Supporting information
Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536803017720/ci6253sup1.cif | |
Structure factor file (CIF format) https://doi.org/10.1107/S1600536803017720/ci6253Isup2.hkl |
CCDC reference: 222810
Colourless single crystals of the title complex were grown as transparent plates, using a mixture of water and acetone, containing DL-alanine and cadmium chloride in a stoichiometric ratio.
H atoms were placed at calculated positions and were allowed to ride on their respective parent atoms, with C—H = 0.97 or 0.98 Å and N—H = 0.89 Å. No satisfactory H-atom positions were found for the water O atom. Hence, the structure was refined without them. The highest peaks in the final difference map were located at distances less than 0.92 Å from the Cd atoms.
Data collection: CAD-4 Software (Enraf-Nonius, 1989); cell refinement: CAD-4 Software; data reduction: CAD-4 Software; program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 1999) and ORTEPIII (Johnson & Burnett, 1996); software used to prepare material for publication: SHELXL97.
[CdCl2(C3H7NO2)]·H2O | F(000) = 560 |
Mr = 290.42 | Dx = 2.289 Mg m−3 Dm = 2.29 Mg m−3 Dm measured by flotation in a mixture of carbon tetrachloride and bromoform |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 25 reflections |
a = 7.1190 (15) Å | θ = 19–32° |
b = 14.408 (3) Å | µ = 3.18 mm−1 |
c = 8.6396 (13) Å | T = 293 K |
β = 107.98 (2)° | Transparent plate, colourless |
V = 842.9 (3) Å3 | 0.18 × 0.12 × 0.10 mm |
Z = 4 |
Enraf-Nonius sealed tube diffractometer | 1469 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.095 |
Graphite monochromator | θmax = 25.3°, θmin = 2.8° |
ω–2θ scans | h = −8→8 |
Absorption correction: ψ scan (North et al., 1968) | k = 0→17 |
Tmin = 0.639, Tmax = 0.728 | l = −9→10 |
1797 measured reflections | 2 standard reflections every 60 min |
1541 independent reflections | intensity decay: 0.1% |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.048 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.134 | H-atom parameters constrained |
S = 1.15 | w = 1/[σ2(Fo2) + (0.096P)2 + 1.0634P] where P = (Fo2 + 2Fc2)/3 |
1541 reflections | (Δ/σ)max < 0.001 |
94 parameters | Δρmax = 2.57 e Å−3 |
0 restraints | Δρmin = −2.89 e Å−3 |
[CdCl2(C3H7NO2)]·H2O | V = 842.9 (3) Å3 |
Mr = 290.42 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 7.1190 (15) Å | µ = 3.18 mm−1 |
b = 14.408 (3) Å | T = 293 K |
c = 8.6396 (13) Å | 0.18 × 0.12 × 0.10 mm |
β = 107.98 (2)° |
Enraf-Nonius sealed tube diffractometer | 1469 reflections with I > 2σ(I) |
Absorption correction: ψ scan (North et al., 1968) | Rint = 0.095 |
Tmin = 0.639, Tmax = 0.728 | 2 standard reflections every 60 min |
1797 measured reflections | intensity decay: 0.1% |
1541 independent reflections |
R[F2 > 2σ(F2)] = 0.048 | 0 restraints |
wR(F2) = 0.134 | H-atom parameters constrained |
S = 1.15 | Δρmax = 2.57 e Å−3 |
1541 reflections | Δρmin = −2.89 e Å−3 |
94 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cd1 | 0.5000 | 0.0000 | 1.0000 | 0.0067 (3) | |
Cd2 | 1.0000 | 0.0000 | 1.0000 | 0.0088 (3) | |
Cl1 | 0.66360 (12) | 0.01708 (7) | 0.76270 (10) | 0.0129 (3) | |
Cl2 | 0.82562 (11) | 0.05798 (6) | 1.20109 (10) | 0.0154 (3) | |
O3 | 0.6809 (4) | 0.2414 (2) | 0.7618 (4) | 0.0311 (7) | |
O1 | 0.3931 (4) | 0.14897 (17) | 0.9765 (3) | 0.0183 (6) | |
O2 | 0.0712 (4) | 0.15519 (17) | 0.9545 (3) | 0.0198 (6) | |
N1 | 0.4428 (5) | 0.3237 (2) | 0.9441 (4) | 0.0222 (7) | |
H1A | 0.4861 | 0.2908 | 0.8748 | 0.033* | |
H1B | 0.5206 | 0.3137 | 1.0452 | 0.033* | |
H1C | 0.4445 | 0.3838 | 0.9206 | 0.033* | |
C1 | 0.2340 (5) | 0.1899 (2) | 0.9571 (4) | 0.0131 (7) | |
C2 | 0.2358 (5) | 0.2949 (2) | 0.9300 (4) | 0.0155 (7) | |
H2 | 0.1513 | 0.3085 | 0.8193 | 0.019* | |
C3 | 0.1636 (6) | 0.3507 (3) | 1.0470 (4) | 0.0229 (8) | |
H3A | 0.1692 | 0.4156 | 1.0235 | 0.034* | |
H3B | 0.2456 | 0.3385 | 1.1562 | 0.034* | |
H3C | 0.0297 | 0.3337 | 1.0362 | 0.034* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cd1 | 0.0062 (4) | 0.0051 (4) | 0.0085 (4) | 0.00054 (10) | 0.0019 (3) | −0.00156 (10) |
Cd2 | 0.0081 (4) | 0.0095 (4) | 0.0102 (4) | −0.00016 (10) | 0.0048 (3) | −0.00043 (11) |
Cl1 | 0.0168 (5) | 0.0155 (5) | 0.0059 (5) | 0.0004 (3) | 0.0026 (3) | 0.0003 (3) |
Cl2 | 0.0135 (5) | 0.0212 (5) | 0.0108 (5) | −0.0029 (3) | 0.0026 (3) | −0.0099 (3) |
O3 | 0.0320 (16) | 0.0233 (16) | 0.0347 (16) | −0.0006 (12) | 0.0054 (13) | 0.0129 (12) |
O1 | 0.0198 (13) | 0.0076 (11) | 0.0258 (14) | 0.0025 (10) | 0.0043 (11) | 0.0021 (10) |
O2 | 0.0179 (13) | 0.0109 (12) | 0.0312 (15) | −0.0024 (10) | 0.0084 (11) | 0.0042 (11) |
N1 | 0.0283 (17) | 0.0109 (14) | 0.0268 (18) | −0.0018 (13) | 0.0077 (15) | 0.0037 (13) |
C1 | 0.0215 (18) | 0.0128 (17) | 0.0047 (14) | 0.0021 (14) | 0.0033 (11) | 0.0012 (13) |
C2 | 0.0221 (17) | 0.0135 (17) | 0.0082 (16) | −0.0004 (13) | 0.0007 (13) | 0.0005 (13) |
C3 | 0.037 (2) | 0.0177 (18) | 0.0142 (18) | 0.0069 (16) | 0.0087 (16) | −0.0024 (15) |
Cd1—O1 | 2.265 (2) | O1—C1 | 1.241 (4) |
Cd1—O1i | 2.265 (2) | O2—C1 | 1.256 (4) |
Cd1—Cl2 | 2.5697 (10) | O2—Cd2iv | 2.352 (3) |
Cd1—Cl2i | 2.5697 (10) | N1—C2 | 1.500 (5) |
Cd1—Cl1 | 2.6635 (9) | N1—H1A | 0.89 |
Cd1—Cl1i | 2.6635 (9) | N1—H1B | 0.89 |
Cd2—O2i | 2.352 (3) | N1—H1C | 0.89 |
Cd2—O2ii | 2.352 (3) | C1—C2 | 1.532 (5) |
Cd2—Cl2 | 2.5669 (8) | C2—C3 | 1.501 (5) |
Cd2—Cl2iii | 2.5669 (8) | C2—H2 | 0.98 |
Cd2—Cl1 | 2.6397 (11) | C3—H3A | 0.96 |
Cd2—Cl1iii | 2.6397 (11) | C3—H3B | 0.96 |
Cl1—Cd2iii | 2.6397 (11) | C3—H3C | 0.96 |
Cl2—Cd2iii | 2.5669 (8) | ||
O1—Cd1—O1i | 180.0 | Cl2—Cd2—Cl1iii | 90.98 (3) |
O1—Cd1—Cl2 | 87.73 (7) | Cl2iii—Cd2—Cl1iii | 89.02 (3) |
O1i—Cd1—Cl2 | 92.27 (7) | Cl1—Cd2—Cl1iii | 180.0 |
O1—Cd1—Cl2i | 92.27 (7) | C1—O1—Cd1 | 136.8 (2) |
O1i—Cd1—Cl2i | 87.73 (7) | C1—O2—Cd2iv | 128.3 (2) |
Cl2—Cd1—Cl2i | 180.0 | C2—N1—H1A | 109.5 |
O1—Cd1—Cl1 | 93.33 (7) | C2—N1—H1B | 109.5 |
O1i—Cd1—Cl1 | 86.67 (7) | H1A—N1—H1B | 109.5 |
Cl2—Cd1—Cl1 | 88.44 (3) | C2—N1—H1C | 109.5 |
Cl2i—Cd1—Cl1 | 91.56 (3) | H1A—N1—H1C | 109.5 |
O1—Cd1—Cl1i | 86.67 (7) | H1B—N1—H1C | 109.5 |
O1i—Cd1—Cl1i | 93.33 (7) | O1—C1—O2 | 127.7 (3) |
Cl2—Cd1—Cl1i | 91.56 (3) | O1—C1—C2 | 116.1 (3) |
Cl2i—Cd1—Cl1i | 88.44 (3) | O2—C1—C2 | 116.2 (3) |
Cl1—Cd1—Cl1i | 180.0 | N1—C2—C3 | 109.2 (3) |
O2i—Cd2—O2ii | 180.0 | N1—C2—C1 | 108.4 (3) |
O2i—Cd2—Cl2 | 91.27 (7) | C3—C2—C1 | 113.9 (3) |
O2ii—Cd2—Cl2 | 88.73 (7) | N1—C2—H2 | 108.4 |
O2i—Cd2—Cl2iii | 88.73 (7) | C3—C2—H2 | 108.4 |
O2ii—Cd2—Cl2iii | 91.27 (7) | C1—C2—H2 | 108.4 |
Cl2—Cd2—Cl2iii | 180.0 | C2—C3—H3A | 109.5 |
O2i—Cd2—Cl1 | 91.59 (7) | C2—C3—H3B | 109.5 |
O2ii—Cd2—Cl1 | 88.41 (7) | H3A—C3—H3B | 109.5 |
Cl2—Cd2—Cl1 | 89.02 (3) | C2—C3—H3C | 109.5 |
Cl2iii—Cd2—Cl1 | 90.98 (3) | H3A—C3—H3C | 109.5 |
O2i—Cd2—Cl1iii | 88.41 (7) | H3B—C3—H3C | 109.5 |
O2ii—Cd2—Cl1iii | 91.59 (7) | ||
O2i—Cd2—Cl1—Cd1 | 67.44 (7) | O1—Cd1—Cl2—Cd2 | −117.78 (7) |
O2ii—Cd2—Cl1—Cd1 | −112.56 (7) | O1i—Cd1—Cl2—Cd2 | 62.22 (7) |
Cl2—Cd2—Cl1—Cd1 | −23.80 (2) | Cl1—Cd1—Cl2—Cd2 | −24.39 (3) |
Cl2iii—Cd2—Cl1—Cd1 | 156.20 (2) | Cl1i—Cd1—Cl2—Cd2 | 155.61 (3) |
O1—Cd1—Cl1—Cd2iii | 111.42 (7) | Cl2—Cd1—O1—C1 | −145.1 (3) |
O1i—Cd1—Cl1—Cd2iii | −68.58 (7) | Cl2i—Cd1—O1—C1 | 34.9 (3) |
Cl2—Cd1—Cl1—Cd2 | 23.78 (2) | Cl1—Cd1—O1—C1 | 126.6 (3) |
Cl2i—Cd1—Cl1—Cd2 | −156.22 (2) | Cl1i—Cd1—O1—C1 | −53.4 (3) |
O2i—Cd2—Cl2—Cd1 | −66.96 (7) | Cd1—O1—C1—O2 | 5.2 (6) |
O2ii—Cd2—Cl2—Cd1 | 113.04 (7) | Cd1—O1—C1—C2 | −173.6 (2) |
Cl1—Cd2—Cl2—Cd1 | 24.62 (3) | Cd2iv—O2—C1—O1 | 3.9 (6) |
Cl1iii—Cd2—Cl2—Cd1 | −155.38 (3) | Cd2iv—O2—C1—C2 | −177.3 (2) |
O1—Cd1—Cl2—Cd2iii | −117.78 (7) | O1—C1—C2—N1 | −3.4 (4) |
O1i—Cd1—Cl2—Cd2iii | 62.22 (7) | O2—C1—C2—N1 | 177.7 (3) |
Cl1—Cd1—Cl2—Cd2iii | −24.39 (3) | O1—C1—C2—C3 | −125.2 (3) |
Cl1i—Cd1—Cl2—Cd2iii | 155.61 (3) | O2—C1—C2—C3 | 55.9 (4) |
Symmetry codes: (i) −x+1, −y, −z+2; (ii) x+1, y, z; (iii) −x+2, −y, −z+2; (iv) x−1, y, z. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1A···O3 | 0.89 | 2.05 | 2.900 (5) | 158 |
N1—H1B···O3v | 0.89 | 2.03 | 2.901 (5) | 166 |
N1—H1C···Cl1vi | 0.89 | 2.46 | 3.270 (3) | 152 |
Symmetry codes: (v) x, −y+1/2, z+1/2; (vi) −x+1, y+1/2, −z+3/2. |
Experimental details
Crystal data | |
Chemical formula | [CdCl2(C3H7NO2)]·H2O |
Mr | 290.42 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 293 |
a, b, c (Å) | 7.1190 (15), 14.408 (3), 8.6396 (13) |
β (°) | 107.98 (2) |
V (Å3) | 842.9 (3) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 3.18 |
Crystal size (mm) | 0.18 × 0.12 × 0.10 |
Data collection | |
Diffractometer | Enraf-Nonius sealed tube diffractometer |
Absorption correction | ψ scan (North et al., 1968) |
Tmin, Tmax | 0.639, 0.728 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 1797, 1541, 1469 |
Rint | 0.095 |
(sin θ/λ)max (Å−1) | 0.601 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.048, 0.134, 1.15 |
No. of reflections | 1541 |
No. of parameters | 94 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 2.57, −2.89 |
Computer programs: CAD-4 Software (Enraf-Nonius, 1989), CAD-4 Software, SHELXS97 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997), PLATON (Spek, 1999) and ORTEPIII (Johnson & Burnett, 1996), SHELXL97.
Cd1—O1 | 2.265 (2) | Cd2—Cl1 | 2.6397 (11) |
Cd1—O1i | 2.265 (2) | Cd2—Cl1iii | 2.6397 (11) |
Cd1—Cl2 | 2.5697 (10) | Cl1—Cd2iii | 2.6397 (11) |
Cd1—Cl2i | 2.5697 (10) | Cl2—Cd2iii | 2.5669 (8) |
Cd1—Cl1 | 2.6635 (9) | O1—C1 | 1.241 (4) |
Cd1—Cl1i | 2.6635 (9) | O2—C1 | 1.256 (4) |
Cd2—O2i | 2.352 (3) | N1—C2 | 1.500 (5) |
Cd2—O2ii | 2.352 (3) | C1—C2 | 1.532 (5) |
Cd2—Cl2 | 2.5669 (8) | C2—C3 | 1.501 (5) |
Cd2—Cl2iii | 2.5669 (8) | ||
O1—Cd1—O1i | 180.0 | O2i—Cd2—Cl2iii | 88.73 (7) |
O1—Cd1—Cl2 | 87.73 (7) | O2ii—Cd2—Cl2iii | 91.27 (7) |
O1i—Cd1—Cl2 | 92.27 (7) | Cl2—Cd2—Cl2iii | 180.0 |
O1—Cd1—Cl2i | 92.27 (7) | O2i—Cd2—Cl1 | 91.59 (7) |
O1i—Cd1—Cl2i | 87.73 (7) | O2ii—Cd2—Cl1 | 88.41 (7) |
Cl2—Cd1—Cl2i | 180.0 | Cl2—Cd2—Cl1 | 89.02 (3) |
O1—Cd1—Cl1 | 93.33 (7) | Cl2iii—Cd2—Cl1 | 90.98 (3) |
O1i—Cd1—Cl1 | 86.67 (7) | O2i—Cd2—Cl1iii | 88.41 (7) |
Cl2—Cd1—Cl1 | 88.44 (3) | O2ii—Cd2—Cl1iii | 91.59 (7) |
Cl2i—Cd1—Cl1 | 91.56 (3) | Cl2—Cd2—Cl1iii | 90.98 (3) |
O1—Cd1—Cl1i | 86.67 (7) | Cl2iii—Cd2—Cl1iii | 89.02 (3) |
O1i—Cd1—Cl1i | 93.33 (7) | Cl1—Cd2—Cl1iii | 180.0 |
Cl2—Cd1—Cl1i | 91.56 (3) | O1—C1—O2 | 127.7 (3) |
Cl2i—Cd1—Cl1i | 88.44 (3) | O1—C1—C2 | 116.1 (3) |
Cl1—Cd1—Cl1i | 180.0 | O2—C1—C2 | 116.2 (3) |
O2i—Cd2—O2ii | 180.0 | N1—C2—C3 | 109.2 (3) |
O2i—Cd2—Cl2 | 91.27 (7) | N1—C2—C1 | 108.4 (3) |
O2ii—Cd2—Cl2 | 88.73 (7) | C3—C2—C1 | 113.9 (3) |
O1—C1—C2—N1 | −3.4 (4) | O1—C1—C2—C3 | −125.2 (3) |
O2—C1—C2—N1 | 177.7 (3) | O2—C1—C2—C3 | 55.9 (4) |
Symmetry codes: (i) −x+1, −y, −z+2; (ii) x+1, y, z; (iii) −x+2, −y, −z+2. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1A···O3 | 0.89 | 2.05 | 2.900 (5) | 158 |
N1—H1B···O3iv | 0.89 | 2.03 | 2.901 (5) | 166 |
N1—H1C···Cl1v | 0.89 | 2.46 | 3.270 (3) | 152 |
Symmetry codes: (iv) x, −y+1/2, z+1/2; (v) −x+1, y+1/2, −z+3/2. |
Halagenocadmium–amino acid complexes are intersting, as cadmium is a naturally occurring metallic element, chemically similar to zinc. Cadmium is found to occur naturally in at least one protein, metallothionein (Kagi & Vallee, 1960). A precise determination of the crystal structure of DL-alanine itself was recently carried out in our laboratory (Subha Nandhini et al., 2001). The present study reports the crystal struture of a complex of DL-alanine with cadmium chloride, namely catena-poly[[[dicadmium(II)]-µ-DL-alanine-di-µ-chloro] monohydrate], (I). The crystal structures of complexes of cadmium chloride with glycine (Thulasidhass & Mohana Rao, 1980), L-proline (Yukawa et al., 1983) and hydroxy-L-proline (Yukawa et al., 1982), L-alanine (Schaffers & Keszler, 1993), sarcosine (Krishnakumar et al., 1996) and β-alanine (Subha Nandhini et al., 2002) have already been reported.
The DL-alanine molecules exist as zwitterions. The torsion angles involving C1—C2 bond [−3.4 (4), 177.7 (3), −125.2 (3) and 55.9 (4)°; see Table 1] observed in (I) are distinctly different from those observed in DL-alanine [16.3 (2), −164.0 (2), −105.7 (2) and 74.0 (2)°; Subha Nandhini et al., 2001]. The conformation of the alanine molecule about the N—C bond corresponds to the staggered ethane-type.
In the crystal structures of the majority of the complexes, the Cd atom has a tetrahedral coordination (Bürgi, 1973; Liptrot, 1974). In (I), both Cd atoms lie on inversion centers and coordinate with four Cl atoms and two carboxyl O atoms, forming distorted octahedra. The four Cl atoms which coordinate to a Cd atom form a square plane. These square planes extend along the shorter axis, a. The dihedral angle between adjacent square planes is 34.8 (1)°. These square planes are spanned by the carboxyl O atoms, which complete the coordination around the Cd atom. These polyhedra fuse directly by sharing Cl–Cl edges, forming one-dimensional polymeric chains in the [100] direction. The water O atom does not participate in coordination with cadmium. The metal–ligand coordination observed in this structure is remarkably similar to those observed in the crystal structures of complexes of CdCl2 with L-alanine, L-proline, hydroxy L-proline and β-alanine, and distinctly different from glycine–CdCl2 and sarcosine–CdCl2.
Selected interatomic distances are listed in Table 1. The mean Cd—Cl distance, 2.61 (1) Å, is in agreement with the corresponding distances reported in the structures of complexes of CdCl2 with β-alanine [2.619 (5) Å], L-alanine [2.61 (1) Å], L-proline [2.615 (3) Å], 4-hydroxy-L-proline [2.620 (2) Å], glycine [2.543 (6) Å] and sarcosine [2.589 (1) Å]. The Cd—Cl distances also agree well with those observed in other simple organic complexes of CdCl2, viz. 2.60 (1) and 2.65 (1) Å for CdCl2·4H2O (Lelingy & Monier, 1979) and CdCl2 dipyridine (Paulus, 1969), respectively. The Cd—Cl distances reported for CdCl2 diimidazole (Flook et al., 1973), viz. 2.706 (2) and 2.731 (2) Å, are longer compared to those in the present structure.
The crystal structure of (I) is illustrated in Fig. 2 and the hydrogen bonds that stablize it are listed in Table 2. There are no direct interactions between the alanine molecules. The adjacent polymeric chains are interconnected through N—H···O and N—H···Cl hydrogen bonds. The water O3 atom is involved in short contacts with Cl1 [3.234 (3) Å], Cl2i [3.166 (3) Å] and O2ii [3.030 (4) Å] [symmetry codes: (i) x, 1/2 − y, z − 1/2; (ii) 1 + x, y, z].