Download citation
Download citation
link to html
Reported in this contribution are the synthesis and crystal structures of two new FeIII com­plexes of 5,5,7,12,12,14-hexa­methyl-1,4,8,11-tetra­aza­cyclo­tetra­decane (HMC), namely, di­chlorido­(5,5,7,12,12,14-hexa­methyl-1,4,8,11-tetra­aza­cyclo­tetra­deca­ne)iron(III) chloride, [FeCl2(C16H36N4)]Cl or cis-[FeCl2(rac-HMC)]Cl (1), and di­chlorido­(5,5,7,12,12,14-hexa­methyl-1,4,8,11-tetra­aza­cyclo­tetra­deca­ne)iron(III) tetra­chloridoferrate, [FeCl2(C16H36N4)][FeCl4] or trans-[FeCl2(meso-HMC)][FeCl4] (2). Single-crystal X-ray diffraction studies revealed that both 1 and 2 adopt a pseudo-octa­hedral geometry, where the macrocycles adopt folded and planar geometries, respectively. The chloride ligands in 1 are cis to each other, while those in 2 have a trans configuration. The relevant bond angles in 1 deviate substanti­ally from an ideal octa­hedral coordination geometry, with the angles between the cis substituents varying from 81.55 (5) to 107.56 (4)°, and those between the trans-ligating atoms varying from 157.76 (8) to 170.88 (3)°. In contrast, 2 adopts a less strained configuration, in which the N—Fe—N angles vary from 84.61 (8) to 95.39 (8)° and the N—Fe—Cl angles vary from 86.02 (5) to 93.98 (5)°.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2053229619013925/cu3157sup1.cif
Contains datablocks 1, 2, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229619013925/cu31571sup2.hkl
Contains datablock 1

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229619013925/cu31572sup3.hkl
Contains datablock 2

CCDC references: 1958894; 1958895

Computing details top

For both structures, data collection: APEX3 (Bruker, 2018); cell refinement: SAINT (Bruker, 2018); data reduction: SAINT (Bruker, 2018); program(s) used to solve structure: SHELXM (Sheldrick, 2008); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015) and SHELXLE (Hübschle et al., 2011); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

Dichlorido(5,5,7,12,12,14-hexamethyl-1,4,8,11-tetraazacyclotetradecane)iron(III) chloride (1) top
Crystal data top
[FeCl2(C16H36N4)]ClDx = 1.461 Mg m3
Mr = 446.69Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, Fdd2Cell parameters from 9904 reflections
a = 34.5658 (16) Åθ = 2.8–34.4°
b = 9.3832 (4) ŵ = 1.14 mm1
c = 12.5209 (6) ÅT = 150 K
V = 4061.0 (3) Å3Plate, yellow
Z = 80.18 × 0.17 × 0.05 mm
F(000) = 1896
Data collection top
Bruker D8 Quest CMOS
diffractometer
4166 independent reflections
Radiation source: sealed tube X-ray source3897 reflections with I > 2σ(I)
Triumph curved graphite crystal monochromatorRint = 0.042
Detector resolution: 10.4167 pixels mm-1θmax = 34.4°, θmin = 2.8°
ω and phi scansh = 5454
Absorption correction: multi-scan
(Krause et al., 2015)
k = 1414
Tmin = 0.595, Tmax = 0.747l = 1719
17097 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.025H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.064 w = 1/[σ2(Fo2) + (0.0327P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.030
4166 reflectionsΔρmax = 0.86 e Å3
120 parametersΔρmin = 0.58 e Å3
2 restraintsAbsolute structure: Refined as an inversion twin
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.004 (13)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a 2-component inversion twin

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Fe10.0000000.5000000.47177 (2)0.01024 (7)
Cl10.04066 (2)0.59399 (4)0.59972 (4)0.01780 (8)
N10.01980 (4)0.71984 (15)0.43765 (12)0.0120 (2)
H10.0100 (7)0.760 (3)0.493 (2)0.014*
N20.04360 (3)0.55678 (13)0.35009 (12)0.0113 (2)
H20.0352 (7)0.533 (3)0.2897 (19)0.014*
C10.00232 (4)0.76806 (17)0.34277 (15)0.0139 (3)
H1A0.0022870.8734960.3398790.017*
H1AB0.0103080.7320650.2771300.017*
C20.04357 (4)0.71467 (16)0.34726 (16)0.0141 (3)
H2A0.0579760.7484050.2837750.017*
H2AB0.0565380.7524920.4118060.017*
C30.08320 (5)0.49628 (15)0.36508 (14)0.0130 (3)
H30.0915170.5154610.4402180.016*
C40.08278 (4)0.33465 (16)0.34788 (15)0.0145 (3)
H4A0.0707120.3159410.2775590.017*
H4AB0.1099690.3020720.3433510.017*
C50.06217 (5)0.24162 (15)0.43060 (14)0.0129 (3)
C60.11327 (5)0.5615 (2)0.28966 (16)0.0193 (3)
H6A0.1054730.5446540.2154730.029*
H6B0.1385250.5173100.3025980.029*
H6C0.1150420.6642960.3026470.029*
C70.07963 (5)0.25789 (19)0.54183 (17)0.0183 (3)
H7A0.1071970.2336760.5394140.027*
H7B0.0663380.1938310.5915810.027*
H7C0.0765790.3566080.5659590.027*
C80.06705 (5)0.08418 (18)0.39781 (15)0.0175 (3)
H8A0.0593640.0723370.3229990.026*
H8B0.0507160.0240970.4432460.026*
H8C0.0941840.0560910.4063530.026*
Cl20.0000000.5000000.11978 (5)0.02101 (12)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe10.01000 (12)0.01121 (12)0.00952 (13)0.00018 (11)0.0000.000
Cl10.01758 (16)0.02242 (18)0.01340 (16)0.00021 (13)0.00299 (14)0.00439 (15)
N10.0112 (5)0.0134 (5)0.0114 (6)0.0009 (4)0.0002 (4)0.0011 (4)
N20.0108 (5)0.0115 (5)0.0116 (5)0.0001 (4)0.0005 (5)0.0003 (5)
C10.0136 (6)0.0120 (6)0.0161 (8)0.0018 (4)0.0020 (6)0.0024 (5)
C20.0130 (6)0.0112 (6)0.0180 (7)0.0008 (5)0.0010 (6)0.0013 (5)
C30.0101 (6)0.0151 (6)0.0138 (7)0.0003 (5)0.0006 (5)0.0018 (5)
C40.0126 (6)0.0150 (6)0.0159 (7)0.0020 (5)0.0030 (6)0.0006 (6)
C50.0115 (6)0.0134 (6)0.0137 (7)0.0028 (5)0.0006 (5)0.0014 (5)
C60.0142 (7)0.0194 (7)0.0244 (8)0.0010 (6)0.0057 (6)0.0051 (6)
C70.0181 (7)0.0202 (7)0.0165 (7)0.0021 (6)0.0042 (7)0.0018 (6)
C80.0175 (7)0.0140 (6)0.0210 (8)0.0050 (6)0.0017 (6)0.0008 (6)
Cl20.0267 (3)0.0226 (3)0.0137 (3)0.0070 (2)0.0000.000
Geometric parameters (Å, º) top
Fe1—N22.2081 (14)C3—C41.532 (2)
Fe1—N2i2.2081 (14)C3—C61.532 (2)
Fe1—N12.2149 (14)C3—H31.0000
Fe1—N1i2.2150 (14)C4—C51.530 (2)
Fe1—Cl12.3065 (5)C4—H4A0.9900
Fe1—Cl1i2.3066 (5)C4—H4AB0.9900
N1—C11.483 (2)C5—C71.526 (3)
N1—C5i1.511 (2)C5—C81.543 (2)
N1—H10.86 (2)C6—H6A0.9800
N2—C21.4819 (19)C6—H6B0.9800
N2—C31.494 (2)C6—H6C0.9800
N2—H20.84 (2)C7—H7A0.9800
C1—C21.512 (2)C7—H7B0.9800
C1—H1A0.9900C7—H7C0.9800
C1—H1AB0.9900C8—H8A0.9800
C2—H2A0.9900C8—H8B0.9800
C2—H2AB0.9900C8—H8C0.9800
N2—Fe1—N2i92.75 (7)H2A—C2—H2AB108.2
N2—Fe1—N181.55 (5)N2—C3—C4110.47 (12)
N2i—Fe1—N183.15 (5)N2—C3—C6113.11 (13)
N2—Fe1—N1i83.15 (5)C4—C3—C6108.39 (14)
N2i—Fe1—N1i81.55 (5)N2—C3—H3108.2
N1—Fe1—N1i157.76 (8)C4—C3—H3108.2
N2—Fe1—Cl188.35 (4)C6—C3—H3108.2
N2i—Fe1—Cl1170.88 (3)C5—C4—C3118.29 (14)
N1—Fe1—Cl188.06 (4)C5—C4—H4A107.7
N1i—Fe1—Cl1107.56 (4)C3—C4—H4A107.7
N2—Fe1—Cl1i170.88 (3)C5—C4—H4AB107.7
N2i—Fe1—Cl1i88.34 (4)C3—C4—H4AB107.7
N1—Fe1—Cl1i107.56 (4)H4A—C4—H4AB107.1
N1i—Fe1—Cl1i88.06 (4)N1i—C5—C7107.84 (14)
Cl1—Fe1—Cl1i92.01 (2)N1i—C5—C4110.74 (12)
C1—N1—C5i112.32 (13)C7—C5—C4112.12 (14)
C1—N1—Fe1106.22 (9)N1i—C5—C8110.54 (13)
C5i—N1—Fe1122.25 (10)C7—C5—C8107.19 (13)
C1—N1—H1108.0 (17)C4—C5—C8108.37 (14)
C5i—N1—H1109.0 (16)C3—C6—H6A109.5
Fe1—N1—H197.5 (17)C3—C6—H6B109.5
C2—N2—C3112.55 (11)H6A—C6—H6B109.5
C2—N2—Fe1104.91 (10)C3—C6—H6C109.5
C3—N2—Fe1116.56 (10)H6A—C6—H6C109.5
C2—N2—H2104.3 (17)H6B—C6—H6C109.5
C3—N2—H2109.0 (16)C5—C7—H7A109.5
Fe1—N2—H2108.8 (17)C5—C7—H7B109.5
N1—C1—C2110.80 (14)H7A—C7—H7B109.5
N1—C1—H1A109.5C5—C7—H7C109.5
C2—C1—H1A109.5H7A—C7—H7C109.5
N1—C1—H1AB109.5H7B—C7—H7C109.5
C2—C1—H1AB109.5C5—C8—H8A109.5
H1A—C1—H1AB108.1C5—C8—H8B109.5
N2—C2—C1109.43 (12)H8A—C8—H8B109.5
N2—C2—H2A109.8C5—C8—H8C109.5
C1—C2—H2A109.8H8A—C8—H8C109.5
N2—C2—H2AB109.8H8B—C8—H8C109.5
C1—C2—H2AB109.8
C5i—N1—C1—C2174.18 (13)C2—N2—C3—C648.38 (19)
Fe1—N1—C1—C238.12 (15)Fe1—N2—C3—C6169.64 (11)
C3—N2—C2—C1174.53 (14)N2—C3—C4—C569.37 (19)
Fe1—N2—C2—C146.83 (16)C6—C3—C4—C5166.19 (14)
N1—C1—C2—N259.91 (19)C3—C4—C5—N1i60.64 (19)
C2—N2—C3—C4170.07 (15)C3—C4—C5—C759.86 (18)
Fe1—N2—C3—C468.67 (15)C3—C4—C5—C8177.95 (14)
Symmetry code: (i) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···Cl2ii0.86 (2)2.78 (2)3.5467 (15)150 (2)
N2—H2···Cl20.84 (2)2.47 (2)3.2971 (16)168 (2)
Symmetry code: (ii) x, y+1/2, z+1/2.
Dichlorido(5,5,7,12,12,14-hexamethyl-1,4,8,11-tetraazacyclotetradecane)iron(III) tetrachloridoferrate (2) top
Crystal data top
[FeCl2(C16H36N4)][FeCl4]F(000) = 1256
Mr = 608.89Dx = 1.593 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54178 Å
a = 6.5569 (2) ÅCell parameters from 9909 reflections
b = 19.1663 (5) Åθ = 3.2–80.2°
c = 20.2946 (5) ŵ = 15.06 mm1
β = 95.3558 (15)°T = 150 K
V = 2539.32 (12) Å3Plate, orange
Z = 40.18 × 0.09 × 0.05 mm
Data collection top
Bruker AXS D8 Quest CMOS
diffractometer
5481 independent reflections
Radiation source: I-mu-S microsource X-ray tube4930 reflections with I > 2σ(I)
Laterally graded multilayer (Goebel) mirror monochromatorRint = 0.044
Detector resolution: 7.4074 pixels mm-1θmax = 81.3°, θmin = 3.2°
ω and phi scansh = 86
Absorption correction: multi-scan
(Krause et al., 2015)
k = 2424
Tmin = 0.426, Tmax = 0.754l = 2525
26483 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: mixed
wR(F2) = 0.086H atoms treated by a mixture of independent and constrained refinement
S = 1.11 w = 1/[σ2(Fo2) + (0.0331P)2 + 2.0722P]
where P = (Fo2 + 2Fc2)/3
5481 reflections(Δ/σ)max = 0.001
274 parametersΔρmax = 0.76 e Å3
6 restraintsΔρmin = 0.57 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.0492 (4)1.11813 (12)0.10684 (11)0.0232 (5)
C20.1633 (5)1.18787 (14)0.10898 (14)0.0346 (6)
H2A0.0843391.2244260.0891290.052*
H2B0.1802961.2000420.1550470.052*
H2C0.2982741.1836880.0841140.052*
C30.1555 (4)1.12327 (14)0.14890 (12)0.0297 (5)
H3A0.2319591.0796900.1453640.045*
H3B0.1312371.1312510.1952160.045*
H3C0.2349861.1621560.1331340.045*
C40.1897 (4)1.06314 (13)0.13413 (11)0.0243 (5)
H4A0.2157101.0779660.1793210.029*
H4AB0.3226291.0650520.1067270.029*
C50.1231 (4)0.98678 (13)0.13820 (11)0.0206 (4)
H50.0270680.9848120.1522530.025*
C60.2370 (4)0.94789 (14)0.18902 (12)0.0280 (5)
H6A0.3840130.9478430.1748890.042*
H6B0.2129020.9710970.2320710.042*
H6C0.1871890.8997100.1927900.042*
C70.1294 (4)0.87858 (12)0.06771 (12)0.0240 (5)
H7A0.2384050.8539890.0891440.029*
H7AB0.0045890.8658930.0911860.029*
C80.1358 (4)0.85781 (13)0.00432 (12)0.0270 (5)
H8A0.1071600.8073180.0080340.032*
H8AB0.2732300.8673290.0269980.032*
C90.3590 (3)0.38600 (12)0.09872 (11)0.0206 (4)
C100.1558 (4)0.35671 (15)0.11853 (13)0.0303 (5)
H10A0.0600530.3951640.1236610.045*
H10B0.1802280.3314590.1605150.045*
H10C0.0972860.3247850.0840780.045*
C110.5122 (4)0.32617 (13)0.09735 (12)0.0265 (5)
H11A0.4530000.2889550.0684580.040*
H11B0.5436010.3078930.1422460.040*
H11C0.6381950.3432380.0804610.040*
C120.4309 (3)0.44094 (12)0.15058 (11)0.0213 (4)
H12A0.3206510.4761480.1512690.026*
H12B0.4429050.4176520.1943160.026*
C130.6305 (3)0.48006 (12)0.14432 (11)0.0201 (4)
H130.7347640.4464240.1303290.024*
C140.7096 (4)0.51152 (14)0.21111 (12)0.0288 (5)
H14A0.8413090.5345430.2071540.043*
H14B0.7274660.4744150.2443720.043*
H14C0.6105620.5457650.2246160.043*
C150.7680 (3)0.58345 (12)0.08705 (11)0.0212 (4)
H15A0.8963280.5568680.0841480.025*
H15B0.7856070.6139090.1265680.025*
C160.7210 (4)0.62701 (12)0.02542 (11)0.0223 (5)
H16A0.6001840.6569440.0301860.027*
H16B0.8389840.6574660.0184230.027*
N10.0211 (3)1.10117 (10)0.03540 (9)0.0197 (4)
H10.139 (3)1.1114 (15)0.0134 (13)0.024*
N20.1609 (3)0.95519 (10)0.07070 (9)0.0190 (4)
H20.288 (3)0.9627 (15)0.0562 (14)0.023*
N30.3209 (3)0.42067 (10)0.03155 (9)0.0173 (4)
H30.209 (3)0.4443 (13)0.0335 (14)0.021*
N40.5940 (3)0.53475 (10)0.09237 (9)0.0177 (4)
H40.490 (3)0.5576 (14)0.1050 (13)0.021*
Cl10.30936 (8)0.97775 (3)0.06127 (3)0.02332 (12)
Cl20.21952 (7)0.56951 (3)0.00283 (3)0.02014 (11)
Cl30.69585 (11)0.74121 (4)0.20082 (4)0.04673 (19)
Cl40.24204 (10)0.63793 (3)0.18618 (3)0.03526 (15)
Cl50.21825 (11)0.82224 (4)0.22565 (3)0.03874 (16)
Cl60.32760 (14)0.76773 (4)0.06291 (3)0.0490 (2)
Fe10.0000001.0000000.0000000.01496 (11)
Fe20.5000000.5000000.0000000.01370 (11)
Fe30.36770 (6)0.74286 (2)0.16940 (2)0.02616 (10)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0344 (12)0.0204 (11)0.0146 (10)0.0022 (9)0.0018 (9)0.0005 (8)
C20.0530 (16)0.0228 (12)0.0283 (13)0.0080 (12)0.0056 (12)0.0043 (10)
C30.0409 (14)0.0287 (13)0.0180 (11)0.0060 (11)0.0047 (10)0.0043 (9)
C40.0296 (12)0.0266 (12)0.0174 (10)0.0034 (10)0.0063 (9)0.0015 (9)
C50.0239 (11)0.0277 (12)0.0108 (10)0.0008 (9)0.0047 (8)0.0011 (8)
C60.0313 (13)0.0356 (14)0.0184 (11)0.0014 (10)0.0089 (9)0.0056 (10)
C70.0313 (12)0.0203 (11)0.0212 (11)0.0023 (9)0.0067 (9)0.0041 (9)
C80.0381 (13)0.0198 (11)0.0238 (12)0.0056 (10)0.0062 (10)0.0003 (9)
C90.0213 (10)0.0222 (11)0.0184 (10)0.0005 (9)0.0025 (8)0.0027 (9)
C100.0259 (12)0.0367 (14)0.0287 (13)0.0046 (10)0.0046 (10)0.0078 (11)
C110.0288 (12)0.0243 (12)0.0254 (12)0.0061 (10)0.0021 (9)0.0045 (10)
C120.0228 (11)0.0261 (12)0.0153 (10)0.0044 (9)0.0043 (8)0.0019 (9)
C130.0210 (10)0.0251 (11)0.0138 (10)0.0031 (9)0.0007 (8)0.0006 (8)
C140.0345 (13)0.0357 (14)0.0149 (11)0.0001 (11)0.0038 (9)0.0021 (10)
C150.0202 (10)0.0251 (11)0.0179 (10)0.0042 (9)0.0003 (8)0.0060 (9)
C160.0238 (11)0.0214 (11)0.0213 (11)0.0031 (9)0.0002 (9)0.0034 (9)
N10.0242 (9)0.0196 (9)0.0152 (9)0.0020 (7)0.0015 (7)0.0014 (7)
N20.0217 (9)0.0208 (9)0.0142 (8)0.0013 (7)0.0009 (7)0.0010 (7)
N30.0171 (8)0.0190 (9)0.0157 (8)0.0023 (7)0.0010 (7)0.0007 (7)
N40.0155 (8)0.0233 (9)0.0143 (8)0.0010 (7)0.0019 (7)0.0018 (7)
Cl10.0195 (2)0.0293 (3)0.0212 (3)0.0001 (2)0.00196 (19)0.0017 (2)
Cl20.0168 (2)0.0231 (3)0.0207 (2)0.00348 (19)0.00231 (18)0.00202 (19)
Cl30.0322 (3)0.0408 (4)0.0658 (5)0.0008 (3)0.0029 (3)0.0069 (3)
Cl40.0390 (3)0.0292 (3)0.0374 (3)0.0048 (3)0.0027 (3)0.0016 (3)
Cl50.0463 (4)0.0376 (4)0.0310 (3)0.0097 (3)0.0030 (3)0.0129 (3)
Cl60.0767 (5)0.0465 (4)0.0243 (3)0.0307 (4)0.0080 (3)0.0056 (3)
Fe10.0176 (2)0.0156 (2)0.0120 (2)0.00026 (17)0.00293 (17)0.00091 (17)
Fe20.0128 (2)0.0169 (2)0.0114 (2)0.00094 (17)0.00103 (16)0.00157 (16)
Fe30.0322 (2)0.0237 (2)0.0223 (2)0.00353 (15)0.00095 (15)0.00045 (14)
Geometric parameters (Å, º) top
C1—N11.514 (3)C11—H11A0.9800
C1—C31.525 (3)C11—H11B0.9800
C1—C21.535 (3)C11—H11C0.9800
C1—C41.536 (3)C12—C131.524 (3)
C2—H2A0.9800C12—H12A0.9900
C2—H2B0.9800C12—H12B0.9900
C2—H2C0.9800C13—N41.490 (3)
C3—H3A0.9800C13—C141.529 (3)
C3—H3B0.9800C13—H131.0000
C3—H3C0.9800C14—H14A0.9800
C4—C51.527 (3)C14—H14B0.9800
C4—H4A0.9900C14—H14C0.9800
C4—H4AB0.9900C15—N41.486 (3)
C5—N21.497 (3)C15—C161.512 (3)
C5—C61.523 (3)C15—H15A0.9900
C5—H51.0000C15—H15B0.9900
C6—H6A0.9800C16—N3ii1.479 (3)
C6—H6B0.9800C16—H16A0.9900
C6—H6C0.9800C16—H16B0.9900
C7—N21.485 (3)Fe1—N12.0768 (19)
C7—C81.512 (3)N1—H10.880 (19)
C7—H7A0.9900Fe1—N22.0477 (19)
C7—H7AB0.9900N2—H20.872 (19)
C8—N1i1.481 (3)Fe2—N32.0595 (19)
C8—H8A0.9900N3—H30.864 (19)
C8—H8AB0.9900Fe2—N42.0301 (18)
C9—N31.516 (3)N4—H40.869 (19)
C9—C111.526 (3)Fe1—Cl12.3177 (5)
C9—C121.532 (3)Fe2—Cl22.2760 (5)
C9—C101.534 (3)Fe3—Cl32.1866 (8)
C10—H10A0.9800Fe3—Cl42.2117 (8)
C10—H10B0.9800Fe3—Cl52.1879 (7)
C10—H10C0.9800Fe3—Cl62.2048 (8)
N1—C1—C3111.7 (2)C13—C14—H14A109.5
N1—C1—C2108.51 (19)C13—C14—H14B109.5
C3—C1—C2109.5 (2)H14A—C14—H14B109.5
N1—C1—C4109.19 (18)C13—C14—H14C109.5
C3—C1—C4111.62 (19)H14A—C14—H14C109.5
C2—C1—C4106.1 (2)H14B—C14—H14C109.5
C1—C2—H2A109.5N4—C15—C16107.96 (17)
C1—C2—H2B109.5N4—C15—H15A110.1
H2A—C2—H2B109.5C16—C15—H15A110.1
C1—C2—H2C109.5N4—C15—H15B110.1
H2A—C2—H2C109.5C16—C15—H15B110.1
H2B—C2—H2C109.5H15A—C15—H15B108.4
C1—C3—H3A109.5N3ii—C16—C15108.31 (18)
C1—C3—H3B109.5N3ii—C16—H16A110.0
H3A—C3—H3B109.5C15—C16—H16A110.0
C1—C3—H3C109.5N3ii—C16—H16B110.0
H3A—C3—H3C109.5C15—C16—H16B110.0
H3B—C3—H3C109.5H16A—C16—H16B108.4
C5—C4—C1119.9 (2)C8i—N1—C1116.44 (18)
C5—C4—H4A107.3C8i—N1—Fe1106.08 (14)
C1—C4—H4A107.3C1—N1—Fe1123.35 (14)
C5—C4—H4AB107.3C8i—N1—H1106.2 (19)
C1—C4—H4AB107.3C1—N1—H1104.9 (19)
H4A—C4—H4AB106.9Fe1—N1—H196.7 (19)
N2—C5—C6111.8 (2)C7—N2—C5115.19 (18)
N2—C5—C4108.42 (18)C7—N2—Fe1107.65 (14)
C6—C5—C4110.5 (2)C5—N2—Fe1114.80 (14)
N2—C5—H5108.7C7—N2—H2106.4 (19)
C6—C5—H5108.7C5—N2—H2108.2 (19)
C4—C5—H5108.7Fe1—N2—H2103.6 (19)
C5—C6—H6A109.5C16ii—N3—C9115.78 (18)
C5—C6—H6B109.5C16ii—N3—Fe2106.42 (14)
H6A—C6—H6B109.5C9—N3—Fe2123.52 (13)
C5—C6—H6C109.5C16ii—N3—H3105.3 (18)
H6A—C6—H6C109.5C9—N3—H3104.9 (19)
H6B—C6—H6C109.5Fe2—N3—H397.9 (18)
N2—C7—C8107.97 (18)C15—N4—C13114.79 (17)
N2—C7—H7A110.1C15—N4—Fe2107.94 (13)
C8—C7—H7A110.1C13—N4—Fe2115.95 (14)
N2—C7—H7AB110.1C15—N4—H4109.5 (18)
C8—C7—H7AB110.1C13—N4—H4103.0 (19)
H7A—C7—H7AB108.4Fe2—N4—H4105.0 (18)
N1i—C8—C7108.32 (19)N2i—Fe1—N2180.0
N1i—C8—H8A110.0N2i—Fe1—N1i95.39 (8)
C7—C8—H8A110.0N2—Fe1—N1i84.61 (8)
N1i—C8—H8AB110.0N2i—Fe1—N184.61 (8)
C7—C8—H8AB110.0N2—Fe1—N195.39 (8)
H8A—C8—H8AB108.4N1i—Fe1—N1180.0
N3—C9—C11111.50 (19)N2i—Fe1—Cl188.32 (5)
N3—C9—C12109.32 (18)N2—Fe1—Cl191.68 (5)
C11—C9—C12111.59 (19)N1i—Fe1—Cl186.02 (5)
N3—C9—C10108.78 (18)N1—Fe1—Cl193.98 (5)
C11—C9—C10108.6 (2)N2i—Fe1—Cl1i91.68 (5)
C12—C9—C10106.90 (19)N2—Fe1—Cl1i88.32 (5)
C9—C10—H10A109.5N1i—Fe1—Cl1i93.98 (5)
C9—C10—H10B109.5N1—Fe1—Cl1i86.02 (5)
H10A—C10—H10B109.5Cl1—Fe1—Cl1i180.0
C9—C10—H10C109.5N4—Fe2—N4ii180.0
H10A—C10—H10C109.5N4—Fe2—N395.04 (7)
H10B—C10—H10C109.5N4ii—Fe2—N384.97 (7)
C9—C11—H11A109.5N4—Fe2—N3ii84.96 (7)
C9—C11—H11B109.5N4ii—Fe2—N3ii95.03 (7)
H11A—C11—H11B109.5N3—Fe2—N3ii180.0
C9—C11—H11C109.5N4—Fe2—Cl287.76 (5)
H11A—C11—H11C109.5N4ii—Fe2—Cl292.23 (5)
H11B—C11—H11C109.5N3—Fe2—Cl286.49 (5)
C13—C12—C9119.51 (19)N3ii—Fe2—Cl293.51 (5)
C13—C12—H12A107.4N4—Fe2—Cl2ii92.23 (5)
C9—C12—H12A107.4N4ii—Fe2—Cl2ii87.77 (5)
C13—C12—H12B107.4N3—Fe2—Cl2ii93.51 (5)
C9—C12—H12B107.4N3ii—Fe2—Cl2ii86.49 (5)
H12A—C12—H12B107.0Cl2—Fe2—Cl2ii180.0
N4—C13—C12108.82 (17)Cl3—Fe3—Cl5109.53 (3)
N4—C13—C14111.64 (19)Cl3—Fe3—Cl6108.24 (4)
C12—C13—C14110.04 (19)Cl5—Fe3—Cl6110.05 (3)
N4—C13—H13108.8Cl3—Fe3—Cl4108.22 (3)
C12—C13—H13108.8Cl5—Fe3—Cl4111.14 (3)
C14—C13—H13108.8Cl6—Fe3—Cl4109.60 (3)
N1—C1—C4—C562.5 (3)C8—C7—N2—C5169.80 (19)
C3—C1—C4—C561.5 (3)C8—C7—N2—Fe140.3 (2)
C2—C1—C4—C5179.3 (2)C6—C5—N2—C750.4 (3)
C1—C4—C5—N279.0 (2)C4—C5—N2—C7172.44 (19)
C1—C4—C5—C6158.1 (2)C6—C5—N2—Fe1176.30 (15)
N2—C7—C8—N1i56.4 (3)C4—C5—N2—Fe161.7 (2)
N3—C9—C12—C1362.2 (3)C11—C9—N3—C16ii47.7 (3)
C11—C9—C12—C1361.6 (3)C12—C9—N3—C16ii171.61 (18)
C10—C9—C12—C13179.8 (2)C10—C9—N3—C16ii72.0 (2)
C9—C12—C13—N477.3 (2)C11—C9—N3—Fe286.4 (2)
C9—C12—C13—C14160.0 (2)C12—C9—N3—Fe237.5 (2)
N4—C15—C16—N3ii55.2 (2)C10—C9—N3—Fe2153.86 (16)
C3—C1—N1—C8i46.7 (3)C16—C15—N4—C13170.47 (18)
C2—C1—N1—C8i74.1 (3)C16—C15—N4—Fe239.5 (2)
C4—C1—N1—C8i170.6 (2)C12—C13—N4—C15172.13 (18)
C3—C1—N1—Fe187.5 (2)C14—C13—N4—C1550.5 (3)
C2—C1—N1—Fe1151.62 (17)C12—C13—N4—Fe260.9 (2)
C4—C1—N1—Fe136.4 (2)C14—C13—N4—Fe2177.49 (15)
Symmetry codes: (i) x, y+2, z; (ii) x+1, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···Cl6i0.88 (2)2.99 (2)3.686 (2)138 (2)
N2—H2···Cl1iii0.87 (2)2.66 (2)3.487 (2)158 (2)
N3—H3···Cl2iv0.86 (2)2.85 (2)3.5519 (19)139 (2)
N4—H4···Cl40.87 (2)2.87 (2)3.699 (2)160 (2)
Symmetry codes: (i) x, y+2, z; (iii) x1, y, z; (iv) x, y+1, z.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds