research papers
A structural phase transition from space-group symmetry P21/c to C2/c is reported for NaTaOGeO4 (NTGO). The critical temperature has been located at Tc = 116 K, based on the appearance of sharp diffraction maxima at positions h + k = 2n + 1 of reciprocal space on cooling below this temperature. Strongly anisotropic diffuse scattering in sheets normal to [001] is observable for T > Tc and persists up to ambient temperature. Similarities to phase transitions observed in other compounds of the titanite structure type are discussed. The symmetry properties of these phase transitions are reassessed on the basis of the structural data available. The primary order parameter is identified with the displacement of the transition metal cation M (M = Ta in NTGO) away from the centre of symmetry that it nominally occupies in the paraphase. The order parameter transforms as the Y representation. The anisotropic diffuse scattering is attributed to the one-dimensional correlation of local M displacements parallel to the direction of chains of trans-corner-sharing MO6 octahedra. The critical temperatures of the isomorphous phase transitions in various titanite-type compounds depend linearly on the squared transition-metal displacement measured in the ordered P21/c phase.
Supporting information
Crystallographic Information File (CIF) https://doi.org/10.1107/S0108768107026213/ck5025sup1.cif | |
Structure factor file (CIF format) https://doi.org/10.1107/S0108768107026213/ck50251sup2.hkl | |
Structure factor file (CIF format) https://doi.org/10.1107/S0108768107026213/ck50252sup3.hkl |
Computing details top
For both compounds, program(s) used to refine structure: (Jana2000; Petricek and Dusek, 2000); software used to prepare material for publication: (Jana2000; Petricek and Dusek, 2000).
(1) top
Crystal data top
GeNaO5Ta | Z = 4 |
Mr = 356.5 | F(000) = 624 |
Monoclinic, P21/c | Dx = 5.760 Mg m−3 |
Hall symbol: -P 2ybc | Synchrotron radiation, λ = 0.39184 Å |
a = 6.838 (1) Å | µ = 6.97 mm−1 |
b = 8.930 (1) Å | T = 98 K |
c = 7.414 (1) Å | Tabular, colourless |
β = 114.800 (6)° | 0.1 × 0.09 × 0.05 mm |
V = 411.0 (1) Å3 |
Data collection top
Beamline F1 at Hasylab diffractometer | Rint = 0.044 |
φ–scan | θmax = 45.9°, θmin = 1.8° |
95016 measured reflections | h = −25→25 |
20505 independent reflections | k = −32→27 |
17954 reflections with I > 3σ(I) | l = −27→23 |
Refinement top
Refinement on F2 | Weighting scheme based on measured s.u.'s w = 1/(σ2(I) + 0.0016I2) |
R[F2 > 2σ(F2)] = 0.023 | (Δ/σ)max = 0.012 |
wR(F2) = 0.073 | Δρmax = 2.95 e Å−3 |
S = 1.06 | Δρmin = −4.68 e Å−3 |
20505 reflections | Extinction correction: B-C type 1 Gaussian isotropic (Becker & Coppens, 1974) |
74 parameters | Extinction coefficient: 0.00345 (16) |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
x | y | z | Uiso*/Ueq | ||
Na | 0.24827 (4) | 0.92207 (6) | 0.24235 (5) | 0.01108 (10) | |
Ta | 0.748245 (2) | 0.752060 (2) | 0.504007 (3) | 0.003180 (5) | |
Ge | 0.249340 (6) | 0.567282 (8) | 0.249414 (6) | 0.003072 (8) | |
O1 | 0.25058 (5) | 0.18307 (5) | 0.24884 (4) | 0.00508 (5) | |
O2 | 0.44387 (6) | 0.68888 (4) | 0.41119 (6) | 0.00602 (5) | |
O3 | 0.94724 (6) | 0.18710 (4) | 0.41330 (6) | 0.00594 (5) | |
O4 | 0.35039 (6) | 0.45542 (4) | 0.11373 (6) | 0.00544 (5) | |
O5 | 0.84765 (6) | 0.95470 (4) | 0.11214 (6) | 0.00540 (5) |
Atomic displacement parameters (Å2) top
U11 | U22 | U33 | U12 | U13 | U23 | |
Na | 0.00875 (12) | 0.00526 (9) | 0.01730 (19) | −0.00006 (5) | 0.00358 (12) | −0.00022 (7) |
Ta | 0.002967 (6) | 0.003137 (6) | 0.003265 (7) | −0.000264 (2) | 0.001138 (5) | 0.000239 (2) |
Ge | 0.00288 (1) | 0.00298 (1) | 0.00323 (1) | 0.000007 (5) | 0.001150 (8) | −0.000005 (6) |
O1 | 0.00648 (8) | 0.00553 (8) | 0.00360 (6) | 0.00003 (4) | 0.00248 (6) | 0.00003 (5) |
O2 | 0.00439 (7) | 0.00633 (8) | 0.00681 (8) | −0.00152 (6) | 0.00183 (6) | −0.00164 (7) |
O3 | 0.00457 (7) | 0.00619 (8) | 0.00663 (8) | −0.00150 (6) | 0.00192 (6) | −0.00151 (7) |
O4 | 0.00622 (7) | 0.00451 (7) | 0.00654 (8) | −0.00052 (5) | 0.00360 (6) | −0.00135 (6) |
O5 | 0.00621 (7) | 0.00440 (6) | 0.00646 (8) | −0.00048 (5) | 0.00351 (6) | −0.00122 (6) |
Geometric parameters (Å, º) top
Na—O1i | 2.3312 (7) | O1—O2viii | 2.8027 (6) |
Na—O2 | 2.5075 (6) | O1—O3iv | 2.8129 (6) |
Na—O3ii | 2.4956 (6) | O1—O3ix | 2.7398 (4) |
Na—O4ii | 2.5104 (5) | O1—O4 | 2.8210 (6) |
Na—O4iii | 2.7664 (6) | O1—O4x | 2.7866 (5) |
Na—O5iv | 2.5106 (5) | O1—O5xi | 2.7604 (5) |
Na—O5v | 2.6651 (6) | O1—O5viii | 2.8245 (6) |
Ta—O1vi | 1.9186 (3) | O2—O3ii | 2.7465 (4) |
Ta—O1ii | 1.9765 (3) | O2—O4 | 2.9045 (6) |
Ta—O2 | 1.9805 (4) | O2—O4ii | 2.8101 (6) |
Ta—O3vii | 1.9839 (4) | O2—O5viii | 2.8438 (6) |
Ta—O4ii | 2.0052 (4) | O2—O5iii | 2.8348 (5) |
Ta—O5iii | 2.0141 (4) | O3—O4viii | 2.8496 (6) |
Ge—O2 | 1.7461 (4) | O3—O4xii | 2.8268 (5) |
Ge—O3ii | 1.7455 (4) | O3—O5xiii | 2.9121 (6) |
Ge—O4 | 1.7523 (5) | O3—O5xiv | 2.8170 (6) |
Ge—O5viii | 1.7536 (5) | O4—O5viii | 2.8763 (7) |
O1—O2vi | 2.7582 (4) | ||
O1i—Na—O2 | 145.328 (16) | Naviii—O3—O5xiii | 109.695 (17) |
O1i—Na—O3ii | 147.984 (16) | Naviii—O3—O5xiv | 56.010 (14) |
O1i—Na—O4ii | 82.870 (17) | Tavii—O3—Geviii | 141.78 (3) |
O1i—Na—O4iii | 65.630 (16) | Tavii—O3—O1xv | 42.965 (11) |
O1i—Na—O5iv | 83.612 (18) | Tavii—O3—O1xii | 46.115 (11) |
O1i—Na—O5v | 66.688 (17) | Tavii—O3—O2viii | 141.19 (2) |
O2—Na—O3ii | 66.590 (18) | Tavii—O3—O4viii | 147.848 (19) |
O2—Na—O4ii | 68.114 (15) | Tavii—O3—O4xii | 45.181 (11) |
O2—Na—O4iii | 88.420 (17) | Tavii—O3—O5xiii | 108.04 (2) |
O2—Na—O5iv | 123.77 (2) | Tavii—O3—O5xiv | 45.641 (11) |
O2—Na—O5v | 133.97 (2) | Geviii—O3—O1xv | 100.76 (2) |
O3ii—Na—O4ii | 125.06 (2) | Geviii—O3—O1xii | 163.18 (3) |
O3ii—Na—O4iii | 130.95 (2) | Geviii—O3—O2viii | 38.138 (11) |
O3ii—Na—O5iv | 68.486 (15) | Geviii—O3—O4viii | 35.521 (13) |
O3ii—Na—O5v | 91.641 (17) | Geviii—O3—O4xii | 112.696 (19) |
O4ii—Na—O4iii | 75.846 (16) | Geviii—O3—O5xiii | 33.758 (13) |
O4ii—Na—O5iv | 166.33 (3) | Geviii—O3—O5xiv | 137.26 (2) |
O4ii—Na—O5v | 98.23 (2) | O1xv—O3—O1xii | 89.077 (15) |
O4iii—Na—O4ii | 75.846 (16) | O1xv—O3—O2viii | 104.155 (19) |
O4iii—Na—O5iv | 96.660 (19) | O1xv—O3—O4viii | 126.51 (2) |
O4iii—Na—O5v | 132.32 (2) | O1xv—O3—O4xii | 59.220 (15) |
O5iv—Na—O5v | 78.193 (16) | O1xv—O3—O5xiii | 68.675 (16) |
O5v—Na—O5iv | 78.193 (16) | O1xv—O3—O5xiv | 60.225 (16) |
O1vi—Ta—O1ii | 179.273 (16) | O1xii—O3—O1xv | 89.077 (15) |
O1vi—Ta—O2 | 90.036 (16) | O1xii—O3—O2viii | 151.77 (2) |
O1vi—Ta—O3vii | 92.224 (16) | O1xii—O3—O4viii | 128.13 (2) |
O1vi—Ta—O4ii | 90.470 (18) | O1xii—O3—O4xii | 60.873 (13) |
O1vi—Ta—O5iii | 91.782 (18) | O1xii—O3—O5xiii | 147.377 (19) |
O1ii—Ta—O1vi | 179.272 (16) | O1xii—O3—O5xiv | 59.552 (14) |
O1ii—Ta—O2 | 90.196 (16) | O2viii—O3—O4viii | 62.501 (14) |
O1ii—Ta—O3vii | 87.545 (16) | O2viii—O3—O4xii | 147.11 (2) |
O1ii—Ta—O4ii | 90.220 (18) | O2viii—O3—O5xiii | 60.256 (14) |
O1ii—Ta—O5iii | 87.527 (18) | O2viii—O3—O5xiv | 105.406 (17) |
O2—Ta—O3vii | 177.739 (19) | O4viii—O3—O4xii | 102.731 (16) |
O2—Ta—O4ii | 89.665 (16) | O4viii—O3—O5xiii | 59.885 (15) |
O2—Ta—O5iii | 90.411 (16) | O4viii—O3—O5xiv | 166.447 (17) |
O3vii—Ta—O4ii | 90.246 (16) | O4xii—O3—O4viii | 102.731 (16) |
O3vii—Ta—O5iii | 89.589 (16) | O4xii—O3—O5xiii | 86.850 (16) |
O4ii—Ta—O5iii | 177.747 (19) | O4xii—O3—O5xiv | 90.801 (16) |
O2—Ge—O3ii | 103.739 (17) | O5xiii—O3—O5xiv | 121.07 (2) |
O2—Ge—O4 | 112.25 (2) | O5xiv—O3—O5xiii | 121.07 (2) |
O2—Ge—O5viii | 108.703 (19) | Naviii—O4—Naxvi | 104.15 (2) |
O3ii—Ge—O4 | 109.12 (2) | Naviii—O4—Taviii | 100.70 (2) |
O3ii—Ge—O5viii | 112.66 (2) | Naviii—O4—Ge | 116.593 (19) |
O4—Ge—O5viii | 110.26 (2) | Naviii—O4—O1 | 97.525 (17) |
Naxiii—O1—Tavi | 108.59 (2) | Naviii—O4—O1xvii | 97.99 (2) |
Naxiii—O1—Taviii | 107.142 (19) | Naviii—O4—O2 | 84.793 (16) |
Naxiii—O1—O2vi | 115.425 (16) | Naviii—O4—O2viii | 55.895 (16) |
Naxiii—O1—O2viii | 90.548 (18) | Naviii—O4—O3ii | 137.49 (2) |
Naxiii—O1—O3iv | 91.254 (18) | Naviii—O4—O3ix | 145.21 (2) |
Naxiii—O1—O3ix | 114.101 (16) | Naviii—O4—O5viii | 117.010 (18) |
Naxiii—O1—O4 | 148.78 (2) | Naxvi—O4—Naviii | 104.15 (2) |
Naxiii—O1—O4x | 64.728 (16) | Naxvi—O4—Taviii | 91.518 (18) |
Naxiii—O1—O5xi | 62.456 (16) | Naxvi—O4—Ge | 110.504 (19) |
Naxiii—O1—O5viii | 149.95 (2) | Naxvi—O4—O1 | 134.164 (17) |
Tavi—O1—Taviii | 144.26 (3) | Naxvi—O4—O1xvii | 49.643 (16) |
Tavi—O1—O2vi | 45.891 (12) | Naxvi—O4—O2 | 110.804 (18) |
Tavi—O1—O2viii | 133.909 (16) | Naxvi—O4—O2viii | 101.18 (2) |
Tavi—O1—O3iv | 44.811 (11) | Naxvi—O4—O3ii | 76.598 (16) |
Tavi—O1—O3ix | 115.96 (2) | Naxvi—O4—O3ix | 82.615 (15) |
Tavi—O1—O4 | 100.028 (19) | Naxvi—O4—O5viii | 134.996 (18) |
Tavi—O1—O4x | 46.020 (11) | Taviii—O4—Ge | 128.65 (3) |
Tavi—O1—O5xi | 164.24 (2) | Taviii—O4—O1 | 44.477 (11) |
Tavi—O1—O5viii | 45.459 (13) | Taviii—O4—O1xvii | 43.510 (12) |
Taviii—O1—Tavi | 144.26 (3) | Taviii—O4—O2 | 155.13 (2) |
Taviii—O1—O2vi | 115.762 (19) | Taviii—O4—O2viii | 44.809 (11) |
Taviii—O1—O2viii | 44.960 (10) | Taviii—O4—O3ii | 121.802 (18) |
Taviii—O1—O3iv | 134.770 (15) | Taviii—O4—O3ix | 44.572 (11) |
Taviii—O1—O3ix | 46.340 (12) | Taviii—O4—O5viii | 97.670 (19) |
Taviii—O1—O4 | 45.302 (12) | Ge—O4—O1 | 94.31 (2) |
Taviii—O1—O4x | 164.23 (2) | Ge—O4—O1xvii | 144.624 (19) |
Taviii—O1—O5xi | 46.801 (11) | Ge—O4—O2 | 33.807 (11) |
Taviii—O1—O5viii | 100.056 (19) | Ge—O4—O2viii | 148.15 (2) |
O2vi—O1—O2viii | 88.036 (15) | Ge—O4—O3ii | 35.363 (11) |
O2vi—O1—O3iv | 90.701 (16) | Ge—O4—O3ix | 91.49 (2) |
O2vi—O1—O3ix | 130.47 (2) | Ge—O4—O5viii | 34.887 (12) |
O2vi—O1—O4 | 76.333 (15) | O1—O4—O1xvii | 87.987 (15) |
O2vi—O1—O4x | 60.899 (13) | O1—O4—O2 | 110.99 (2) |
O2vi—O1—O5xi | 148.624 (19) | O1—O4—O2viii | 59.699 (14) |
O2vi—O1—O5viii | 61.018 (13) | O1—O4—O3ii | 112.26 (2) |
O2viii—O1—O2vi | 88.036 (15) | O1—O4—O3ix | 58.039 (12) |
O2viii—O1—O3iv | 178.12 (2) | O1—O4—O5viii | 59.431 (14) |
O2viii—O1—O3ix | 91.300 (16) | O1xvii—O4—O1 | 87.987 (15) |
O2viii—O1—O4 | 59.958 (15) | O1xvii—O4—O2 | 160.39 (2) |
O2viii—O1—O4x | 119.781 (16) | O1xvii—O4—O2viii | 59.052 (14) |
O2viii—O1—O5xi | 61.265 (14) | O1xvii—O4—O3ii | 112.153 (15) |
O2viii—O1—O5viii | 118.176 (19) | O1xvii—O4—O3ix | 60.141 (14) |
O3iv—O1—O3ix | 88.458 (16) | O1xvii—O4—O5viii | 133.534 (18) |
O3iv—O1—O4 | 118.369 (19) | O2—O4—O2viii | 134.516 (16) |
O3iv—O1—O4x | 60.639 (14) | O2—O4—O3ii | 57.009 (13) |
O3iv—O1—O5xi | 120.145 (16) | O2—O4—O3ix | 125.29 (2) |
O3iv—O1—O5viii | 59.959 (15) | O2—O4—O5viii | 58.935 (15) |
O3ix—O1—O3iv | 88.458 (16) | O2viii—O4—O2 | 134.516 (16) |
O3ix—O1—O4 | 61.088 (14) | O2viii—O4—O3ii | 166.606 (17) |
O3ix—O1—O4x | 148.56 (2) | O2viii—O4—O3ix | 89.360 (15) |
O3ix—O1—O5xi | 61.615 (13) | O2viii—O4—O5viii | 116.208 (18) |
O3ix—O1—O5viii | 76.265 (15) | O3ii—O4—O3ix | 77.269 (15) |
O4—O1—O4x | 136.900 (16) | O3ii—O4—O5viii | 61.136 (15) |
O4—O1—O5xi | 92.104 (16) | O3ix—O4—O3ii | 77.269 (15) |
O4—O1—O5viii | 61.260 (17) | O3ix—O4—O5viii | 74.101 (17) |
O4x—O1—O4 | 136.900 (16) | Naxv—O5—Nav | 101.81 (2) |
O4x—O1—O5xi | 127.18 (2) | Naxv—O5—Taxvi | 100.27 (2) |
O4x—O1—O5viii | 91.478 (16) | Naxv—O5—Geii | 117.456 (19) |
O5xi—O1—O5viii | 137.574 (16) | Naxv—O5—O1xi | 95.95 (2) |
O5viii—O1—O5xi | 137.574 (16) | Naxv—O5—O1ii | 98.521 (18) |
Na—O2—Ta | 101.516 (18) | Naxv—O5—O2ii | 137.11 (2) |
Na—O2—Ge | 94.611 (16) | Naxv—O5—O2xvi | 144.56 (2) |
Na—O2—O1vi | 98.794 (18) | Naxv—O5—O3i | 85.490 (16) |
Na—O2—O1ii | 98.06 (2) | Naxv—O5—O3xviii | 55.504 (16) |
Na—O2—O3ii | 56.496 (14) | Naxv—O5—O4ii | 119.326 (18) |
Na—O2—O4 | 108.397 (17) | Nav—O5—Naxv | 101.81 (2) |
Na—O2—O4ii | 55.991 (14) | Nav—O5—Taxvi | 94.795 (18) |
Na—O2—O5viii | 111.519 (16) | Nav—O5—Geii | 110.087 (19) |
Na—O2—O5iii | 146.72 (2) | Nav—O5—O1xi | 50.857 (16) |
Ta—O2—Ge | 143.38 (3) | Nav—O5—O1ii | 135.776 (18) |
Ta—O2—O1vi | 44.073 (10) | Nav—O5—O2ii | 76.118 (16) |
Ta—O2—O1ii | 44.844 (12) | Nav—O5—O2xvi | 83.448 (15) |
Ta—O2—O3ii | 143.26 (2) | Nav—O5—O3i | 110.093 (19) |
Ta—O2—O4 | 109.44 (2) | Nav—O5—O3xviii | 101.99 (2) |
Ta—O2—O4ii | 45.525 (11) | Nav—O5—O4ii | 134.574 (18) |
Ta—O2—O5viii | 146.961 (19) | Taxvi—O5—Geii | 127.68 (3) |
Ta—O2—O5iii | 45.274 (11) | Taxvi—O5—O1xi | 45.671 (12) |
Ge—O2—O1vi | 162.24 (2) | Taxvi—O5—O1ii | 42.760 (10) |
Ge—O2—O1ii | 100.72 (2) | Taxvi—O5—O2ii | 122.614 (18) |
Ge—O2—O3ii | 38.123 (11) | Taxvi—O5—O2xvi | 44.315 (11) |
Ge—O2—O4 | 33.944 (13) | Taxvi—O5—O3i | 152.85 (2) |
Ge—O2—O4ii | 137.71 (2) | Taxvi—O5—O3xviii | 44.769 (11) |
Ge—O2—O5viii | 35.737 (13) | Taxvi—O5—O4ii | 95.912 (18) |
Ge—O2—O5iii | 111.910 (19) | Geii—O5—O1xi | 145.594 (19) |
O1vi—O2—O1ii | 88.916 (15) | Geii—O5—O1ii | 94.16 (2) |
O1vi—O2—O3ii | 152.74 (2) | Geii—O5—O2ii | 35.560 (11) |
O1vi—O2—O4 | 146.358 (19) | Geii—O5—O2xvi | 92.45 (2) |
O1vi—O2—O4ii | 60.048 (14) | Geii—O5—O3i | 33.581 (11) |
O1vi—O2—O5viii | 127.11 (2) | Geii—O5—O3xviii | 147.86 (2) |
O1vi—O2—O5iii | 60.645 (13) | Geii—O5—O4ii | 34.856 (12) |
O1ii—O2—O1vi | 88.916 (15) | O1xi—O5—O1ii | 88.431 (15) |
O1ii—O2—O3ii | 104.713 (19) | O1xi—O5—O2ii | 112.922 (15) |
O1ii—O2—O4 | 68.345 (16) | O1xi—O5—O2xvi | 60.104 (14) |
O1ii—O2—O4ii | 60.343 (16) | O1xi—O5—O3i | 160.83 (2) |
O1ii—O2—O5viii | 126.06 (2) | O1xi—O5—O3xviii | 58.833 (14) |
O1ii—O2—O5iii | 58.631 (14) | O1xi—O5—O4ii | 133.697 (18) |
O3ii—O2—O4 | 60.489 (14) | O1ii—O5—O1xi | 88.431 (15) |
O3ii—O2—O4ii | 106.124 (17) | O1ii—O5—O2ii | 112.69 (2) |
O3ii—O2—O5viii | 62.759 (14) | O1ii—O5—O2xvi | 58.337 (12) |
O3ii—O2—O5iii | 146.48 (2) | O1ii—O5—O3i | 110.313 (19) |
O4—O2—O4ii | 120.99 (2) | O1ii—O5—O3xviii | 59.815 (14) |
O4—O2—O5viii | 60.039 (15) | O1ii—O5—O4ii | 59.308 (14) |
O4—O2—O5iii | 85.988 (16) | O2ii—O5—O2xvi | 78.305 (15) |
O4ii—O2—O4 | 120.99 (2) | O2ii—O5—O3i | 56.984 (13) |
O4ii—O2—O5viii | 167.507 (17) | O2ii—O5—O3xviii | 167.348 (17) |
O4ii—O2—O5iii | 90.777 (15) | O2ii—O5—O4ii | 61.027 (15) |
O5viii—O2—O5iii | 101.695 (16) | O2xvi—O5—O2ii | 78.305 (15) |
O5iii—O2—O5viii | 101.695 (16) | O2xvi—O5—O3i | 126.03 (2) |
Naviii—O3—Tavii | 101.647 (19) | O2xvi—O5—O3xviii | 89.062 (15) |
Naviii—O3—Geviii | 95.044 (16) | O2xvi—O5—O4ii | 74.272 (17) |
Naviii—O3—O1xv | 99.19 (2) | O3i—O5—O3xviii | 133.870 (15) |
Naviii—O3—O1xii | 96.822 (18) | O3i—O5—O4ii | 58.979 (15) |
Naviii—O3—O2viii | 56.914 (14) | O3xviii—O5—O3i | 133.870 (15) |
Naviii—O3—O4viii | 110.465 (17) | O3xviii—O5—O4ii | 116.386 (18) |
Naviii—O3—O4xii | 146.80 (2) |
Symmetry codes: (i) x, y+1, z; (ii) −x+1, y+1/2, −z+1/2; (iii) x, −y+3/2, z+1/2; (iv) x−1, y, z; (v) −x+1, −y+2, −z; (vi) −x+1, −y+1, −z+1; (vii) −x+2, −y+1, −z+1; (viii) −x+1, y−1/2, −z+1/2; (ix) x−1, −y+1/2, z−1/2; (x) x, −y+1/2, z+1/2; (xi) −x+1, −y+1, −z; (xii) x+1, −y+1/2, z+1/2; (xiii) x, y−1, z; (xiv) −x+2, y−1/2, −z+1/2; (xv) x+1, y, z; (xvi) x, −y+3/2, z−1/2; (xvii) x, −y+1/2, z−1/2; (xviii) −x+2, y+1/2, −z+1/2. |
(2) top
Crystal data top
GeNaO5Ta | Z = 4 |
Mr = 356.5 | F(000) = 624 |
Monoclinic, C2/c | Dx = 5.745 Mg m−3 |
Hall symbol: -C 2yc | Synchrotron radiation, λ = 0.39184 Å |
a = 6.854 (1) Å | µ = 6.95 mm−1 |
b = 8.933 (1) Å | T = 295 K |
c = 7.418 (1) Å | Tabular, colourless |
β = 114.858 (2)° | 0.1 × 0.09 × 0.05 mm |
V = 412.10 (9) Å3 |
Data collection top
Beamline F1 at Hasylab diffractometer | Rint = 0.048 |
φ–scan | θmax = 53.3°, θmin = 2.3° |
95651 measured reflections | h = −28→28 |
14190 independent reflections | k = −35→29 |
11959 reflections with I > 3σ(I) | l = −29→26 |
Refinement top
Refinement on F2 | Weighting scheme based on measured s.u.'s w = 1/(σ2(I) + 0.0016I2) |
R[F2 > 2σ(F2)] = 0.020 | (Δ/σ)max = 0.001 |
wR(F2) = 0.066 | Δρmax = 2.59 e Å−3 |
S = 1.02 | Δρmin = −2.42 e Å−3 |
14190 reflections | Extinction correction: B-C type 1 Gaussian isotropic (Becker & Coppens, 1974) |
54 parameters | Extinction coefficient: 0.00728 (19) |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
x | y | z | Uiso*/Ueq | ||
Na | 0 | 0.32594 (11) | 0.75 | 0.0200 (2) | |
Ta | 0 | 0 | 0 | 0.006843 (5) | |
Ge | 0 | 0.317582 (8) | 0.25 | 0.006317 (8) | |
O1 | 0 | 0.06634 (6) | 0.75 | 0.00941 (7) | |
O2 | 0.19575 (6) | 0.43833 (5) | 0.41118 (6) | 0.01141 (6) | |
O3 | 0.09772 (6) | 0.20534 (4) | 0.11237 (6) | 0.01002 (6) |
Atomic displacement parameters (Å2) top
U11 | U22 | U33 | U12 | U13 | U23 | |
Na | 0.0153 (3) | 0.0127 (3) | 0.0282 (4) | 0 | 0.0053 (3) | 0 |
Ta | 0.006618 (6) | 0.006617 (7) | 0.006871 (7) | 0.000740 (2) | 0.002422 (4) | −0.000577 (3) |
Ge | 0.006038 (10) | 0.005849 (11) | 0.006682 (12) | 0 | 0.002299 (8) | 0 |
O1 | 0.01312 (12) | 0.00965 (9) | 0.00612 (7) | 0 | 0.00471 (7) | 0 |
O2 | 0.00816 (6) | 0.01219 (9) | 0.01282 (9) | −0.00334 (6) | 0.00336 (6) | −0.00369 (8) |
O3 | 0.01225 (8) | 0.00757 (6) | 0.01229 (8) | −0.00119 (6) | 0.00715 (7) | −0.00271 (6) |
Geometric parameters (Å, º) top
Na—O1 | 2.3189 (11) | Ge—O3v | 1.7525 (5) |
Na—O2i | 2.5130 (9) | O1—O2xii | 2.7508 (4) |
Na—O2ii | 2.5130 (9) | O1—O2iv | 2.8064 (5) |
Na—O3iii | 2.7058 (6) | O1—O2xiii | 2.7508 (4) |
Na—O3iv | 2.5211 (4) | O1—O2vi | 2.8064 (5) |
Na—O3v | 2.7057 (6) | O1—O3iii | 2.7753 (5) |
Na—O3vi | 2.5211 (4) | O1—O3viii | 2.8206 (6) |
Ta—O1vii | 1.9469 (2) | O1—O3v | 2.7753 (5) |
Ta—O1viii | 1.9469 (2) | O1—O3xiv | 2.8206 (6) |
Ta—O2ix | 1.9827 (4) | O2—O2v | 2.7429 (4) |
Ta—O2x | 1.9827 (4) | O2—O3 | 2.9059 (6) |
Ta—O3 | 2.0096 (3) | O2—O3v | 2.8483 (6) |
Ta—O3xi | 2.0096 (3) | O2—O3xv | 2.8162 (6) |
Ge—O2 | 1.7448 (4) | O2—O3xvi | 2.8298 (5) |
Ge—O2v | 1.7448 (4) | O3—O3v | 2.8746 (7) |
Ge—O3 | 1.7525 (5) | ||
O1—Na—O2i | 146.925 (14) | O3xiv—O1—O3iii | 137.578 (15) |
O1—Na—O2ii | 146.925 (14) | O3xiv—O1—O3viii | 61.271 (17) |
O1—Na—O3iii | 66.54 (2) | O3xiv—O1—O3v | 91.816 (13) |
O1—Na—O3iv | 83.64 (2) | Nai—O2—Taxv | 101.65 (2) |
O1—Na—O3v | 66.54 (2) | Nai—O2—Ge | 95.110 (18) |
O1—Na—O3vi | 83.64 (2) | Nai—O2—O1xvii | 97.72 (2) |
O2i—Na—O2ii | 66.15 (3) | Nai—O2—O1iv | 98.829 (18) |
O2i—Na—O3iii | 131.76 (2) | Nai—O2—O2v | 56.925 (16) |
O2i—Na—O3iv | 124.04 (3) | Nai—O2—O3 | 109.346 (18) |
O2i—Na—O3v | 90.075 (15) | Nai—O2—O3v | 111.170 (17) |
O2i—Na—O3vi | 68.032 (16) | Nai—O2—O3xv | 56.121 (15) |
O2ii—Na—O2i | 66.15 (3) | Nai—O2—O3xvi | 146.89 (2) |
O2ii—Na—O3iii | 90.075 (15) | Taxv—O2—Ge | 142.93 (3) |
O2ii—Na—O3iv | 68.032 (16) | Taxv—O2—O1xvii | 45.041 (7) |
O2ii—Na—O3v | 131.76 (2) | Taxv—O2—O1iv | 43.915 (11) |
O2ii—Na—O3vi | 124.04 (3) | Taxv—O2—O2v | 142.80 (3) |
O3iii—Na—O3iv | 77.393 (16) | Taxv—O2—O3 | 109.03 (2) |
O3iii—Na—O3v | 133.07 (4) | Taxv—O2—O3v | 147.18 (2) |
O3iii—Na—O3vi | 97.472 (18) | Taxv—O2—O3xv | 45.526 (12) |
O3iv—Na—O3iii | 77.393 (16) | Taxv—O2—O3xvi | 45.246 (11) |
O3iv—Na—O3v | 97.472 (18) | Ge—O2—O1xvii | 162.23 (3) |
O3iv—Na—O3vi | 167.28 (4) | Ge—O2—O1iv | 101.18 (2) |
O3v—Na—O3iii | 133.07 (4) | Ge—O2—O2v | 38.185 (11) |
O3v—Na—O3iv | 97.472 (18) | Ge—O2—O3 | 33.892 (13) |
O3v—Na—O3vi | 77.393 (16) | Ge—O2—O3v | 35.558 (13) |
O3vi—Na—O3iii | 97.472 (18) | Ge—O2—O3xv | 137.97 (2) |
O3vi—Na—O3iv | 167.28 (4) | Ge—O2—O3xvi | 112.26 (2) |
O3vi—Na—O3v | 77.393 (16) | O1xvii—O2—O1iv | 88.956 (11) |
O1vii—Ta—O1viii | 180 | O1xvii—O2—O2v | 152.20 (2) |
O1vii—Ta—O2ix | 88.853 (15) | O1xvii—O2—O3 | 146.938 (18) |
O1vii—Ta—O2x | 91.147 (15) | O1xvii—O2—O3v | 127.18 (2) |
O1vii—Ta—O3 | 89.072 (19) | O1xvii—O2—O3xv | 59.790 (13) |
O1vii—Ta—O3xi | 90.928 (19) | O1xvii—O2—O3xvi | 60.699 (13) |
O1viii—Ta—O1vii | 180 | O1iv—O2—O1xvii | 88.956 (11) |
O1viii—Ta—O2ix | 91.147 (15) | O1iv—O2—O2v | 104.976 (19) |
O1viii—Ta—O2x | 88.853 (15) | O1iv—O2—O3 | 68.860 (17) |
O1viii—Ta—O3 | 90.928 (19) | O1iv—O2—O3v | 126.52 (2) |
O1viii—Ta—O3xi | 89.072 (19) | O1iv—O2—O3xv | 60.217 (17) |
O2ix—Ta—O2x | 180 | O1iv—O2—O3xvi | 58.995 (14) |
O2ix—Ta—O3 | 89.724 (17) | O2v—O2—O3 | 60.479 (14) |
O2ix—Ta—O3xi | 90.276 (17) | O2v—O2—O3v | 62.595 (14) |
O2x—Ta—O2ix | 180 | O2v—O2—O3xv | 106.199 (18) |
O2x—Ta—O3 | 90.276 (17) | O2v—O2—O3xvi | 146.99 (2) |
O2x—Ta—O3xi | 89.724 (17) | O3—O2—O3v | 59.932 (16) |
O3—Ta—O3xi | 180 | O3—O2—O3xv | 121.36 (2) |
O3xi—Ta—O3 | 180 | O3—O2—O3xvi | 86.510 (16) |
O2—Ge—O2v | 103.630 (18) | O3v—O2—O3 | 59.932 (16) |
O2—Ge—O3 | 112.38 (2) | O3v—O2—O3xv | 167.287 (17) |
O2—Ge—O3v | 109.06 (2) | O3v—O2—O3xvi | 101.935 (17) |
O2v—Ge—O2 | 103.630 (18) | O3xv—O2—O3 | 121.36 (2) |
O2v—Ge—O3 | 109.06 (2) | O3xv—O2—O3v | 167.287 (17) |
O2v—Ge—O3v | 112.38 (2) | O3xv—O2—O3xvi | 90.772 (15) |
O3—Ge—O3v | 110.199 (19) | O3xvi—O2—O3 | 86.510 (16) |
O3v—Ge—O3 | 110.199 (19) | O3xvi—O2—O3v | 101.935 (17) |
Na—O1—Taiii | 107.722 (14) | O3xvi—O2—O3xv | 90.772 (15) |
Na—O1—Tav | 107.722 (14) | Navii—O3—Naiv | 102.607 (19) |
Na—O1—O2xii | 114.564 (13) | Navii—O3—Ta | 92.94 (2) |
Na—O1—O2iv | 90.852 (13) | Navii—O3—Ge | 110.81 (2) |
Na—O1—O2xiii | 114.564 (13) | Navii—O3—O1vii | 50.04 (2) |
Na—O1—O2vi | 90.852 (13) | Navii—O3—O1viii | 134.82 (2) |
Na—O1—O3iii | 63.424 (12) | Navii—O3—O2 | 110.73 (2) |
Na—O1—O3viii | 149.364 (11) | Navii—O3—O2v | 76.976 (18) |
Na—O1—O3v | 63.424 (12) | Navii—O3—O2ix | 101.34 (2) |
Na—O1—O3xiv | 149.364 (11) | Navii—O3—O2x | 82.941 (17) |
Taiii—O1—Tav | 144.56 (3) | Navii—O3—O3v | 135.319 (18) |
Taiii—O1—O2xii | 116.119 (18) | Naiv—O3—Navii | 102.607 (19) |
Taiii—O1—O2iv | 134.332 (12) | Naiv—O3—Ta | 100.60 (3) |
Taiii—O1—O2xiii | 46.106 (11) | Naiv—O3—Ge | 116.63 (2) |
Taiii—O1—O2vi | 44.938 (7) | Naiv—O3—O1vii | 96.905 (19) |
Taiii—O1—O3iii | 46.387 (9) | Naiv—O3—O1viii | 98.27 (2) |
Taiii—O1—O3viii | 45.429 (12) | Naiv—O3—O2 | 84.70 (2) |
Taiii—O1—O3v | 164.187 (16) | Naiv—O3—O2v | 136.86 (3) |
Taiii—O1—O3xiv | 100.25 (2) | Naiv—O3—O2ix | 55.85 (2) |
Tav—O1—Taiii | 144.56 (3) | Naiv—O3—O2x | 145.07 (3) |
Tav—O1—O2xii | 46.106 (11) | Naiv—O3—O3v | 117.982 (15) |
Tav—O1—O2iv | 44.938 (7) | Ta—O3—Ge | 128.43 (3) |
Tav—O1—O2xiii | 116.119 (18) | Ta—O3—O1vii | 44.541 (12) |
Tav—O1—O2vi | 134.332 (12) | Ta—O3—O1viii | 43.642 (9) |
Tav—O1—O3iii | 164.187 (16) | Ta—O3—O2 | 154.16 (2) |
Tav—O1—O3viii | 100.25 (2) | Ta—O3—O2v | 122.541 (18) |
Tav—O1—O3v | 46.387 (9) | Ta—O3—O2ix | 44.750 (10) |
Tav—O1—O3xiv | 45.429 (12) | Ta—O3—O2x | 44.478 (11) |
O2xii—O1—O2iv | 91.044 (14) | Ta—O3—O3v | 96.953 (18) |
O2xii—O1—O2xiii | 130.87 (2) | Ge—O3—O1vii | 145.540 (18) |
O2xii—O1—O2vi | 88.247 (14) | Ge—O3—O1viii | 94.26 (2) |
O2xii—O1—O3iii | 148.491 (14) | Ge—O3—O2 | 33.724 (10) |
O2xii—O1—O3viii | 76.638 (16) | Ge—O3—O2v | 35.379 (12) |
O2xii—O1—O3v | 61.276 (12) | Ge—O3—O2ix | 147.76 (2) |
O2xii—O1—O3xiv | 61.036 (14) | Ge—O3—O2x | 92.35 (2) |
O2iv—O1—O2xii | 91.044 (14) | Ge—O3—O3v | 34.901 (12) |
O2iv—O1—O2xiii | 88.247 (14) | O1vii—O3—O1viii | 88.184 (14) |
O2iv—O1—O2vi | 178.30 (2) | O1vii—O3—O2 | 160.65 (2) |
O2iv—O1—O3iii | 119.953 (14) | O1vii—O3—O2v | 113.008 (15) |
O2iv—O1—O3viii | 118.26 (2) | O1vii—O3—O2ix | 58.934 (14) |
O2iv—O1—O3v | 60.923 (12) | O1vii—O3—O2x | 60.082 (13) |
O2iv—O1—O3xiv | 60.064 (14) | O1vii—O3—O3v | 133.886 (16) |
O2xiii—O1—O2xii | 130.87 (2) | O1viii—O3—O1vii | 88.184 (14) |
O2xiii—O1—O2iv | 88.247 (14) | O1viii—O3—O2 | 110.739 (19) |
O2xiii—O1—O2vi | 91.044 (14) | O1viii—O3—O2v | 112.45 (2) |
O2xiii—O1—O3iii | 61.276 (12) | O1viii—O3—O2ix | 59.719 (13) |
O2xiii—O1—O3viii | 61.036 (14) | O1viii—O3—O2x | 58.265 (12) |
O2xiii—O1—O3v | 148.490 (14) | O1viii—O3—O3v | 59.364 (13) |
O2xiii—O1—O3xiv | 76.638 (16) | O2—O3—O2v | 56.926 (13) |
O2vi—O1—O2xii | 88.247 (14) | O2—O3—O2ix | 133.854 (16) |
O2vi—O1—O2iv | 178.30 (2) | O2—O3—O2x | 126.07 (2) |
O2vi—O1—O2xiii | 91.044 (14) | O2—O3—O3v | 59.039 (15) |
O2vi—O1—O3iii | 60.923 (12) | O2v—O3—O2 | 56.926 (13) |
O2vi—O1—O3viii | 60.064 (14) | O2v—O3—O2ix | 167.287 (17) |
O2vi—O1—O3v | 119.953 (14) | O2v—O3—O2x | 78.065 (15) |
O2vi—O1—O3xiv | 118.26 (2) | O2v—O3—O3v | 61.029 (16) |
O3iii—O1—O3viii | 91.816 (13) | O2ix—O3—O2 | 133.854 (16) |
O3iii—O1—O3v | 126.85 (2) | O2ix—O3—O2v | 167.287 (17) |
O3iii—O1—O3xiv | 137.578 (15) | O2ix—O3—O2x | 89.228 (15) |
O3viii—O1—O3iii | 91.816 (13) | O2ix—O3—O3v | 116.137 (18) |
O3viii—O1—O3v | 137.578 (15) | O2x—O3—O2 | 126.07 (2) |
O3viii—O1—O3xiv | 61.271 (17) | O2x—O3—O2v | 78.065 (15) |
O3v—O1—O3iii | 126.85 (2) | O2x—O3—O2ix | 89.228 (15) |
O3v—O1—O3viii | 137.578 (15) | O2x—O3—O3v | 74.547 (17) |
O3v—O1—O3xiv | 91.816 (13) |
Symmetry codes: (i) −x, −y+1, −z+1; (ii) x, −y+1, z+1/2; (iii) x, y, z+1; (iv) −x+1/2, −y+1/2, −z+1; (v) −x, y, −z+1/2; (vi) x−1/2, −y+1/2, z+1/2; (vii) x, y, z−1; (viii) −x, −y, −z+1; (ix) −x+1/2, y−1/2, −z+1/2; (x) x−1/2, −y+1/2, z−1/2; (xi) −x, −y, −z; (xii) x−1/2, y−1/2, z; (xiii) −x+1/2, y−1/2, −z+3/2; (xiv) x, −y, z+1/2; (xv) −x+1/2, y+1/2, −z+1/2; (xvi) x+1/2, −y+1/2, z+1/2; (xvii) x+1/2, y+1/2, z. |