Download citation
Download citation
link to html
Methyl 2-acetamido-2-de­oxy-β-D-gluco­pyranosyl-(1→4)-2-acetamido-2-de­oxy-β-D-gluco­pyran­oside (methyl β-chitobioside), (IV), crystallizes from aqueous methanol at room temperature to give a structure (C17H30N2O22·CH3OH) con­taining conformational disorder in the exocyclic hy­droxy­methyl group of one of its βGlcNAc residues. As observed in other X-ray structures of disaccharides containing β-(1→4) O-glycosidic linkages, inter-residue hydrogen bonding between O3H of the βGlcNAc bearing the OCH3 aglycone and O5 of the adjacent βGlcNAc is observed based on the 2.79 Å inter­nuclear distance between the O atoms. The structure of (IV) was compared to that determined previously for 2-acetamido-2-de­oxy-β-D-gluco­pyranosyl-(1→4)-2-acetamido-2-de­oxy-β-D-gluco­pyran­ose (β-chitobiose), (III). The O-glycosidic linkage torsion angles, phi (ϕ) and psi (ψ), in (III) and (IV) differ by 6–8°. The N-acetyl side chain conformation in (III) and (IV) shows some context dependence, with the C1—C2—N—Ccar torsion angle 10–15° smaller for the βGlcNAc residue in­volved in the inter­nal O-glycosidic linkage. In (IV), conformational disorder is observed in the exocyclic hy­droxy­methyl (–CH2OH) group in the βGlcNAc residue bearing the OCH3 aglycone, and a fitting of the electron density indicates an approximate 50:50 distribution of the gauchegauche (gg) and gauchetrans (gt) conformers in the lattice. Similar behavior is not observed in (III), presumably due to the different packing structure in the vicinity of the –CH2OH substituent that affects its ability to hydrogen bond to proximal donors/acceptors. Unlike (IV), a re-examination of the previously reported electron density of (III) revealed conformational disorder in the N-acetyl side chain attached to the reducing-end βGlcNAc residue caused by rotation about the C2—N bond.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2053229624005199/dg3055sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229624005199/dg3055Isup2.hkl
Contains datablock I

pdf

Portable Document Format (PDF) file https://doi.org/10.1107/S2053229624005199/dg3055sup3.pdf
Synthesis of Me-β:-chitobioside

CCDC reference: 2359730

Computing details top

Methyl 2-acetamido-2-deoxy-β-D-glucopyranosyl-(14)-2-acetamido-2-deoxy-β-D-glucopyranoside methanol monosolvate top
Crystal data top
C17H30N2O11·CH4OF(000) = 504
Mr = 470.47Dx = 1.376 Mg m3
Monoclinic, P21Cu Kα radiation, λ = 1.54178 Å
a = 4.7599 (1) ÅCell parameters from 9983 reflections
b = 14.3223 (5) Åθ = 2.7–71.9°
c = 16.6515 (5) ŵ = 0.99 mm1
β = 90.022 (2)°T = 260 K
V = 1135.18 (6) Å3Needle, colourless
Z = 20.26 × 0.04 × 0.02 mm
Data collection top
Bruker Venture
diffractometer
4462 independent reflections
Radiation source: Incoatec Diamond micro-focus4410 reflections with I > 2σ(I)
HELIOS Multi-layer monochromatorRint = 0.048
Detector resolution: 7.41 pixels mm-1θmax = 72.7°, θmin = 2.7°
combination of ω and φ–scansh = 55
Absorption correction: numerical
(SADABS2016; Krause et al., 2015)
k = 1717
Tmin = 0.825, Tmax = 1.0l = 2020
20006 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.031H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.080 w = 1/[σ2(Fo2) + (0.0524P)2 + 0.0431P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.003
4462 reflectionsΔρmax = 0.19 e Å3
330 parametersΔρmin = 0.14 e Å3
1 restraintAbsolute structure: Twinning involves inversion, so Flack parameter cannot be determined
Primary atom site location: dual
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a 2-component inversion twin

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.6613 (6)0.38954 (17)1.01553 (14)0.0445 (6)
O30.6528 (6)0.37365 (16)0.73265 (14)0.0412 (5)
O50.7299 (6)0.52182 (15)0.94317 (12)0.0396 (5)
O60.9612 (16)0.7071 (5)0.9453 (4)0.0641 (17)0.5
H6O0.8757120.6978050.9872750.096*0.5
O6A0.538 (2)0.6967 (5)0.8715 (6)0.097 (3)0.5
H6AO0.5289680.7538530.8711800.145*0.5
O80.3233 (5)0.2240 (2)0.9067 (2)0.0590 (8)
N10.7583 (5)0.27620 (17)0.87908 (16)0.0299 (5)
H1N0.932 (8)0.266 (2)0.8755 (19)0.017 (7)*
C10.7936 (7)0.4255 (2)0.94888 (17)0.0330 (6)
H1A0.9971670.4167050.9534410.040*
C20.6822 (6)0.37358 (19)0.87507 (18)0.0293 (5)
H2A0.4767380.3781550.8748990.035*
C30.7936 (6)0.4179 (2)0.79753 (17)0.0298 (6)
H3A0.9956670.4059100.7932190.036*
C40.7431 (7)0.52381 (19)0.79937 (17)0.0296 (5)
H4A0.5408240.5362630.7969320.036*
C50.8640 (8)0.5658 (2)0.87643 (17)0.0379 (6)
H5A1.0661930.5531850.8786520.046*
C60.8160 (12)0.6693 (3)0.8831 (2)0.0593 (11)
H6A0.8733820.6992020.8335420.071*0.5
H6B0.6170580.6810540.8906350.071*0.5
H6C0.8760440.6897080.9359700.071*0.5
H6D0.9329250.7007110.8438570.071*0.5
C70.8083 (12)0.4062 (3)1.0894 (2)0.0541 (10)
H7A0.7239740.3700951.1315390.081*
H7B0.7976780.4713471.1026490.081*
H7C1.0015190.3883511.0833780.081*
C80.5760 (6)0.2082 (2)0.8968 (2)0.0372 (7)
C90.6950 (8)0.1115 (3)0.9016 (3)0.0536 (9)
H9A0.6094850.0786000.9455150.080*
H9B0.8942590.1149410.9100510.080*
H9C0.6575340.0788870.8523810.080*
O1'0.8809 (4)0.57052 (15)0.73397 (12)0.0298 (4)
O3'0.7196 (5)0.74058 (15)0.48957 (14)0.0367 (5)
H3'O0.567 (12)0.759 (4)0.471 (3)0.052 (13)*
H3O0.715 (10)0.398 (3)0.685 (3)0.046 (11)*
O4'0.4803 (6)0.56213 (19)0.42887 (16)0.0499 (6)
H4'O0.551 (11)0.605 (4)0.393 (3)0.052 (12)*
O5'0.8318 (5)0.49753 (14)0.61404 (12)0.0297 (4)
O6'0.7734 (5)0.32150 (16)0.54828 (16)0.0395 (5)
H6'O0.909 (16)0.295 (5)0.540 (4)0.08 (2)*
O7'1.1510 (5)0.7998 (2)0.6826 (2)0.0559 (7)
N1'0.7139 (5)0.74593 (17)0.66216 (15)0.0287 (5)
H1N'0.522 (8)0.758 (2)0.6661 (18)0.020 (7)*
C1'0.7340 (6)0.5731 (2)0.66160 (16)0.0280 (5)
H1'A0.5318610.5669040.6713920.034*
C2'0.7956 (5)0.66437 (18)0.61688 (16)0.0267 (5)
H2'A0.9977400.6678050.6061560.032*
C3'0.6387 (6)0.6623 (2)0.53637 (17)0.0293 (6)
H3'A0.4369640.6672160.5473680.035*
C4'0.6892 (6)0.5726 (2)0.48892 (16)0.0317 (6)
H4'A0.8747270.5752940.4635380.038*
C5'0.6709 (6)0.48547 (19)0.54181 (17)0.0299 (6)
H5'A0.4743130.4726570.5553220.036*
C6'0.7956 (8)0.4029 (2)0.49838 (19)0.0373 (7)
H6'A0.6962420.3926790.4482830.045*
H6'B0.9913890.4150610.4860590.045*
C7'0.8984 (6)0.8097 (2)0.6888 (2)0.0330 (6)
C8'0.7740 (8)0.8961 (2)0.7253 (2)0.0461 (8)
H8'A0.8466440.9501600.6982490.069*
H8'B0.8224290.8989560.7811680.069*
H8'C0.5733110.8944260.7196810.069*
O1S0.5403 (7)0.6821 (2)0.3019 (2)0.0632 (8)
H1S0.4749330.7344520.2948960.095*
C1S0.8289 (14)0.6839 (6)0.2880 (3)0.091 (2)
H1SA0.9005240.6212400.2879040.136*
H1SB0.9197320.7192080.3295340.136*
H1SC0.8651500.7124650.2368660.136*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0584 (14)0.0455 (13)0.0297 (11)0.0091 (12)0.0059 (10)0.0026 (10)
O30.0594 (15)0.0319 (10)0.0324 (11)0.0080 (10)0.0036 (11)0.0007 (9)
O50.0583 (14)0.0326 (11)0.0280 (9)0.0049 (10)0.0080 (10)0.0016 (8)
O60.094 (4)0.052 (3)0.046 (3)0.032 (3)0.010 (3)0.018 (3)
O6A0.141 (7)0.046 (3)0.103 (6)0.048 (4)0.061 (6)0.013 (4)
O80.0259 (12)0.0619 (17)0.089 (2)0.0020 (12)0.0048 (13)0.0188 (15)
N10.0206 (11)0.0304 (12)0.0387 (12)0.0011 (9)0.0013 (10)0.0028 (10)
C10.0382 (15)0.0302 (14)0.0307 (13)0.0011 (12)0.0014 (13)0.0019 (11)
C20.0243 (11)0.0288 (13)0.0348 (14)0.0002 (10)0.0010 (12)0.0034 (11)
C30.0308 (14)0.0298 (13)0.0287 (12)0.0002 (11)0.0019 (11)0.0009 (10)
C40.0324 (13)0.0272 (12)0.0292 (12)0.0011 (11)0.0042 (12)0.0014 (11)
C50.0537 (17)0.0316 (14)0.0285 (13)0.0022 (14)0.0044 (14)0.0013 (12)
C60.114 (4)0.0319 (16)0.0321 (16)0.002 (2)0.003 (2)0.0041 (14)
C70.088 (3)0.0457 (17)0.0290 (14)0.0033 (19)0.0018 (18)0.0021 (13)
C80.0280 (15)0.0366 (15)0.0472 (17)0.0027 (12)0.0007 (13)0.0083 (13)
C90.0460 (19)0.0336 (16)0.081 (3)0.0041 (15)0.0046 (19)0.0092 (17)
O1'0.0318 (9)0.0296 (9)0.0280 (9)0.0027 (9)0.0009 (8)0.0015 (8)
O3'0.0347 (12)0.0325 (10)0.0429 (11)0.0005 (9)0.0012 (9)0.0122 (9)
O4'0.0624 (16)0.0430 (13)0.0442 (12)0.0106 (13)0.0234 (12)0.0060 (11)
O5'0.0345 (9)0.0254 (8)0.0291 (9)0.0054 (7)0.0038 (9)0.0015 (7)
O6'0.0369 (11)0.0269 (10)0.0547 (14)0.0000 (9)0.0015 (10)0.0045 (10)
O7'0.0233 (11)0.0536 (15)0.091 (2)0.0022 (11)0.0001 (12)0.0168 (14)
N1'0.0191 (11)0.0274 (11)0.0396 (12)0.0016 (9)0.0012 (9)0.0023 (9)
C1'0.0288 (12)0.0257 (11)0.0294 (12)0.0003 (12)0.0010 (10)0.0003 (11)
C2'0.0239 (11)0.0238 (11)0.0323 (12)0.0001 (10)0.0029 (11)0.0029 (11)
C3'0.0229 (12)0.0262 (12)0.0389 (14)0.0009 (11)0.0014 (11)0.0072 (12)
C4'0.0345 (13)0.0332 (13)0.0274 (12)0.0025 (13)0.0044 (11)0.0022 (12)
C5'0.0308 (14)0.0275 (13)0.0314 (13)0.0032 (11)0.0061 (12)0.0009 (10)
C6'0.0444 (17)0.0323 (14)0.0353 (14)0.0014 (13)0.0044 (14)0.0053 (12)
C7'0.0313 (15)0.0301 (14)0.0376 (16)0.0011 (12)0.0037 (12)0.0011 (12)
C8'0.0425 (17)0.0369 (15)0.0587 (19)0.0027 (14)0.0063 (16)0.0160 (16)
O1S0.0670 (18)0.0633 (19)0.0594 (16)0.0089 (16)0.0009 (15)0.0201 (15)
C1S0.070 (3)0.141 (6)0.061 (3)0.016 (4)0.007 (3)0.022 (3)
Geometric parameters (Å, º) top
O1—C11.376 (4)C9—H9C0.9600
O1—C71.435 (5)O1'—C1'1.394 (3)
O3—C31.420 (4)O3'—C3'1.419 (3)
O3—H3O0.91 (5)O3'—H3'O0.83 (6)
O5—C11.416 (3)O4'—C4'1.418 (4)
O5—C51.428 (4)O4'—H4'O0.92 (5)
O6—C61.356 (8)O5'—C1'1.420 (3)
O6—H6O0.8200O5'—C5'1.436 (4)
O6A—C61.393 (12)O6'—C6'1.436 (4)
O6A—H6AO0.8200O6'—H6'O0.76 (8)
O8—C81.235 (4)O7'—C7'1.215 (4)
N1—C81.338 (4)N1'—C7'1.342 (4)
N1—C21.443 (4)N1'—C2'1.444 (4)
N1—H1N0.84 (4)N1'—H1N'0.93 (4)
C1—C21.531 (4)C1'—C2'1.533 (4)
C1—H1A0.9800C1'—H1'A0.9800
C2—C31.534 (4)C2'—C3'1.535 (4)
C2—H2A0.9800C2'—H2'A0.9800
C3—C41.536 (3)C3'—C4'1.527 (4)
C3—H3A0.9800C3'—H3'A0.9800
C4—O1'1.437 (4)C4'—C5'1.530 (4)
C4—C51.529 (4)C4'—H4'A0.9800
C4—H4A0.9800C5'—C6'1.508 (4)
C5—C61.503 (5)C5'—H5'A0.9800
C5—H5A0.9800C6'—H6'A0.9700
C6—H6A0.9700C6'—H6'B0.9700
C6—H6B0.9700C7'—C8'1.501 (4)
C6—H6C0.9700C8'—H8'A0.9600
C6—H6D0.9700C8'—H8'B0.9600
C7—H7A0.9600C8'—H8'C0.9600
C7—H7B0.9600O1S—C1S1.393 (7)
C7—H7C0.9600O1S—H1S0.8200
C8—C91.499 (5)C1S—H1SA0.9600
C9—H9A0.9600C1S—H1SB0.9600
C9—H9B0.9600C1S—H1SC0.9600
C1—O1—C7113.9 (3)H9A—C9—H9C109.5
C3—O3—H3O109 (3)H9B—C9—H9C109.5
C1—O5—C5112.7 (2)C1'—O1'—C4116.0 (2)
C6—O6—H6O109.5C3'—O3'—H3'O103 (3)
C6—O6A—H6AO109.5C4'—O4'—H4'O98 (3)
C8—N1—C2123.5 (2)C1'—O5'—C5'112.6 (2)
C8—N1—H1N121 (2)C6'—O6'—H6'O103 (5)
C2—N1—H1N115 (2)C7'—N1'—C2'123.1 (2)
O1—C1—O5108.7 (3)C7'—N1'—H1N'119 (2)
O1—C1—C2107.9 (2)C2'—N1'—H1N'117 (2)
O5—C1—C2110.2 (2)O1'—C1'—O5'107.3 (2)
O1—C1—H1A110.0O1'—C1'—C2'110.3 (2)
O5—C1—H1A110.0O5'—C1'—C2'108.4 (2)
C2—C1—H1A110.0O1'—C1'—H1'A110.2
N1—C2—C1110.2 (2)O5'—C1'—H1'A110.2
N1—C2—C3110.6 (2)C2'—C1'—H1'A110.2
C1—C2—C3110.8 (2)N1'—C2'—C1'112.6 (2)
N1—C2—H2A108.4N1'—C2'—C3'109.9 (2)
C1—C2—H2A108.4C1'—C2'—C3'108.3 (2)
C3—C2—H2A108.4N1'—C2'—H2'A108.6
O3—C3—C2107.0 (2)C1'—C2'—H2'A108.6
O3—C3—C4112.5 (2)C3'—C2'—H2'A108.6
C2—C3—C4109.8 (2)O3'—C3'—C4'109.7 (2)
O3—C3—H3A109.2O3'—C3'—C2'109.4 (2)
C2—C3—H3A109.2C4'—C3'—C2'113.1 (2)
C4—C3—H3A109.2O3'—C3'—H3'A108.2
O1'—C4—C5106.3 (2)C4'—C3'—H3'A108.2
O1'—C4—C3111.9 (2)C2'—C3'—H3'A108.2
C5—C4—C3110.3 (2)O4'—C4'—C3'110.1 (3)
O1'—C4—H4A109.4O4'—C4'—C5'106.3 (2)
C5—C4—H4A109.4C3'—C4'—C5'112.3 (2)
C3—C4—H4A109.4O4'—C4'—H4'A109.4
O5—C5—C6108.0 (3)C3'—C4'—H4'A109.4
O5—C5—C4108.1 (3)C5'—C4'—H4'A109.4
C6—C5—C4113.1 (3)O5'—C5'—C6'106.6 (2)
O5—C5—H5A109.2O5'—C5'—C4'110.7 (2)
C6—C5—H5A109.2C6'—C5'—C4'109.9 (3)
C4—C5—H5A109.2O5'—C5'—H5'A109.8
O6—C6—C5111.9 (5)C6'—C5'—H5'A109.8
O6A—C6—C5114.3 (5)C4'—C5'—H5'A109.8
O6—C6—H6A109.2O6'—C6'—C5'109.3 (3)
C5—C6—H6A109.2O6'—C6'—H6'A109.8
O6—C6—H6B109.2C5'—C6'—H6'A109.8
C5—C6—H6B109.2O6'—C6'—H6'B109.8
H6A—C6—H6B107.9C5'—C6'—H6'B109.8
O6A—C6—H6C108.7H6'A—C6'—H6'B108.3
C5—C6—H6C108.7O7'—C7'—N1'122.7 (3)
O6A—C6—H6D108.7O7'—C7'—C8'121.4 (3)
C5—C6—H6D108.7N1'—C7'—C8'115.9 (3)
H6C—C6—H6D107.6C7'—C8'—H8'A109.5
O1—C7—H7A109.5C7'—C8'—H8'B109.5
O1—C7—H7B109.5H8'A—C8'—H8'B109.5
H7A—C7—H7B109.5C7'—C8'—H8'C109.5
O1—C7—H7C109.5H8'A—C8'—H8'C109.5
H7A—C7—H7C109.5H8'B—C8'—H8'C109.5
H7B—C7—H7C109.5C1S—O1S—H1S109.5
O8—C8—N1121.8 (3)O1S—C1S—H1SA109.5
O8—C8—C9122.0 (3)O1S—C1S—H1SB109.5
N1—C8—C9116.1 (3)H1SA—C1S—H1SB109.5
C8—C9—H9A109.5O1S—C1S—H1SC109.5
C8—C9—H9B109.5H1SA—C1S—H1SC109.5
H9A—C9—H9B109.5H1SB—C1S—H1SC109.5
C8—C9—H9C109.5
C7—O1—C1—O581.3 (3)C5—C4—O1'—C1'154.8 (2)
C7—O1—C1—C2159.2 (3)C3—C4—O1'—C1'84.7 (3)
C5—O5—C1—O1178.7 (3)C4—O1'—C1'—O5'95.8 (3)
C5—O5—C1—C263.3 (3)C4—O1'—C1'—C2'146.2 (2)
C8—N1—C2—C1105.6 (3)C5'—O5'—C1'—O1'172.6 (2)
C8—N1—C2—C3131.5 (3)C5'—O5'—C1'—C2'68.3 (3)
O1—C1—C2—N164.1 (3)C7'—N1'—C2'—C1'115.7 (3)
O5—C1—C2—N1177.4 (2)C7'—N1'—C2'—C3'123.4 (3)
O1—C1—C2—C3173.1 (2)O1'—C1'—C2'—N1'60.3 (3)
O5—C1—C2—C354.6 (3)O5'—C1'—C2'—N1'177.6 (2)
N1—C2—C3—O364.8 (3)O1'—C1'—C2'—C3'177.8 (2)
C1—C2—C3—O3172.7 (2)O5'—C1'—C2'—C3'60.6 (3)
N1—C2—C3—C4172.9 (2)N1'—C2'—C3'—O3'63.7 (3)
C1—C2—C3—C450.4 (3)C1'—C2'—C3'—O3'172.8 (2)
O3—C3—C4—O1'69.8 (3)N1'—C2'—C3'—C4'173.7 (2)
C2—C3—C4—O1'171.2 (2)C1'—C2'—C3'—C4'50.2 (3)
O3—C3—C4—C5172.1 (2)O3'—C3'—C4'—O4'75.0 (3)
C2—C3—C4—C553.1 (3)C2'—C3'—C4'—O4'162.6 (2)
C1—O5—C5—C6172.0 (3)O3'—C3'—C4'—C5'166.9 (2)
C1—O5—C5—C465.3 (3)C2'—C3'—C4'—C5'44.4 (3)
O1'—C4—C5—O5179.4 (2)C1'—O5'—C5'—C6'179.4 (2)
C3—C4—C5—O559.1 (3)C1'—O5'—C5'—C4'61.1 (3)
O1'—C4—C5—C659.8 (4)O4'—C4'—C5'—O5'167.9 (2)
C3—C4—C5—C6178.7 (3)C3'—C4'—C5'—O5'47.5 (3)
O5—C5—C6—O669.8 (5)O4'—C4'—C5'—C6'74.5 (3)
C4—C5—C6—O6170.6 (4)C3'—C4'—C5'—C6'165.1 (3)
O5—C5—C6—O6A68.4 (5)O5'—C5'—C6'—O6'60.7 (3)
C4—C5—C6—O6A51.3 (6)C4'—C5'—C6'—O6'179.2 (3)
C2—N1—C8—O84.1 (5)C2'—N1'—C7'—O7'6.3 (5)
C2—N1—C8—C9177.5 (3)C2'—N1'—C7'—C8'172.3 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O6a—H6Oa···O8i0.822.042.823 (7)160
N1—H1N···O8ii0.84 (4)2.02 (4)2.829 (4)160 (3)
C9—H9A···O5iii0.962.593.525 (5)165
C9—H9B···O8ii0.962.573.398 (5)144
O3—H3O···O6iv0.83 (6)1.88 (6)2.692 (3)165 (5)
O3—H3O···O50.91 (5)1.94 (5)2.789 (3)155 (4)
O3—H3O···O60.91 (5)2.55 (5)3.212 (4)130 (4)
O4—H4O···O1S0.92 (5)1.88 (5)2.739 (4)155 (5)
O6—H6O···O3v0.76 (8)1.99 (8)2.750 (4)173 (7)
N1—H1N···O7vi0.93 (4)1.88 (4)2.808 (3)171 (3)
C6—H6A···O7v0.972.663.366 (5)130
C8—H8C···O7vi0.962.503.347 (5)147
O1S—H1S···O3iv0.822.132.950 (4)173
C1S—H1SC···O8iv0.962.563.371 (7)142
Symmetry codes: (i) x+1, y+1/2, z+2; (ii) x+1, y, z; (iii) x+1, y1/2, z+2; (iv) x+1, y+1/2, z+1; (v) x+2, y1/2, z+1; (vi) x1, y, z.
Cremer–Pople puckering parameters for GlcNAc pyranosyl rings in (II)–(V) top
Compoundaθ (°)φ (°)Q (Å)q2 (Å)q3 (Å)Conformerb
(II) residue a0.6 (3)52.5 (3)0.572 (3)0.006 (3)0.572 (3)BC1,C4
(II) residue b2.9 (3)96.5 (6)0.580 (3)0.029 (3)0.580 (3)C5SC1
(III) residue a4.4 (3)18.5 (4)0.568 (3)0.044 (3)0.566 (3)C3SC1
(III) residue b8.8 (3)338.1 (2)0.577 (3)0.088 (9)0.570 (3)O5SC2
(IV) residue a5.2 (3)324 (3)0.581 (3)0.055 (3)0.579 (3)O5SC2
(IV) residue b12.1 (3)45.8 (14)0.564 (3)0.121 (3)0.552((3)BC1,C4
(VA)11.4 (3)302.0 (12)0.595 (3)0.117 (3)0.583 (3)BC2,C5
(VB)7.6 (2)0.6 (2)0.585 (3)0.078 (2)0.580 (3)C3,O5B
(a) See Fig. 1 for the definitions of residues a and b in disaccharides (II)–(IV). (b) B = boat and S = twist-boat or skew. Parameters shown for (II), (III) and (V) were extracted from crystal structures reported in Mo & Jensen (1978), Mo (1979), and Hu et al. (2011), respectively.
Selected structural parametersa in X-ray crystal structures of (II)–(V) top
Structural parameterDisaccharidesMonosaccharides
βGlcNAcOCH3 (IV) (residue A)bβGlcNAcOR (IV) (residue B)βGlcNAcOH (III) (residue A)βGlcNAcOR (III) (residue B)βGlcNAcOH (II) (residue A)αGlcNAcOR (II) (residue B)βGlcNAcOCH3 (VA)cβGlcNAcOCH3 (VB)c
Bond lengths (Å)
C1—C21.5311.5331.5221.5221.5261.5151.5331.531
C2—C31.5341.5351.5211.5311.5271.5171.5301.534
C3—C41.5361.5271.5311.5161.5201.5161.5271.525
C4—C51.5291.5301.5361.5071.5191.5371.5261.523
C5—C61.5031.5081.5011.4991.5121.5161.5191.514
C1—O11.3761.3941.3891.3891.3611.3951.3891.387
C1—O51.4161.4201.4271.4291.4181.4141.4181.423
C2—N11.4431.4441.4501.4461.4501.4601.4561.455
C3—O31.4201.4191.4301.4241.4211.4311.4301.424
C4—O4/O1'1.4371.4181.4481.4251.4481.4221.4241.425
C5—O51.4281.4361.4291.4361.4381.4271.4431.435
C6—O6f1.4361.4131.4151.4191.4231.4301.430
O1—CH31.4351.4451.439
N1—Ccar1.3381.3421.3321.3211.3451.3171.3421.343
Ccar—Ocar1.2351.2151.2431.2461.2311.2301.2371.235
Ccar—CMe1.4991.5011.4971.4951.4901.5061.5081.510
O3···O5'2.7892.7963.311
O3···O1'3.0223.0992.886
O3···O6'3.2122.8754.828
Bond angles (°)
C5—O5—C1112.73112.59112.59112.13114.49112.92111.9111.8
O5—C1—O1108.71107.32107.71106.87112.46107.68107.64107.76
C1—O1—CH3113.95112.39112.43
C1'—O1'—C4116.03117.07116.34
C2—N1—Ccar123.48123.11122.90124.91124.83123.89122.6121.8
N1—Ccar—CMe116.08115.86116.33115.91115.29115.80116.1116.4
N1—Ccar—Ocar121.85122.69121.49121.26123.94123.89122.6122.9
Ocar—Ccar—CMe122.05121.43122.17122.73120.73120.24121.3120.7
O3—H···O5'154.85132.75142.95
Torsion angles (°)
C1—C2—C3—C4-50.35-50.20-52.05-48.16-54.44-56.66-47.9-50.1
C1—O5—C5—C465.2661.0761.8267.4160.3659.1269.366.5
C3—C4—C5—O5-59.09-47.51-54.82-58.61-55.73-54.68-63.90-56.56
O5—C5—C6—O6e60.73 (gt)-60.61 (gg)58.55 (gt)-74.59 (gg)-65.53 (gg)64.3 (gt)65.2 (gt)
C1—C2—N1—Ccar105.61115.67100.50113.72138.69100.49108.2100.0
C3—C2—N1—Ccar-131.52-123.42-135.18-122.48-98.90-136.95-128.1-137.2
C2—N1—Ccar—CMe-177.54172.27-173.70178.39-179.61-173.90179.1-179.1
H2—C2—N1—Ccar-12.83-4.69-12.50-6.7324.94-16.95-9.80-19.20
C2—N1—Ccar—Ocar4.14-6.305.16-5.28-2.072.94-1.20.8
C2—C3—O3—H-179.52-136.70-148.65-152.13143.25-51.20-157.87-112.65
C4—C3—O3—H59.8898.7291.5723.13
H3—C3—O3—H–61.48-19.09-31.91-97.92
C3—C4—O4—H77.12125.9899.9370.4556.71
C5—C6—O6—Hf-143.4480.71-178.6588.34-91.61-80.28-80.95
C2—C1—O1—CH3/H (φa)a159.18161.75–163.57169.48175.49
O5—C1—O1—CH3/H (φb)–81.33–80.3374.69–71.05-66.63
H1—C1—O1—CH3/H (φc)39.1840.24–42.5049.1854.04
C2'—C1'—O1'—C4 (φa)146.23151.65161.49
O5'—C1'—O1'—C4 (φb)–95.82–90.28–79.57
H1'—C1'—O1'—C4 (φc)24.2630.2036.30
C1'—O1'—C4—C3 (ψa)84.7377.27133.47
C1'—O1'—C4—C5 (ψb)–154.81–162.31–106.89
C1'—O1'—C4—H4 (ψc)–36.73–44.8611.69
Notes: (a) O-glycosidic torsion angles ϕ', ϕ and ψ, which specify the rotational properties of the C1—O1, C1'—O1' and O1'—C4 bonds, respectively, in (II)–(IV) can be defined by three different vicinal pathways, which are distinguished by the ac subscripts. (b) See Fig. 1 for the definitions of residues A and B in (II)–(IV). For simplicity, Ccar and CMe are used in place of the N-acetyl side-chain atom labeling in (IV) shown in Fig. 2. (c) (VA) and (VB) refer to the two molecules of (V) observed in the reported crystal structure (Hu et al., 2011). (d) Data for (II), (III) and (V) were taken from Mo & Jensen (1978), Mo (1979), and Hu et al. (2011), respectively. (e) This torsion angle is disorderd in the crystal; approximately equal populations of gg and gt. (f) Could not be determined due to disorder of the O5—C5—C6—O6 torsion angle.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds