Download citation
Download citation
link to html
Determination of the crystal structures of the homologous (1R*,2R*)-trans-2-hydroxy-1-cyclopentanecarboxylic acid (5T), (1R*,2S*)-cis-2-hydroxy-1-cyclohexanecarboxylic acid (6C) and (1R*,2S*)-cis-2-hydroxy-1-cycloheptanecarboxylic acid (7C) proved a predicted pattern of supramolecular close packing. The prediction was based on the common features observed in the crystal structures of six related 2-hydroxy-1-cyclopentanecarboxylic acids and analogous carboxamides [Kálmán et al. (2001). Acta Cryst. B57, 539–550]. This pattern is characterized by tetrameric R_4^4(12) rings of C2 symmetry formed from dimeric R_2^2(12) rings. The C2 symmetry of such tetramers is not common in the literature, usually they have Ci symmetry. Both types of tetramers are formed from dimers with similar or opposite orientation. The R_2^2(12) dimers differ in their hydrogen bonds. In 5T the monomers are joined by a pair of O1—H...O2=C bonds, whereas in 7C they are joined by a pair of O3—H...O1-H bonds. In 6C 60% of the disordered R_2^2(12) dimers are similar to those in 7C, while 40% resemble those in 5T. Apart from these hydrogen-bonding differences and the ring-size differences, the three crystals exhibit isostructurality.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108768102001854/de0014sup1.cif
Contains datablocks 5ts, 6cs, 7cs, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108768102001854/de00145tssup2.hkl
Contains datablock 5ts

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108768102001854/de00146cssup3.hkl
Contains datablock 6cs

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108768102001854/de00147cssup4.hkl
Contains datablock 7cs

CCDC references: 188096; 188097; 188098

Computing details top

For all compounds, data collection: CAD-4 EXPRESS; cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms 1996); program(s) used to solve structure: SHELXS97 (Sheldrick 1997); program(s) used to refine structure: SHELXL97 (Sheldrick 1997); molecular graphics: PLATON (Spek 1998).

(5ts) trans-2-hydroxy-1-cyclopentane carboxylic acid top
Crystal data top
C6H10O3F(000) = 560
Mr = 130.14Dx = 1.325 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71070 Å
a = 17.383 (2) ÅCell parameters from 25 reflections
b = 6.188 (1) Åθ = 13.1–14.3°
c = 12.361 (1) ŵ = 0.11 mm1
β = 101.16 (1)°T = 293 K
V = 1304.5 (3) Å3Block, colourless
Z = 80.40 × 0.25 × 0.15 mm
Data collection top
Enraf-Nonius CAD4
diffractometer
838 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.022
Graphite monochromatorθmax = 28.0°, θmin = 3.4°
ω–2θ scansh = 2222
Absorption correction: ψ scan
North A.C., Philips, D.C. & Mathews, F. (1968) Acta Cryst. A24 350-359
k = 88
Tmin = 0.959, Tmax = 0.984l = 1616
3396 measured reflections3 standard reflections every 60 min
1575 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.142H atoms treated by a mixture of independent and constrained refinement
S = 0.82 w = 1/[σ2(Fo2) + (0.1P)2]
where P = (Fo2 + 2Fc2)/3
1575 reflections(Δ/σ)max < 0.001
84 parametersΔρmax = 0.18 e Å3
21 restraintsΔρmin = 0.16 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.08144 (9)0.4250 (3)0.21183 (10)0.0579 (5)
H10.04900.50420.17430.075*
O20.02571 (8)0.3088 (2)0.07966 (11)0.0546 (4)
O30.14061 (9)0.4528 (3)0.08640 (12)0.0707 (5)
H30.11640.49970.14520.092*
C10.13442 (10)0.2386 (3)0.06747 (13)0.0377 (4)
H1A0.18230.32030.09600.049*
C20.08541 (11)0.2263 (3)0.15561 (13)0.0419 (5)
H20.03230.17890.12250.054*
C30.12508 (14)0.0535 (4)0.23511 (17)0.0576 (6)
H3A0.15660.11980.29990.075*
H3B0.08610.03870.25840.075*
C40.17620 (14)0.0766 (4)0.17334 (17)0.0585 (6)
H4A0.16520.22980.17760.076*
H4B0.23120.05200.20390.076*
C50.15589 (13)0.0017 (4)0.05415 (16)0.0501 (5)
H5A0.11200.07830.01240.065*
H5B0.20050.01140.01790.065*
C60.09401 (11)0.3382 (3)0.03940 (13)0.0386 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0760 (10)0.0679 (10)0.0260 (6)0.0230 (7)0.0003 (7)0.0076 (6)
O20.0520 (8)0.0710 (11)0.0384 (7)0.0009 (7)0.0026 (6)0.0138 (7)
O30.0698 (10)0.0993 (13)0.0376 (8)0.0248 (9)0.0029 (7)0.0256 (8)
C10.0428 (9)0.0445 (11)0.0246 (8)0.0027 (8)0.0035 (7)0.0014 (7)
C20.0521 (10)0.0490 (11)0.0240 (7)0.0008 (8)0.0057 (7)0.0011 (7)
C30.0799 (15)0.0599 (14)0.0326 (9)0.0006 (11)0.0096 (10)0.0146 (9)
C40.0706 (14)0.0508 (13)0.0504 (12)0.0069 (10)0.0024 (10)0.0145 (10)
C50.0598 (11)0.0514 (11)0.0379 (10)0.0103 (10)0.0064 (9)0.0010 (9)
C60.0507 (10)0.0411 (10)0.0232 (7)0.0010 (8)0.0051 (7)0.0015 (7)
Geometric parameters (Å, º) top
O1—C21.421 (2)C2—H20.9800
O1—H10.8200C3—C41.511 (3)
O2—C61.209 (2)C3—H3A0.9700
O3—C61.296 (2)C3—H3B0.9700
O3—H30.8200C4—C51.526 (3)
C1—C61.503 (2)C4—H4A0.9700
C1—C21.509 (3)C4—H4B0.9700
C1—C51.530 (3)C5—H5A0.9700
C1—H1A0.9800C5—H5B0.9700
C2—C31.524 (3)
C2—O1—H1109.5C2—C3—H3B110.4
C6—O3—H3109.5H3A—C3—H3B108.6
C6—C1—C2114.96 (15)C3—C4—C5105.66 (16)
C6—C1—C5112.37 (15)C3—C4—H4A110.6
C2—C1—C5102.29 (16)C5—C4—H4A110.6
C6—C1—H1A109.0C3—C4—H4B110.6
C2—C1—H1A109.0C5—C4—H4B110.6
C5—C1—H1A109.0H4A—C4—H4B108.7
O1—C2—C1113.39 (16)C4—C5—C1102.48 (16)
O1—C2—C3110.53 (15)C4—C5—H5A111.3
C1—C2—C3104.64 (16)C1—C5—H5A111.3
O1—C2—H2109.4C4—C5—H5B111.3
C1—C2—H2109.4C1—C5—H5B111.3
C3—C2—H2109.4H5A—C5—H5B109.2
C4—C3—C2106.56 (16)O2—C6—O3123.17 (16)
C4—C3—H3A110.4O2—C6—C1123.71 (17)
C2—C3—H3A110.4O3—C6—C1113.08 (16)
C4—C3—H3B110.4
C6—C1—C2—O179.5 (2)C3—C4—C5—C131.3 (2)
C5—C1—C2—O1158.39 (15)C6—C1—C5—C4166.49 (16)
C6—C1—C2—C3159.94 (17)C2—C1—C5—C442.66 (19)
C5—C1—C2—C337.87 (18)C2—C1—C6—O238.4 (3)
O1—C2—C3—C4140.97 (18)C5—C1—C6—O278.1 (2)
C1—C2—C3—C418.6 (2)C2—C1—C6—O3144.04 (18)
C2—C3—C4—C58.2 (2)C5—C1—C6—O399.5 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O2i0.821.952.7701 (19)178
O3—H3···O1ii0.821.812.6187 (19)167
Symmetry codes: (i) x, y+1, z; (ii) x, y+1, z1/2.
(6cs) (1R*,2S*)-2-hydroxy-1-cyclohexanecarboxylic acid top
Crystal data top
C7H12O3F(000) = 624
Mr = 144.17Dx = 1.248 Mg m3
Monoclinic, C2/cCu Kα radiation, λ = 1.54180 Å
a = 21.436 (8) ÅCell parameters from 25 reflections
b = 5.974 (1) Åθ = 30.1–34.5°
c = 12.095 (3) ŵ = 0.81 mm1
β = 97.70 (3)°T = 293 K
V = 1534.9 (7) Å3Block, colourless
Z = 80.40 × 0.25 × 0.03 mm
Data collection top
Enraf-Nonius CAD4
diffractometer
1287 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.010
Graphite monochromatorθmax = 75.6°, θmin = 4.2°
ω–2θ scansh = 2626
Absorption correction: ψ scan
North A.C., Philips, D.C. & Mathews, F. (1968) Acta Cryst. A24, 350-359
k = 07
Tmin = 0.738, Tmax = 0.976l = 015
1794 measured reflections3 standard reflections every 60 min
1597 independent reflections intensity decay: 16%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.136H atoms treated by a mixture of independent and constrained refinement
S = 1.13 w = 1/[σ2(Fo2) + (0.1P)2]
where P = (Fo2 + 2Fc2)/3
1597 reflections(Δ/σ)max = 0.001
122 parametersΔρmax = 0.19 e Å3
40 restraintsΔρmin = 0.16 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.06910 (4)0.07106 (14)0.18797 (6)0.0511 (3)
H1X0.07530.06560.25630.066*0.604 (12)
H1Y0.03850.00660.15440.066*0.396 (12)
O2A0.0897 (3)0.0166 (8)0.0891 (4)0.0667 (9)0.604 (12)
O3A0.0056 (3)0.2159 (15)0.0642 (6)0.0504 (12)0.604 (12)
H3X0.01150.12230.10770.066*0.604 (12)
O2B0.0174 (4)0.202 (3)0.0774 (11)0.0556 (17)0.396 (12)
O3B0.1107 (4)0.0603 (13)0.0999 (5)0.0624 (15)0.396 (12)
H3Y0.09150.01480.15880.081*0.396 (12)
C10.10260 (5)0.31317 (18)0.04841 (8)0.0395 (3)
H1A0.10050.47080.02580.051*0.604 (12)
H1B0.09800.46530.01800.051*0.396 (12)
C20.06923 (5)0.30032 (16)0.15243 (8)0.0375 (3)
H20.02570.35180.13360.049*
C30.10238 (6)0.4462 (2)0.24469 (10)0.0508 (3)
H3A0.09650.60210.22330.066*
H3B0.08310.42320.31190.066*
C40.17203 (6)0.3984 (2)0.27000 (11)0.0580 (4)
H4A0.17820.24910.30110.075*
H4B0.19120.50430.32510.075*
C50.20362 (6)0.4158 (3)0.16539 (13)0.0670 (4)
H5A0.24780.37700.18290.087*
H5B0.20090.56880.13830.087*
C60.17235 (6)0.2601 (3)0.07521 (11)0.0593 (4)
H6A0.17760.10620.10030.077*
H6B0.19240.27640.00840.077*
C7A0.0700 (3)0.1837 (13)0.0512 (6)0.0381 (12)0.604 (12)
C7B0.0683 (5)0.154 (2)0.0350 (8)0.040 (2)0.396 (12)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0646 (5)0.0517 (5)0.0351 (4)0.0160 (4)0.0003 (3)0.0076 (3)
O2A0.076 (2)0.0853 (19)0.0387 (11)0.0076 (15)0.0088 (13)0.0234 (12)
O3A0.056 (2)0.0437 (11)0.046 (2)0.0028 (16)0.0124 (16)0.0014 (14)
O2B0.056 (3)0.063 (4)0.046 (2)0.015 (2)0.003 (2)0.001 (2)
O3B0.078 (3)0.076 (3)0.0316 (16)0.018 (2)0.0002 (19)0.0143 (16)
C10.0488 (6)0.0422 (6)0.0274 (5)0.0026 (4)0.0046 (4)0.0018 (4)
C20.0401 (5)0.0415 (6)0.0308 (5)0.0024 (4)0.0042 (4)0.0028 (4)
C30.0625 (7)0.0504 (6)0.0392 (6)0.0000 (5)0.0052 (5)0.0136 (5)
C40.0602 (7)0.0631 (8)0.0460 (7)0.0109 (6)0.0103 (5)0.0082 (6)
C50.0453 (6)0.0846 (10)0.0697 (9)0.0165 (6)0.0023 (6)0.0025 (7)
C60.0464 (7)0.0844 (9)0.0493 (7)0.0023 (6)0.0152 (5)0.0089 (7)
C7A0.0610 (18)0.0359 (17)0.0153 (19)0.0005 (11)0.0020 (14)0.0092 (19)
C7B0.063 (3)0.043 (4)0.015 (3)0.005 (2)0.0080 (16)0.015 (2)
Geometric parameters (Å, º) top
O1—C21.4356 (13)C1—H1B0.9800
O1—H1X0.8200C2—C31.5158 (15)
O1—H1Y0.8200C2—H20.9800
O2A—C7A1.198 (8)C3—C41.5105 (19)
O3A—C7A1.380 (10)C3—H3A0.9700
O3A—H3X0.8200C3—H3B0.9700
O2B—C7B1.178 (12)C4—C51.516 (2)
O3B—C7B1.393 (11)C4—H4A0.9700
O3B—H3Y0.8200C4—H4B0.9700
C1—C7B1.505 (6)C5—C61.519 (2)
C1—C61.5204 (18)C5—H5A0.9700
C1—C21.5302 (14)C5—H5B0.9700
C1—C7A1.521 (4)C6—H6A0.9700
C1—H1A0.9800C6—H6B0.9700
C2—O1—H1X109.5H3A—C3—H3B107.8
C2—O1—H1Y109.5C3—C4—C5110.95 (10)
C7B—O3B—H3Y109.5C3—C4—H4A109.4
C7B—C1—C6112.9 (5)C5—C4—H4A109.4
C7B—C1—C2106.2 (5)C3—C4—H4B109.4
C6—C1—C2111.64 (9)C5—C4—H4B109.4
C6—C1—C7A113.4 (3)H4A—C4—H4B108.0
C2—C1—C7A114.2 (4)C4—C5—C6110.72 (11)
C6—C1—H1A105.6C4—C5—H5A109.5
C2—C1—H1A105.6C6—C5—H5A109.5
C7A—C1—H1A105.6C4—C5—H5B109.5
C7B—C1—H1B108.7C6—C5—H5B109.5
C6—C1—H1B108.7H5A—C5—H5B108.1
C2—C1—H1B108.7C5—C6—C1110.60 (11)
O1—C2—C3110.35 (9)C5—C6—H6A109.5
O1—C2—C1108.29 (8)C1—C6—H6A109.5
C3—C2—C1110.60 (9)C5—C6—H6B109.5
O1—C2—H2109.2C1—C6—H6B109.5
C3—C2—H2109.2H6A—C6—H6B108.1
C1—C2—H2109.2O2A—C7A—O3A118.1 (6)
C4—C3—C2113.18 (10)O2A—C7A—C1125.3 (6)
C4—C3—H3A108.9O3A—C7A—C1111.4 (6)
C2—C3—H3A108.9O2B—C7B—O3B119.2 (9)
C4—C3—H3B108.9O2B—C7B—C1118.6 (10)
C2—C3—H3B108.9O3B—C7B—C1109.6 (7)
C7B—C1—C2—O155.9 (5)C7B—C1—C6—C5176.1 (6)
C6—C1—C2—O167.52 (12)C2—C1—C6—C556.56 (14)
C7A—C1—C2—O162.8 (4)C7A—C1—C6—C5172.7 (4)
C7B—C1—C2—C3176.9 (5)C6—C1—C7A—O2A18.7 (12)
C6—C1—C2—C353.51 (13)C2—C1—C7A—O2A110.7 (10)
C7A—C1—C2—C3176.2 (4)C6—C1—C7A—O3A172.6 (6)
O1—C2—C3—C467.02 (13)C2—C1—C7A—O3A43.2 (8)
C1—C2—C3—C452.78 (13)C6—C1—C7B—O2B166.1 (12)
C2—C3—C4—C554.55 (16)C2—C1—C7B—O2B71.2 (14)
C3—C4—C5—C656.27 (17)C6—C1—C7B—O3B24.6 (10)
C4—C5—C6—C157.65 (16)C2—C1—C7B—O3B147.2 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1X···O2Ai0.821.922.724 (4)167
O1—H1Y···O2Bii0.821.892.687 (14)166
O3A—H3X···O1ii0.821.872.665 (9)165
O3B—H3Y···O1iii0.821.922.717 (6)163
Symmetry codes: (i) x, y, z+1/2; (ii) x, y, z; (iii) x, y, z1/2.
(7cs) (1R*,2S*)-2-hydroxy-1-cycloheptane carboxylic acid top
Crystal data top
C8H14O3F(000) = 688
Mr = 158.19Dx = 1.257 Mg m3
Monoclinic, I2/cCu Kα radiation, λ = 1.54180 Å
a = 22.876 (5) ÅCell parameters from 25 reflections
b = 6.224 (1) Åθ = 37.1–39.9°
c = 11.793 (2) ŵ = 0.79 mm1
β = 95.56 (3)°T = 293 K
V = 1671.2 (5) Å3Block, colourless
Z = 80.35 × 0.25 × 0.20 mm
Data collection top
Enraf-Nonius CAD4
diffractometer
1574 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.019
Graphite monochromatorθmax = 76.0°, θmin = 3.9°
ω–2θ scansh = 2828
Absorption correction: ψ scan
North A.C., Philips, D.C. & Mathews, F. (1968) Acta Cryst. A24, 350-359
k = 77
Tmin = 0.771, Tmax = 0.859l = 1414
6926 measured reflections3 standard reflections every 60 min
1720 independent reflections intensity decay: none
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.148H atoms treated by a mixture of independent and constrained refinement
S = 1.38 w = 1/[σ2(Fo2) + (0.1P)2]
where P = (Fo2 + 2Fc2)/3
1720 reflections(Δ/σ)max < 0.001
148 parametersΔρmax = 0.15 e Å3
245 restraintsΔρmin = 0.15 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.05831 (4)0.11228 (13)0.17608 (5)0.0565 (3)
H10.06420.11760.24570.073*
O20.08762 (4)0.03752 (15)0.09191 (7)0.0663 (3)
O30.01314 (3)0.18594 (12)0.08259 (6)0.0536 (3)
H30.00540.08680.11450.070*
C10.10206 (4)0.28259 (14)0.02337 (7)0.0420 (3)
H1A0.10280.42020.01680.055*0.851 (5)
H1B0.09570.41890.01750.055*0.149 (5)
C20.06954 (4)0.31900 (15)0.12895 (7)0.0409 (3)
H2A0.03190.38870.10560.053*0.851 (5)
H2B0.03070.37200.09900.053*0.149 (5)
C3A0.10321 (11)0.4563 (5)0.22091 (19)0.0577 (6)0.851 (5)
H3A0.07480.52420.26530.075*0.851 (5)
H3B0.12680.36090.27170.075*0.851 (5)
C3B0.0935 (5)0.491 (3)0.2101 (14)0.076 (5)0.149 (5)
H3C0.07330.48250.27850.099*0.149 (5)
H3D0.08440.63000.17540.099*0.149 (5)
C4A0.14359 (7)0.6321 (2)0.18140 (13)0.0642 (5)0.851 (5)
H4A0.14790.74450.23860.084*0.851 (5)
H4B0.12550.69510.11140.084*0.851 (5)
C4B0.1583 (3)0.4808 (19)0.2436 (7)0.076 (3)0.149 (5)
H4C0.16610.55050.31710.099*0.149 (5)
H4D0.16910.33090.25380.099*0.149 (5)
C5A0.20469 (12)0.5463 (6)0.1610 (3)0.0757 (10)0.851 (5)
H5A0.22050.47180.22940.098*0.851 (5)
H5B0.23000.66880.15130.098*0.851 (5)
C5B0.1984 (8)0.581 (3)0.1626 (13)0.072 (4)0.149 (5)
H5C0.23800.58460.20060.094*0.149 (5)
H5D0.18610.72820.14840.094*0.149 (5)
C6A0.20894 (12)0.3976 (5)0.0615 (3)0.0712 (8)0.851 (5)
H6A0.20320.48190.00790.093*0.851 (5)
H6B0.24850.34030.06630.093*0.851 (5)
C6B0.2005 (6)0.470 (2)0.0491 (12)0.064 (4)0.149 (5)
H6C0.18560.56890.01050.083*0.149 (5)
H6D0.24130.44080.03840.083*0.149 (5)
C7A0.16627 (8)0.2101 (5)0.0507 (3)0.0570 (7)0.851 (5)
H7A0.17680.11480.00910.074*0.851 (5)
H7B0.16970.12970.12160.074*0.851 (5)
C7B0.1666 (4)0.264 (2)0.0341 (17)0.058 (4)0.149 (5)
H7C0.17830.17160.09870.076*0.149 (5)
H7D0.17800.19210.03340.076*0.149 (5)
C80.06781 (4)0.12552 (15)0.05584 (7)0.0442 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0779 (6)0.0603 (5)0.0308 (4)0.0234 (4)0.0021 (3)0.0044 (3)
O20.0744 (6)0.0700 (6)0.0534 (5)0.0034 (4)0.0012 (4)0.0278 (4)
O30.0593 (5)0.0507 (5)0.0491 (5)0.0084 (3)0.0032 (3)0.0002 (3)
C10.0528 (5)0.0411 (5)0.0331 (5)0.0070 (3)0.0094 (4)0.0029 (3)
C20.0467 (5)0.0436 (5)0.0330 (5)0.0023 (3)0.0062 (3)0.0027 (3)
C3A0.0777 (10)0.0584 (12)0.0386 (7)0.0136 (10)0.0132 (8)0.0161 (7)
C3B0.090 (6)0.055 (6)0.082 (10)0.027 (4)0.008 (6)0.031 (6)
C4A0.0905 (11)0.0408 (7)0.0606 (8)0.0106 (6)0.0034 (7)0.0105 (6)
C4B0.063 (4)0.099 (8)0.064 (5)0.011 (4)0.001 (4)0.034 (5)
C5A0.0693 (11)0.073 (2)0.0847 (19)0.0286 (12)0.0052 (10)0.0195 (13)
C5B0.127 (11)0.033 (4)0.057 (7)0.005 (5)0.009 (6)0.004 (4)
C6A0.0563 (9)0.0718 (17)0.0878 (14)0.0193 (10)0.0182 (9)0.0182 (12)
C6B0.061 (6)0.049 (7)0.083 (7)0.030 (5)0.015 (5)0.008 (5)
C7A0.0448 (8)0.0537 (13)0.0739 (14)0.0065 (6)0.0132 (7)0.0181 (11)
C7B0.068 (5)0.047 (7)0.063 (6)0.010 (4)0.027 (4)0.016 (6)
C80.0571 (5)0.0483 (5)0.0280 (4)0.0081 (4)0.0084 (3)0.0011 (3)
Geometric parameters (Å, º) top
O1—C21.4346 (11)C4A—H4A0.9700
O1—H10.8200C4A—H4B0.9700
O2—C81.2055 (13)C4B—C5B1.520 (10)
O3—C81.3147 (13)C4B—H4C0.9700
O3—H30.8200C4B—H4D0.9700
C1—C7B1.474 (10)C5A—C6A1.505 (3)
C1—C81.5167 (13)C5A—H5A0.9700
C1—C21.5278 (11)C5A—H5B0.9700
C1—C7A1.541 (2)C5B—C6B1.510 (11)
C1—H1A0.9800C5B—H5C0.9700
C1—H1B0.9800C5B—H5D0.9700
C2—C3B1.504 (9)C6A—C7A1.519 (3)
C2—C3A1.5289 (19)C6A—H6A0.9700
C2—H2A0.9800C6A—H6B0.9700
C2—H2B0.9800C6B—C7B1.504 (10)
C3A—C4A1.533 (3)C6B—H6C0.9700
C3A—H3A0.9700C6B—H6D0.9700
C3A—H3B0.9700C7A—H7A0.9700
C3B—C4B1.498 (10)C7A—H7B0.9700
C3B—H3C0.9700C7B—H7C0.9700
C3B—H3D0.9700C7B—H7D0.9700
C4A—C5A1.537 (4)
C2—O1—H1109.5C5B—C4B—H4C108.0
C8—O3—H3109.5C3B—C4B—H4D108.0
C7B—C1—C8117.0 (6)C5B—C4B—H4D108.0
C7B—C1—C2120.3 (7)H4C—C4B—H4D107.2
C8—C1—C2109.53 (7)C6A—C5A—C4A117.7 (2)
C8—C1—C7A111.43 (13)C6A—C5A—H5A107.9
C2—C1—C7A113.72 (16)C4A—C5A—H5A107.9
C8—C1—H1A107.3C6A—C5A—H5B107.9
C2—C1—H1A107.3C4A—C5A—H5B107.9
C7A—C1—H1A107.3H5A—C5A—H5B107.2
C7B—C1—H1B102.2C6B—C5B—C4B116.3 (9)
C8—C1—H1B102.2C6B—C5B—H5C108.2
C2—C1—H1B102.2C4B—C5B—H5C108.2
O1—C2—C3B117.4 (8)C6B—C5B—H5D108.2
O1—C2—C3A108.86 (13)C4B—C5B—H5D108.2
O1—C2—C1107.60 (7)H5C—C5B—H5D107.4
C3B—C2—C1116.6 (6)C5A—C6A—C7A116.6 (2)
C3A—C2—C1114.16 (9)C5A—C6A—H6A108.1
O1—C2—H2A108.7C7A—C6A—H6A108.1
C3A—C2—H2A108.7C5A—C6A—H6B108.1
C1—C2—H2A108.7C7A—C6A—H6B108.1
O1—C2—H2B104.6H6A—C6A—H6B107.3
C3B—C2—H2B104.6C5B—C6B—C7B115.7 (10)
C1—C2—H2B104.6C5B—C6B—H6C108.4
C2—C3A—C4A117.40 (16)C7B—C6B—H6C108.4
C2—C3A—H3A108.0C5B—C6B—H6D108.4
C4A—C3A—H3A108.0C7B—C6B—H6D108.4
C2—C3A—H3B108.0H6C—C6B—H6D107.4
C4A—C3A—H3B108.0C6A—C7A—C1112.6 (2)
H3A—C3A—H3B107.2C6A—C7A—H7A109.1
C4B—C3B—C2115.3 (8)C1—C7A—H7A109.1
C4B—C3B—H3C108.4C6A—C7A—H7B109.1
C2—C3B—H3C108.4C1—C7A—H7B109.1
C4B—C3B—H3D108.4H7A—C7A—H7B107.8
C2—C3B—H3D108.4C1—C7B—C6B116.3 (11)
H3C—C3B—H3D107.5C1—C7B—H7C108.2
C5A—C4A—C3A112.6 (2)C6B—C7B—H7C108.2
C5A—C4A—H4A109.1C1—C7B—H7D108.2
C3A—C4A—H4A109.1C6B—C7B—H7D108.2
C5A—C4A—H4B109.1H7C—C7B—H7D107.4
C3A—C4A—H4B109.1O2—C8—O3122.52 (9)
H4A—C4A—H4B107.8O2—C8—C1124.78 (9)
C3B—C4B—C5B117.3 (11)O3—C8—C1112.71 (8)
C3B—C4B—H4C108.0
C7B—C1—C2—O187.1 (7)C4A—C5A—C6A—C7A49.4 (4)
C8—C1—C2—O152.91 (10)C4B—C5B—C6B—C7B5 (2)
C7A—C1—C2—O172.49 (15)C5A—C6A—C7A—C167.1 (4)
C7B—C1—C2—C3B47.3 (10)C8—C1—C7A—C6A144.1 (2)
C8—C1—C2—C3B172.7 (8)C2—C1—C7A—C6A91.6 (2)
C8—C1—C2—C3A173.84 (16)C8—C1—C7B—C6B144.8 (10)
C7A—C1—C2—C3A48.4 (2)C2—C1—C7B—C6B78.1 (15)
O1—C2—C3A—C4A152.4 (2)C5B—C6B—C7B—C170 (2)
C1—C2—C3A—C4A32.2 (3)C7B—C1—C8—O215.8 (9)
O1—C2—C3B—C4B80.8 (14)C2—C1—C8—O2125.63 (10)
C1—C2—C3B—C4B49.0 (17)C7A—C1—C8—O21.08 (19)
C2—C3A—C4A—C5A84.5 (3)C7B—C1—C8—O3163.9 (8)
C2—C3B—C4B—C5B82.9 (17)C2—C1—C8—O354.66 (10)
C3A—C4A—C5A—C6A68.9 (3)C7A—C1—C8—O3178.62 (16)
C3B—C4B—C5B—C6B67.7 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O2i0.822.002.7923 (12)162
O3—H3···O1ii0.821.832.6425 (11)170
Symmetry codes: (i) x, y, z+1/2; (ii) x, y, z.
 

Follow Acta Cryst. B
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds