α = 94.58 (1)°0.4 × 0.4 × 0.1 mm
β = 95.92 (1)°
Data collection top
Oxford Diffraction Xcalibur
diffractometer
6673 independent reflections
Absorption correction: analytical
(CrysAlis RED; Oxford Diffraction, 2002)
3580 reflections with I > 2σ(I)
Tmin = 0.572, Tmax = 0.854Rint = 0.091
11367 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.05421 restraints
wR(F2) = 0.158H-atom parameters constrained
S = 0.94Δρmax = 1.01 e Å3
6673 reflectionsΔρmin = 0.94 e Å3
349 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.72941 (6)0.76290 (4)0.00097 (2)0.03097 (14)
K10.71404 (12)0.91836 (8)0.57449 (5)0.0363 (2)
K20.78333 (12)0.59087 (8)0.42584 (5)0.0387 (2)
N110.7634 (4)0.8876 (3)0.10899 (17)0.0266 (6)
C120.7786 (4)0.8404 (3)0.1874 (2)0.0238 (6)
C130.7792 (4)0.9073 (3)0.2724 (2)0.0241 (6)
N140.7657 (4)1.0234 (3)0.27433 (18)0.0316 (6)
C150.7512 (5)1.0702 (3)0.1945 (2)0.0346 (8)
H150.7431.1510.1950.042*
C160.7479 (5)1.0034 (3)0.1110 (2)0.0318 (7)
H160.7351.0390.0560.038*
C170.7946 (5)0.7098 (3)0.1788 (2)0.0292 (7)
C180.7914 (5)0.8557 (3)0.3643 (2)0.0307 (7)
O1710.7748 (4)0.6575 (2)0.09650 (15)0.0386 (6)
O1720.8253 (5)0.6578 (3)0.24852 (17)0.0509 (7)
O1810.6285 (4)0.8018 (2)0.38902 (16)0.0382 (6)
O1820.9604 (4)0.8747 (3)0.40944 (17)0.0476 (7)
N210.7221 (4)0.6405 (2)0.10539 (16)0.0264 (6)
C220.7245 (5)0.6866 (3)0.1851 (2)0.0259 (7)
C230.7155 (4)0.6150 (3)0.26820 (19)0.0241 (6)
N240.7041 (4)0.4952 (3)0.26812 (18)0.0338 (7)
C250.7016 (6)0.4498 (3)0.1871 (2)0.0387 (8)
H250.6930.3670.1860.046*
C260.7113 (5)0.5213 (3)0.1045 (2)0.0335 (8)
H260.7100.4870.0490.04*
C270.7372 (5)0.8209 (3)0.1773 (2)0.0346 (8)
C280.7137 (5)0.6605 (3)0.3620 (2)0.0302 (7)
O2710.7542 (4)0.8736 (2)0.09497 (15)0.0419 (7)
O2720.7243 (5)0.8741 (2)0.24745 (16)0.0495 (7)
O2810.8783 (4)0.7053 (2)0.38860 (15)0.0357 (6)
O2820.5452 (4)0.6447 (3)0.40796 (17)0.0475 (7)
O1w0.4000 (4)0.7380 (3)0.0011 (2)0.0556 (9)
H11w0.335 (4)0.783 (3)0.026 (2)0.067*
H12w0.318 (4)0.699 (4)0.047 (2)0.067*
O2w0.2980 (4)0.8800 (3)0.54471 (18)0.0448 (7)
H21w0.188 (3)0.839 (4)0.515 (2)0.054*
H22w0.280 (5)0.877 (4)0.601 (1)0.054*
O3w0.2812 (5)0.8380 (4)0.3008 (2)0.0609 (9)
H31w0.259 (5)0.804 (4)0.246 (1)0.073*
H32w0.372 (5)0.807 (4)0.328 (2)0.073*
O4w1.1987 (4)0.6086 (3)0.4458 (2)0.0474 (7)
H41w1.214 (5)0.604 (4)0.389 (1)0.057*
H42w1.303 (4)0.659 (3)0.473 (2)0.057*
O5w0.7859 (4)0.3586 (3)0.3117 (2)0.0562 (8)
H51w0.880 (3)0.331 (4)0.339 (3)0.067*
H52w0.680 (3)0.329 (4)0.336 (2)0.067*
O6w0.2406 (5)0.8764 (3)0.1177 (2)0.0537 (8)
H61w0.264 (5)0.953 (1)0.130 (3)0.064*
H62w0.114 (1)0.855 (3)0.100 (3)0.064*
O7w0.8228 (5)0.4139 (3)0.1378 (2)0.0552 (8)
H71w0.819 (7)0.396 (3)0.193 (1)0.066*
H72w0.804 (7)0.486 (2)0.139 (3)0.066*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0497 (3)0.0267 (2)0.0163 (2)0.00715 (18)0.00730 (16)0.00070 (15)
K10.0429 (4)0.0387 (5)0.0260 (4)0.0065 (3)0.0034 (3)0.0054 (3)
K20.0491 (5)0.0396 (5)0.0272 (4)0.0104 (4)0.0044 (3)0.0027 (3)
N110.0337 (14)0.0286 (14)0.0174 (12)0.0054 (12)0.0039 (10)0.0057 (10)
C120.0271 (15)0.0250 (16)0.0192 (14)0.0053 (12)0.0034 (11)0.0028 (12)
C130.0229 (14)0.0311 (17)0.0168 (14)0.0032 (13)0.0011 (11)0.0029 (12)
N140.0416 (16)0.0307 (16)0.0209 (13)0.0057 (13)0.0036 (11)0.0011 (11)
C150.050 (2)0.0228 (17)0.0312 (18)0.0086 (15)0.0037 (15)0.0014 (14)
C160.0439 (19)0.0308 (18)0.0217 (15)0.0083 (15)0.0046 (13)0.0092 (13)
C170.0400 (18)0.0249 (17)0.0236 (16)0.0101 (14)0.0034 (13)0.0019 (13)
C180.0372 (18)0.0327 (19)0.0204 (15)0.0068 (15)0.0048 (13)0.0053 (13)
O1710.0649 (16)0.0291 (13)0.0224 (12)0.0124 (12)0.0077 (11)0.0012 (10)
O1720.094 (2)0.0420 (16)0.0219 (12)0.0272 (16)0.0048 (13)0.0047 (11)
O1810.0435 (14)0.0457 (16)0.0299 (12)0.0102 (12)0.0116 (11)0.0224 (11)
O1820.0402 (14)0.064 (2)0.0331 (14)0.0045 (13)0.0113 (11)0.0126 (13)
N210.0382 (15)0.0277 (15)0.0145 (12)0.0085 (12)0.0048 (10)0.0047 (10)
C220.0292 (16)0.0286 (17)0.0207 (15)0.0079 (13)0.0063 (12)0.0003 (12)
C230.0233 (14)0.0329 (17)0.0156 (13)0.0059 (13)0.0011 (11)0.0022 (12)
N240.0474 (17)0.0289 (16)0.0246 (14)0.0070 (13)0.0089 (12)0.0005 (12)
C250.061 (2)0.0261 (18)0.0300 (18)0.0086 (17)0.0112 (16)0.0035 (14)
C260.052 (2)0.0302 (18)0.0194 (15)0.0087 (16)0.0077 (14)0.0064 (13)
C270.046 (2)0.036 (2)0.0238 (16)0.0118 (16)0.0098 (14)0.0010 (14)
C280.0365 (18)0.0307 (18)0.0228 (15)0.0090 (14)0.0054 (14)0.0074 (13)
O2710.0808 (19)0.0254 (13)0.0209 (12)0.0117 (13)0.0138 (12)0.0016 (10)
O2720.101 (2)0.0324 (15)0.0216 (12)0.0242 (15)0.0140 (13)0.0091 (11)
O2810.0402 (13)0.0429 (15)0.0273 (12)0.0096 (11)0.0102 (10)0.0157 (11)
O2820.0366 (14)0.076 (2)0.0288 (13)0.0118 (14)0.0031 (11)0.0126 (13)
O1w0.0404 (15)0.065 (2)0.0546 (19)0.0106 (14)0.0018 (13)0.0247 (16)
O2w0.0441 (14)0.059 (2)0.0294 (13)0.0103 (13)0.0058 (11)0.0028 (13)
O3w0.0501 (17)0.087 (3)0.0527 (19)0.0225 (17)0.0085 (14)0.0261 (18)
O4w0.0464 (15)0.058 (2)0.0315 (14)0.0035 (14)0.0053 (12)0.0104 (13)
O5w0.0443 (15)0.074 (2)0.0568 (19)0.0191 (16)0.0136 (14)0.0237 (16)
O6w0.0675 (19)0.0380 (17)0.0583 (19)0.0159 (14)0.0185 (16)0.0043 (15)
O7w0.0716 (19)0.0437 (18)0.0459 (17)0.0144 (16)0.0052 (15)0.0091 (14)
Geometric parameters (Å, º) top
Cu1—O1711.953 (3)C17—O1721.240 (4)
Cu1—O2711.953 (2)C17—O1711.279 (4)
Cu1—N111.994 (3)C18—O1821.235 (4)
Cu1—N211.990 (2)C18—O1811.251 (4)
Cu1—O1w2.203 (3)N21—C221.315 (4)
K1—O1812.866 (3)N21—C261.338 (4)
K1—O1823.148 (3)C22—C231.396 (4)
K1—O182i2.836 (3)C22—C271.500 (5)
K1—O272ii2.688 (3)C23—N241.344 (4)
K1—O281ii2.941 (3)C23—C281.504 (5)
K1—O282ii3.108 (3)N24—C251.329 (4)
K1—O2w2.762 (3)C25—C261.388 (4)
K1—O2wiii2.994 (3)C25—H250.93
K1—O3wiii3.179 (4)C26—H260.93
K2—O1722.785 (3)C27—O2721.236 (5)
K2—O1812.884 (3)C27—O2711.283 (4)
K2—O1823.221 (3)C28—O2821.241 (4)
K2—O281ii2.860 (2)C28—O2811.244 (4)
K2—O282iv3.067 (3)O1w—H11w0.85 (3)
K2—O282ii3.153 (3)O1w—H12w0.85 (3)
K2—O4w2.783 (3)O2w—H21w0.85 (3)
K2—O4wv3.067 (3)O2w—H22w0.85 (1)
K2—O5w3.008 (4)O3w—H31w0.85 (1)
N11—C121.307 (4)O3w—H32w0.86 (4)
N11—C161.338 (4)O4w—H41w0.85 (1)
C12—C131.403 (4)O4w—H42w0.85 (3)
C12—C171.505 (4)O5w—H51w0.85 (3)
C13—N141.338 (4)O5w—H52w0.85 (3)
C13—C181.510 (5)O6w—H61w0.85 (1)
N14—C151.324 (4)O6w—H62w0.85 (1)
C15—C161.381 (4)O7w—H71w0.85 (1)
C15—H150.93O7w—H72w0.85 (3)
C16—H160.93
O271—Cu1—O171166.16 (11)O281ii—K2—O18274.13 (7)
O271—Cu1—N2182.35 (10)O181—K2—O18242.15 (7)
O171—Cu1—N2195.72 (10)O5w—K2—O182134.49 (8)
O271—Cu1—N1197.54 (10)O4wv—K2—O182142.44 (7)
O171—Cu1—N1183.16 (10)O282iv—K2—O182155.49 (8)
N21—Cu1—N11174.92 (11)O282ii—K2—O18293.19 (8)
O271—Cu1—O1w95.64 (13)C12—N11—C16118.3 (3)
O171—Cu1—O1w98.20 (13)C12—N11—Cu1111.8 (2)
N21—Cu1—O1w96.93 (10)C16—N11—Cu1129.4 (2)
N11—Cu1—O1w88.14 (10)N11—C12—C13122.1 (3)
O272ii—K1—O2w94.47 (9)N11—C12—C17114.8 (3)
O272ii—K1—O182i99.67 (9)C13—C12—C17123.1 (3)
O2w—K1—O182i134.84 (9)N14—C13—C12119.6 (3)
O272ii—K1—O181142.90 (8)N14—C13—C18116.6 (3)
O2w—K1—O18178.45 (8)C12—C13—C18123.9 (3)
O182i—K1—O181111.15 (8)C15—N14—C13117.8 (3)
O272ii—K1—O281ii67.11 (7)N14—C15—C16122.4 (3)
O2w—K1—O281ii116.42 (9)N14—C15—H15118.8
O182i—K1—O281ii108.59 (8)C16—C15—H15118.8
O181—K1—O281ii83.40 (7)N11—C16—C15120.0 (3)
O272ii—K1—O2wiii140.94 (8)N11—C16—H16120.0
O2w—K1—O2wiii83.70 (9)C15—C16—H16120.0
O182i—K1—O2wiii58.83 (8)O172—C17—O171123.1 (3)
O181—K1—O2wiii75.09 (7)O172—C17—C12120.8 (3)
O281ii—K1—O2wiii147.03 (7)O171—C17—C12116.1 (3)
O272ii—K1—O282ii68.73 (8)O182—C18—O181126.3 (3)
O2w—K1—O282ii73.66 (9)O182—C18—C13116.8 (3)
O182i—K1—O282ii151.15 (8)O181—C18—C13116.9 (3)
O181—K1—O282ii74.36 (7)C17—O171—Cu1113.6 (2)
O281ii—K1—O282ii42.76 (7)C17—O172—K2157.4 (3)
O2wiii—K1—O282ii144.92 (7)C18—O181—K194.85 (19)
O272ii—K1—O182136.70 (9)C18—O181—K292.5 (2)
O2w—K1—O182120.34 (7)K1—O181—K296.59 (8)
O182i—K1—O18274.61 (9)K1i—O182—K1105.39 (9)
O181—K1—O18242.96 (6)K1i—O182—K2151.47 (10)
O281ii—K1—O18274.18 (7)K1—O182—K284.74 (7)
O2wiii—K1—O18273.04 (8)C22—N21—C26118.7 (3)
O282ii—K1—O18295.49 (8)C22—N21—Cu1113.2 (2)
O272ii—K1—O3wiii70.85 (8)C26—N21—Cu1128.2 (2)
O2w—K1—O3wiii87.94 (8)N21—C22—C23121.9 (3)
O182i—K1—O3wiii57.68 (8)N21—C22—C27113.8 (3)
O181—K1—O3wiii143.76 (8)C23—C22—C27124.2 (3)
O281ii—K1—O3wiii132.30 (8)N24—C23—C22119.8 (3)
O2wiii—K1—O3wiii70.09 (8)N24—C23—C28115.1 (3)
O282ii—K1—O3wiii133.63 (8)C22—C23—C28125.1 (3)
O182—K1—O3wiii129.94 (8)C25—N24—C23117.6 (3)
O4w—K2—O17286.29 (9)N24—C25—C26122.5 (3)
O4w—K2—O281ii81.48 (7)N24—C25—H25118.8
O172—K2—O281ii137.36 (8)C26—C25—H25118.8
O4w—K2—O181119.59 (9)N21—C26—C25119.5 (3)
O172—K2—O18166.56 (8)N21—C26—H26120.2
O281ii—K2—O18184.54 (7)C25—C26—H26120.2
O4w—K2—O5w81.54 (8)O272—C27—O271123.5 (4)
O172—K2—O5w75.43 (9)O272—C27—C22120.5 (3)
O281ii—K2—O5w141.36 (9)O271—C27—C22116.0 (3)
O181—K2—O5w133.84 (8)O282—C28—O281125.7 (3)
O4w—K2—O4wv81.24 (9)O282—C28—C23115.9 (3)
O172—K2—O4wv145.44 (8)O281—C28—C23118.3 (3)
O281ii—K2—O4wv72.33 (7)C27—O271—Cu1114.3 (2)
O181—K2—O4wv146.53 (7)C27—O272—K1vi160.7 (2)
O5w—K2—O4wv70.94 (8)K2vi—O281—K1vi95.45 (7)
O4w—K2—O282iv126.06 (9)K2iv—O282—K1vi155.15 (10)
O172—K2—O282iv107.62 (8)K2iv—O282—K2vi100.65 (8)
O281ii—K2—O282iv112.60 (7)K1vi—O282—K2vi86.58 (7)
O181—K2—O282iv113.62 (8)Cu1—O1w—H11w129 (2)
O5w—K2—O282iv54.44 (7)Cu1—O1w—H12w122 (2)
O4wv—K2—O282iv57.63 (7)H11w—O1w—H12w105 (3)
O4w—K2—O282ii123.19 (7)K1—O2w—K1iii96.30 (9)
O172—K2—O282ii138.79 (9)H21w—O2w—H22w105 (3)
O281ii—K2—O282ii42.80 (6)H31w—O3w—H32w105 (3)
O181—K2—O282ii73.43 (8)K2—O4w—K2v98.76 (9)
O5w—K2—O282ii131.79 (8)H41w—O4w—H42w105 (3)
O4wv—K2—O282ii73.16 (8)H51w—O5w—H52w106 (3)
O282iv—K2—O282ii79.35 (8)H61w—O6w—H62w105 (3)
O4w—K2—O18277.54 (9)H71w—O7w—H72w105 (4)
O172—K2—O18263.35 (8)
C16—N11—C12—C130.0 (5)C26—N21—C22—C230.2 (5)
Cu1—N11—C12—C13172.2 (2)Cu1—N21—C22—C23178.5 (2)
C16—N11—C12—C17179.8 (3)C26—N21—C22—C27179.9 (3)
Cu1—N11—C12—C177.6 (3)Cu1—N21—C22—C271.4 (4)
N11—C12—C13—N140.6 (5)N21—C22—C23—N240.1 (5)
C17—C12—C13—N14179.6 (3)C27—C22—C23—N24179.9 (3)
N11—C12—C13—C18178.4 (3)N21—C22—C23—C28178.8 (3)
C17—C12—C13—C181.3 (5)C27—C22—C23—C281.0 (5)
C12—C13—N14—C150.3 (5)C22—C23—N24—C250.1 (5)
C18—C13—N14—C15178.8 (3)C28—C23—N24—C25178.9 (3)
C13—N14—C15—C160.6 (5)C23—N24—C25—C260.4 (5)
C12—N11—C16—C150.9 (5)C22—N21—C26—C250.4 (5)
Cu1—N11—C16—C15171.5 (2)Cu1—N21—C26—C25178.1 (2)
N14—C15—C16—N111.2 (5)N24—C25—C26—N210.5 (6)
N11—C12—C17—O172174.4 (3)N21—C22—C27—O272174.2 (3)
C13—C12—C17—O1725.8 (5)C23—C22—C27—O2725.7 (5)
N11—C12—C17—O1715.5 (4)N21—C22—C27—O2713.4 (4)
C13—C12—C17—O171174.3 (3)C23—C22—C27—O271176.8 (3)
N14—C13—C18—O18284.0 (4)N24—C23—C28—O28280.7 (4)
C12—C13—C18—O18296.9 (4)C22—C23—C28—O28298.3 (4)
N14—C13—C18—O18193.3 (4)N24—C23—C28—O28196.3 (4)
C12—C13—C18—O18185.8 (4)C22—C23—C28—O28184.8 (4)
Symmetry codes: (i) x+2, y+2, z+1; (ii) x, y, z+1; (iii) x+1, y+2, z+1; (iv) x+1, y+1, z; (v) x+2, y+1, z+1; (vi) x, y, z1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1w—H11w···O6w0.85 (3)1.89 (3)2.714 (4)163 (3)
O1w—H12w···O7wiv0.85 (3)1.81 (4)2.639 (4)165 (4)
O2w—H21w···O182vii0.85 (3)2.20 (3)2.866 (4)136 (4)
O2w—H22w···N14iii0.85 (1)2.15 (2)2.894 (4)146 (4)
O3w—H31w···O6w0.85 (1)2.11 (3)2.743 (4)132 (4)
O3w—H32w···O1810.86 (4)1.90 (3)2.708 (4)158 (4)
O4w—H41w···N24viii0.85 (1)2.20 (3)2.964 (4)149 (4)
O4w—H42w···O282ix0.85 (3)2.32 (3)2.956 (4)132 (3)
O5w—H51w···O281viii0.85 (3)1.87 (3)2.715 (4)168 (4)
O5w—H52w···O282iv0.85 (3)2.02 (3)2.779 (4)149 (4)
O6w—H61w···O271x0.85 (1)2.10 (2)2.873 (4)152 (4)
O6w—H61w···O272x0.85 (1)2.48 (3)3.228 (4)147 (3)
O6w—H62w···N11vii0.85 (1)2.52 (1)3.279 (5)149 (3)
O7w—H71w···O5w0.85 (1)1.85 (2)2.692 (4)175 (5)
O7w—H72w···O1710.85 (3)2.13 (3)2.953 (4)161 (4)
O7w—H72w···O1720.85 (3)2.39 (3)3.087 (5)139 (4)
Symmetry codes: (iii) x+1, y+2, z+1; (iv) x+1, y+1, z; (vii) x1, y, z; (viii) x+2, y+1, z; (ix) x+1, y, z+1; (x) x+1, y+2, z.

Experimental details

Crystal data
Chemical formulaK2[Cu(C6H2N2O4)2(H2O)]·6H2O
Mr600.05
Crystal system, space groupTriclinic, P1
Temperature (K)294
a, b, c (Å)6.830 (1), 11.339 (2), 14.627 (2)
α, β, γ (°)94.58 (1), 95.92 (1), 102.54 (2)
V3)1093.8 (3)
Z2
Radiation typeMo Kα
µ (mm1)1.46
Crystal size (mm)0.4 × 0.4 × 0.1
Data collection
DiffractometerOxford Diffraction Xcalibur
diffractometer
Absorption correctionAnalytical
(CrysAlis RED; Oxford Diffraction, 2002)
Tmin, Tmax0.572, 0.854
No. of measured, independent and
observed [I > 2σ(I)] reflections
11367, 6673, 3580
Rint0.091
(sin θ/λ)max1)0.716
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.158, 0.94
No. of reflections6673
No. of parameters349
No. of restraints21
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.01, 0.94

Computer programs: CrysAlis CCD (Oxford Diffraction, 2002), CrysAlis RED (Oxford Diffraction, 2002), CrysAlis RED, SIR92 (Altomare et al., 1993), SHELXL97 (Sheldrick, 1997), ORTEP-3 (Farrugia, 1997), WinGX (Farrugia, 1999).

Selected bond lengths (Å) top
Cu1—O1711.953 (3)K1—O2wiii2.994 (3)
Cu1—O2711.953 (2)K1—O3wiii3.179 (4)
Cu1—N111.994 (3)K2—O1722.785 (3)
Cu1—N211.990 (2)K2—O1812.884 (3)
Cu1—O1w2.203 (3)K2—O1823.221 (3)
K1—O1812.866 (3)K2—O281ii2.860 (2)
K1—O1823.148 (3)K2—O282iv3.067 (3)
K1—O182i2.836 (3)K2—O282ii3.153 (3)
K1—O272ii2.688 (3)K2—O4w2.783 (3)
K1—O281ii2.941 (3)K2—O4wv3.067 (3)
K1—O282ii3.108 (3)K2—O5w3.008 (4)
K1—O2w2.762 (3)
Symmetry codes: (i) x+2, y+2, z+1; (ii) x, y, z+1; (iii) x+1, y+2, z+1; (iv) x+1, y+1, z; (v) x+2, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1w—H11w···O6w0.85 (3)1.89 (3)2.714 (4)163 (3)
O1w—H12w···O7wiv0.85 (3)1.81 (4)2.639 (4)165 (4)
O2w—H21w···O182vi0.85 (3)2.20 (3)2.866 (4)136 (4)
O2w—H22w···N14iii0.85 (1)2.15 (2)2.894 (4)146 (4)
O3w—H31w···O6w0.85 (1)2.11 (3)2.743 (4)132 (4)
O3w—H32w···O1810.86 (4)1.90 (3)2.708 (4)158 (4)
O4w—H41w···N24vii0.85 (1)2.20 (3)2.964 (4)149 (4)
O4w—H42w···O282viii0.85 (3)2.32 (3)2.956 (4)132 (3)
O5w—H51w···O281vii0.85 (3)1.87 (3)2.715 (4)168 (4)
O5w—H52w···O282iv0.85 (3)2.02 (3)2.779 (4)149 (4)
O6w—H61w···O271ix0.85 (1)2.10 (2)2.873 (4)152 (4)
O6w—H61w···O272ix0.85 (1)2.48 (3)3.228 (4)147 (3)
O6w—H62w···N11vi0.85 (1)2.52 (1)3.279 (5)149 (3)
O7w—H71w···O5w0.85 (1)1.85 (2)2.692 (4)175 (5)
O7w—H72w···O1710.85 (3)2.13 (3)2.953 (4)161 (4)
O7w—H72w···O1720.85 (3)2.39 (3)3.087 (5)139 (4)
Symmetry codes: (iii) x+1, y+2, z+1; (iv) x+1, y+1, z; (vi) x1, y, z; (vii) x+2, y+1, z; (viii) x+1, y, z+1; (ix) x+1, y+2, z.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds