Download citation
Download citation
link to html
Mol­ecules of eletriptan hydro­bromide monohydrate (system­atic name: (1S,2R)-1-methyl-2-{5-[2-(phenyl­sulfonyl)­ethyl]-1H-indol-3-yl­methyl}­pyrrolidinium bromide mono­hydrate), C22H27N2O2S+·Br-·H2O, (I), and naratriptan hydro­chloride (systematic name: 1-methyl-4-{5-[2-(methyl­sulfamoyl)­ethyl]-1H-indol-3-yl}­piperidinium chloride), C17H26N3O2S+·Cl-, (II), adopt conformations similar to other triptans. The C-2 and C-5 substituents of the indole ring, both of which are in a region of conformational flexibility, are found to be oriented on either side of the indole ring plane in (I), whilst they are on the same side in (II). The N atom in the C-2 side chain is protonated in both structures and is involved in the hydrogen-bonding networks. In (I), the water mol­ecules create helical hydrogen-bonded chains along the c axis. In (II), the hydrogen bonding of the chloride ions results in macrocyclic R42(20) and R42(24) ring motifs that form sheets in the bc plane. This structural analysis provides an insight into the mol­ecular structure-activity relationships within this class of compound, which is of use for drug development.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270108037621/dn3101sup1.cif
Contains datablocks I, II, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270108037621/dn3101Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270108037621/dn3101IIsup3.hkl
Contains datablock II

CCDC references: 718149; 718150

Comment top

Migraine headache is a severe throbbing pain over one or both halves of the scalp and is accompanied by nausea, vomiting, photophobia and/or phonophobia. Triptans are the family of tryptamine-based drugs specifically designed to alleviate migraine headaches, which they do by blocking serotonin receptors in blood vessels in the brain (Saxena & Tfelt-Hansen, 2001). They are designer drugs obtained by modifying the serotonin molecule (Goadsby, 1998). Triptan drugs were first introduced during the 1990s and are now available in different types under a variety of commercial names: sumatriptan (Imitrex), zolimitriptan (Zomig), rizatriptan (Maxalt), almotriptan (Axert), naratriptan (Amerge), eletriptan (Relpax) and frovatriptan (Frova). All triptans share a basic indole ring, with the side chains being different. These side chains affect the pharmacokinetics of these agents in ways that may be clinically significant as they may make them more, or less, effective (Isaac & Slassi, 2001).

Eletriptan and naratriptan, the second-generation drugs of Pfizer and Glaxo Wellcome, respectively, are more lipophilic and have higher oral bioavailability than sumatriptan (Tepper et al., 2002). We have been studying the structural characteristics of a series of triptans (Ravikumar et al., 2004, 2006, 2007a,b and 2008), and the present study of eletriptan hydrobromide monohydrate, (I), and naratriptan hydrochloride, (II), is a continuation of our investigation into the three-dimensional structural correlation of triptans.

Pertinent bond lengths and angles for (I) and (II) are listed in Tables 1 and 4, and the molecular structures are depicted in Figs. 1 and 2, respectively. Protonation of the molecules occurs in both structures at atom N2 - of the pyrolidine ring in (I) and the piperidine ring in (II); the sum of the angles at this atom is 334.0 (2)° in (I) and 334.4 (1)° in (II). An overlay of the triptans superimposing the planar indole systems (Fig. 3) reveals the significant similarities and orientation differences.

The use of the substituents at C2 and C5 of the indole ring is believed to provide binding selectivity and affinity for 5-HT1D receptors (Slassi et al., 2000) and provides a region of conformational flexibility in the molecule. The conformational difference between the two structures, (I) and (II), is in the orientation of the substituents at C2 [methyl pyrrolidinyl in (I) and methylpiperidinyl in (II)] and C5 [phenylsulfonylethyl in (I) and ethanesulfonamide in (II)] of the indole ring (Fig. 3). In (I), the two substituents are oriented on either side of the indole ring plane, whereas in (II) they are on the same side. Furthermore, the orientation of the side chain at C2 can be visualized in terms of the torsion angle τ1, C1—C2—C9—C10 [24.5 (2) in (I) and 4.3 (3)° in (II)], synperiplanar in both. The corresponding angles in other triptans are listed in Table 3, from which the two principal orientations - synperiplanar and anticlinal - can be noted in the solid-state structures.

An interesting comparison between the structures of (I) and (II) is the position of the protonated atom N2 relative to the indole ring system. In (I) it is intra, being almost coplanar with the indole ring plane [0.080 (2) Å], whereas in (II) it is extra, 1.123 (2) Å above the plane. The distance between atom N2 and the centroid of the C3–C8 aromatic ring remains almost equal in both structures [6.48 Å in (I) and 6.76 Å in (II)]. The corresponding distances - a parameter correlating the 5-HT1B-like [5-HT1D ?] receptor model (Moloney et al., 1999) - deduced for other triptans are listed in Table 3, which also indicates whether atom N2 is coplanar or not.

The ethanesulfonyl side chains of both (I) and (II) show a similar orientation, as indicated by the torsion angles τ2 (C6—C5—C15—C16) = 65.8 (2) and 67.0 (2)° and τ3 (C5—C15—C16—S1) = 168.7 (2) and -168.5 (1)°, respectively. It is interesting to note that the corresponding torsion angles found in other triptans (Table 3) all favour a similar synclinal orientation for τ2 but only some of them do for τ3. The terminal groups, phenyl in (I) and amide in (II), attached with this chain are antiperiplanar [C15—C16—S1—C17 = -175.9 (2)°] and synclinal [C15—C16—S1—N3 = 56.4 (2)°], respectively.

The conformation of the pyrolidine ring in (I) can be best described as an envelope, with the twofold axis through atom C13. The piperidine ring in (II) adopts a chair conformation. The dihedral angles of the mean plane of the pyrolidine or phenyl ring with the mean plane of the indole ring are 82.8 (1) and 71.1 (1)°, respectively, indicating near perpendicularity in (I).

In (I), the water molecule plays a key role in the hydrogen-bonding network. It acts as both donor and acceptor, creating a helical chain along the c axis (Fig. 4, Table 2). The sulfonyl O and Br atoms participate in the hydrogen-bonding network. In (II), the Cl- ion plays a central role in the hydrogen-bonding network (Fig. 5, Table 5). All three N atoms (N1, N2 and N3) form hydrogen bonds only with the Cl atom, even though the sulfonyl O atoms are available. The N2—H···Cl and N3—H···Cl hydrogen bonds link the molecules into a chain running along the c axis. The N1—H···Cl hydrogen bond links to a chain related by centrosymmetry, along the b axis, resulting in a supramolecular macrocycle that may be described in graph-set notation as R42(20) and R42(24) (Etter, 1990; Etter et al., 1990; Bernstein et al., 1995), forming sheets in the bc plane. Since these two rings are edge fused, they form an overall macrocylic R63(37) ring in the sheets.

In conclusion, such crystal structures provide useful information on the overall conformation of molecules, the orientations of the two indole ring substituents and the molecular interactions influencing crystal packing. A word of caution may be exercised regarding the C2 side-chain orientation, since in solid-state structures it is probably governed largely by the position of the counterions, viz. halide, succinate, malate, benzoate etc. and may not be significant for activity, in view of the flexibility of the chain.

Related literature top

For related literature, see: Bernstein et al. (1995); Etter (1990); Etter, MacDonald & Bernstein (1990); Flack & Bernardinelli (2000); Goadsby (1998); Isaac & Slassi (2001); Moloney et al. (1999); Ravikumar et al. (2004, 2006, 2007a, 2007b, 2008); Saxena & Tfelt-Hansen (2001); Slassi et al. (2000); Tepper et al. (2002).

Experimental top

Crystals of eletriptan hydrobromide monohydrate and naratriptan hydrochloride (SMS Pharma Research Centre, Hyderabad) suitable for X-ray diffraction were obtained from solutions in a mixture of methanol and water [Solvent ratio?] by the method of slow evaporation.

Refinement top

All N-bound and O-bound H atoms of both (I) and (II) were located in a difference density map and refined isotropically. All other H atoms were positioned geometrically and were treated as riding on their parent C atoms, with C—H = 0.93–0.98 Å, and with Uiso(H) = 1.5Ueq(C) for methyl H and 1.2Ueq(C) for other H atoms. The methyl groups were allowed to rotate but not to tip. The absolute configuration of the procured material was known in advance and was confirmed by unambiguous refinement of the absolute structure parameter (Flack & Bernardinelli, 2000).

Computing details top

For both compounds, data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2005) and PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii. Dashed lines indicate hydrogen bonds.
[Figure 2] Fig. 2. The asymmetric unit of (II), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii. The dashed line indicates the hydrogen bond.
[Figure 3] Fig. 3. A superposition of the molecular conformations of triptans; the overlay was made by making a least-squares fit through the indole ring of eletriptan, (I). For naratriptan, (II), the r.m.s deviation is 0.022 Å; for zolmitriptan (labelled 3), r.m.s deviation = 0.028 Å; for sumatriptan (labelled 4), r.m.s deviation = 0.017 Å; for almotriptan (labelled 5), r.m.s deviation = 0.19 Å; for rizatriptan benzoate (labelled 6), r.m.s deviation = 0.013 Å; for sumatriptan succinate (labelled 7), r.m.s deviation = 0.017 Å; and for almotriptan malate (labelled 8), r.m.s deviation = 0.023 Å.
[Figure 4] Fig. 4. A view of part of the crystal structure of (I), showing the formation of helical chain along the c axis. Hydrogen bonds are drawn as dashed lines and H atoms not involved in hydrogen bonding have been omitted for clarity. [Symmetry codes: (i) -x + 1, -y + 2, -z + 1; (ii) x - 1, y, z + 1].
[Figure 5] Fig. 5. A view of part of the crystal structure of (II), showing the aggregation of R42(20) and R42(24) ring hydrogen-bonding motifs forming sheets in the bc plane. H atoms not involved in hydrogen bonding have been omitted for clarity. Dashed lines indicate hydrogen bonds. [Symmetry codes: (i) x - 1/2, -y + 3/2, -z + 1; (ii) -x + 1/2, -y + 1, z + 1/2].
(I) (1S,2R)-1-methyl-2-{5-[2-(phenylsulfonyl)ethyl]-1H-indol-3- ylmethyl}pyrrolidinium bromide monohydrate top
Crystal data top
C22H27N2O2S+·Br·H2OF(000) = 1000
Mr = 481.44Dx = 1.408 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 6588 reflections
a = 9.4019 (6) Åθ = 2.4–27.1°
b = 13.4089 (8) ŵ = 1.93 mm1
c = 18.0173 (11) ÅT = 294 K
V = 2271.4 (2) Å3Block, colourless
Z = 40.16 × 0.12 × 0.07 mm
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
3984 independent reflections
Radiation source: fine-focus sealed tube3761 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.066
ω scansθmax = 25.0°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 1111
Tmin = 0.75, Tmax = 0.86k = 1515
21861 measured reflectionsl = 2121
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.024H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.066 w = 1/[σ2(Fo2) + (0.0416P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.001
3984 reflectionsΔρmax = 0.36 e Å3
279 parametersΔρmin = 0.25 e Å3
0 restraintsAbsolute structure: Flack & Bernardinelli (2000), with how many Friedel pairs?
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.007 (5)
Crystal data top
C22H27N2O2S+·Br·H2OV = 2271.4 (2) Å3
Mr = 481.44Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 9.4019 (6) ŵ = 1.93 mm1
b = 13.4089 (8) ÅT = 294 K
c = 18.0173 (11) Å0.16 × 0.12 × 0.07 mm
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
3984 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
3761 reflections with I > 2σ(I)
Tmin = 0.75, Tmax = 0.86Rint = 0.066
21861 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.024H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.066Δρmax = 0.36 e Å3
S = 1.06Δρmin = 0.25 e Å3
3984 reflectionsAbsolute structure: Flack & Bernardinelli (2000), with how many Friedel pairs?
279 parametersAbsolute structure parameter: 0.007 (5)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.7115 (3)0.75178 (16)0.51628 (11)0.0462 (5)
H10.77050.80220.53390.055*
C20.6300 (2)0.69147 (14)0.55980 (11)0.0397 (4)
C30.5553 (2)0.62645 (13)0.50994 (11)0.0371 (4)
C40.4560 (2)0.54997 (14)0.52014 (11)0.0388 (4)
H40.42810.53170.56780.047*
C50.3992 (2)0.50151 (14)0.45886 (12)0.0422 (5)
C60.4469 (3)0.52790 (16)0.38693 (12)0.0494 (5)
H60.40990.49440.34610.059*
C70.5461 (3)0.60153 (16)0.37568 (11)0.0485 (5)
H70.57680.61770.32810.058*
C80.5993 (2)0.65118 (14)0.43741 (11)0.0407 (4)
C90.6250 (3)0.68641 (15)0.64310 (12)0.0474 (5)
H9A0.68590.63250.65990.057*
H9B0.52860.67130.65860.057*
C100.6721 (3)0.78258 (17)0.67974 (12)0.0517 (5)
H100.75910.80590.65520.062*
C110.5627 (4)0.8667 (2)0.67850 (17)0.0783 (8)
H11A0.47520.84460.65530.094*
H11B0.59910.92370.65130.094*
C120.5369 (4)0.8941 (2)0.75973 (16)0.0841 (10)
H12A0.52340.96540.76530.101*
H12B0.45380.85990.77890.101*
C130.6687 (4)0.8604 (2)0.79898 (15)0.0791 (9)
H13A0.74470.90870.79340.095*
H13B0.65080.84970.85140.095*
C140.8507 (3)0.7292 (3)0.77544 (17)0.0925 (11)
H14A0.91820.77510.75470.139*
H14B0.86250.66490.75280.139*
H14C0.86600.72370.82800.139*
C150.2883 (2)0.42176 (14)0.46794 (13)0.0458 (5)
H15A0.20540.43860.43850.055*
H15B0.25940.41830.51960.055*
C160.3456 (2)0.32015 (14)0.44345 (12)0.0412 (4)
H16A0.43850.30940.46550.049*
H16B0.35680.31970.38990.049*
C170.3211 (2)0.11320 (15)0.44297 (11)0.0410 (4)
C180.3585 (3)0.04389 (17)0.49625 (14)0.0547 (6)
H180.33480.05350.54590.066*
C190.4327 (3)0.04101 (18)0.47362 (17)0.0679 (7)
H190.45750.08950.50820.081*
C200.4691 (3)0.05295 (17)0.40044 (17)0.0701 (8)
H200.52000.10910.38590.084*
C210.4316 (3)0.01650 (19)0.34864 (16)0.0683 (7)
H210.45780.00720.29930.082*
C220.3556 (3)0.09999 (16)0.36842 (13)0.0542 (6)
H220.32800.14650.33290.065*
N10.6947 (2)0.72792 (14)0.44290 (10)0.0482 (5)
H1N0.720 (2)0.7617 (15)0.4086 (12)0.039 (6)*
N20.7039 (2)0.76611 (17)0.76130 (11)0.0543 (5)
H2N0.644 (3)0.7245 (19)0.7712 (14)0.049 (7)*
S10.23056 (6)0.22216 (3)0.46994 (3)0.04000 (12)
O10.10076 (16)0.22946 (11)0.42758 (9)0.0522 (4)
O20.2173 (2)0.22161 (12)0.54933 (8)0.0598 (4)
Br10.73101 (3)0.83875 (2)0.269612 (12)0.06036 (10)
O1W0.5203 (2)0.63364 (14)0.82638 (13)0.0600 (5)
H1W0.454 (4)0.639 (2)0.8011 (19)0.083 (12)*
H2W0.494 (4)0.663 (2)0.861 (2)0.087 (12)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0510 (12)0.0479 (11)0.0396 (11)0.0102 (9)0.0005 (10)0.0010 (9)
C20.0429 (11)0.0422 (10)0.0340 (10)0.0021 (8)0.0005 (9)0.0001 (8)
C30.0396 (10)0.0357 (9)0.0360 (10)0.0029 (8)0.0004 (8)0.0025 (8)
C40.0429 (11)0.0393 (10)0.0341 (10)0.0017 (8)0.0015 (9)0.0017 (8)
C50.0433 (11)0.0385 (10)0.0449 (12)0.0034 (9)0.0030 (9)0.0010 (9)
C60.0593 (14)0.0495 (11)0.0393 (12)0.0004 (10)0.0092 (10)0.0060 (9)
C70.0612 (13)0.0518 (12)0.0326 (11)0.0027 (11)0.0004 (10)0.0028 (9)
C80.0452 (11)0.0403 (10)0.0367 (11)0.0021 (9)0.0012 (8)0.0035 (9)
C90.0501 (12)0.0531 (12)0.0390 (11)0.0088 (10)0.0014 (9)0.0012 (9)
C100.0583 (13)0.0647 (13)0.0322 (11)0.0175 (12)0.0021 (10)0.0017 (10)
C110.109 (2)0.0614 (15)0.0644 (17)0.0016 (16)0.0042 (17)0.0035 (13)
C120.128 (3)0.0530 (14)0.0713 (19)0.0089 (16)0.027 (2)0.0010 (14)
C130.122 (3)0.0697 (16)0.0460 (14)0.0244 (17)0.0039 (16)0.0135 (12)
C140.0512 (16)0.176 (3)0.0505 (16)0.0029 (19)0.0087 (13)0.0027 (19)
C150.0409 (11)0.0454 (11)0.0511 (12)0.0010 (9)0.0010 (10)0.0061 (9)
C160.0353 (10)0.0434 (11)0.0448 (12)0.0026 (9)0.0006 (8)0.0007 (8)
C170.0393 (11)0.0423 (10)0.0415 (11)0.0041 (8)0.0011 (9)0.0005 (9)
C180.0608 (15)0.0509 (12)0.0524 (14)0.0057 (11)0.0078 (12)0.0055 (10)
C190.0728 (17)0.0473 (13)0.083 (2)0.0039 (12)0.0138 (15)0.0120 (13)
C200.0679 (17)0.0519 (14)0.090 (2)0.0083 (12)0.0085 (15)0.0053 (14)
C210.0816 (19)0.0587 (14)0.0645 (17)0.0029 (14)0.0239 (15)0.0061 (13)
C220.0683 (15)0.0461 (12)0.0481 (13)0.0009 (12)0.0077 (12)0.0029 (10)
N10.0569 (12)0.0495 (10)0.0383 (10)0.0093 (9)0.0045 (8)0.0079 (8)
N20.0526 (11)0.0731 (13)0.0371 (10)0.0191 (10)0.0035 (9)0.0035 (9)
S10.0387 (3)0.0444 (2)0.0369 (2)0.0026 (2)0.0023 (2)0.00044 (19)
O10.0362 (8)0.0609 (9)0.0597 (9)0.0026 (7)0.0047 (7)0.0012 (7)
O20.0786 (12)0.0636 (9)0.0373 (8)0.0024 (9)0.0105 (8)0.0009 (7)
Br10.05458 (15)0.08405 (18)0.04246 (13)0.00331 (12)0.00418 (10)0.00765 (10)
O1W0.0602 (12)0.0659 (11)0.0538 (11)0.0052 (9)0.0015 (10)0.0001 (9)
Geometric parameters (Å, º) top
C1—C21.362 (3)C13—H13B0.9700
C1—N11.369 (3)C14—N21.488 (4)
C1—H10.9300C14—H14A0.9600
C2—C31.436 (3)C14—H14B0.9600
C2—C91.503 (3)C14—H14C0.9600
C3—C41.399 (3)C15—C161.530 (3)
C3—C81.410 (3)C15—H15A0.9700
C4—C51.388 (3)C15—H15B0.9700
C4—H40.9300C16—S11.7674 (19)
C5—C61.416 (3)C16—H16A0.9700
C5—C151.503 (3)C16—H16B0.9700
C6—C71.373 (3)C17—C181.381 (3)
C6—H60.9300C17—C221.393 (3)
C7—C81.389 (3)C17—S11.759 (2)
C7—H70.9300C18—C191.396 (4)
C8—N11.369 (3)C18—H180.9300
C9—C101.515 (3)C19—C201.372 (4)
C9—H9A0.9700C19—H190.9300
C9—H9B0.9700C20—C211.365 (4)
C10—N21.516 (3)C20—H200.9300
C10—C111.527 (4)C21—C221.375 (3)
C10—H100.9800C21—H210.9300
C11—C121.528 (4)C22—H220.9300
C11—H11A0.9700N1—H1N0.80 (2)
C11—H11B0.9700N2—H2N0.81 (3)
C12—C131.496 (5)S1—O21.4358 (15)
C12—H12A0.9700S1—O11.4427 (16)
C12—H12B0.9700O1W—H1W0.78 (4)
C13—N21.473 (3)O1W—H2W0.78 (4)
C13—H13A0.9700
C2—C1—N1110.60 (19)H13A—C13—H13B109.1
C2—C1—H1124.7N2—C14—H14A109.5
N1—C1—H1124.7N2—C14—H14B109.5
C1—C2—C3106.01 (18)H14A—C14—H14B109.5
C1—C2—C9128.25 (19)N2—C14—H14C109.5
C3—C2—C9125.59 (18)H14A—C14—H14C109.5
C4—C3—C8119.34 (18)H14B—C14—H14C109.5
C4—C3—C2133.61 (19)C5—C15—C16110.99 (17)
C8—C3—C2107.06 (17)C5—C15—H15A109.4
C5—C4—C3119.7 (2)C16—C15—H15A109.4
C5—C4—H4120.2C5—C15—H15B109.4
C3—C4—H4120.2C16—C15—H15B109.4
C4—C5—C6119.3 (2)H15A—C15—H15B108.0
C4—C5—C15120.9 (2)C15—C16—S1111.65 (14)
C6—C5—C15119.81 (19)C15—C16—H16A109.3
C7—C6—C5122.0 (2)S1—C16—H16A109.3
C7—C6—H6119.0C15—C16—H16B109.3
C5—C6—H6119.0S1—C16—H16B109.3
C6—C7—C8118.1 (2)H16A—C16—H16B108.0
C6—C7—H7121.0C18—C17—C22121.7 (2)
C8—C7—H7121.0C18—C17—S1119.31 (18)
N1—C8—C7130.84 (19)C22—C17—S1118.98 (16)
N1—C8—C3107.58 (17)C17—C18—C19118.2 (2)
C7—C8—C3121.58 (19)C17—C18—H18120.9
C2—C9—C10112.80 (17)C19—C18—H18120.9
C2—C9—H9A109.0C20—C19—C18120.0 (2)
C10—C9—H9A109.0C20—C19—H19120.0
C2—C9—H9B109.0C18—C19—H19120.0
C10—C9—H9B109.0C21—C20—C19120.9 (2)
H9A—C9—H9B107.8C21—C20—H20119.6
C9—C10—N2110.86 (18)C19—C20—H20119.6
C9—C10—C11115.2 (2)C20—C21—C22120.8 (2)
N2—C10—C11104.73 (19)C20—C21—H21119.6
C9—C10—H10108.6C22—C21—H21119.6
N2—C10—H10108.6C21—C22—C17118.3 (2)
C11—C10—H10108.6C21—C22—H22120.8
C10—C11—C12105.7 (2)C17—C22—H22120.8
C10—C11—H11A110.6C8—N1—C1108.75 (17)
C12—C11—H11A110.6C8—N1—H1N124.4 (16)
C10—C11—H11B110.6C1—N1—H1N125.2 (15)
C12—C11—H11B110.6C13—N2—C14114.5 (3)
H11A—C11—H11B108.7C13—N2—C10106.1 (2)
C13—C12—C11104.4 (3)C14—N2—C10113.4 (2)
C13—C12—H12A110.9C13—N2—H2N109.6 (17)
C11—C12—H12A110.9C14—N2—H2N112.0 (17)
C13—C12—H12B110.9C10—N2—H2N100.2 (18)
C11—C12—H12B110.9O2—S1—O1116.99 (11)
H12A—C12—H12B108.9O2—S1—C17108.23 (10)
N2—C13—C12103.1 (2)O1—S1—C17108.64 (10)
N2—C13—H13A111.1O2—S1—C16109.02 (10)
C12—C13—H13A111.1O1—S1—C16108.92 (10)
N2—C13—H13B111.1C17—S1—C16104.28 (9)
C12—C13—H13B111.1H1W—O1W—H2W99 (3)
N1—C1—C2—C31.0 (3)C6—C5—C15—C1665.9 (3)
N1—C1—C2—C9174.7 (2)C5—C15—C16—S1168.71 (15)
C1—C2—C3—C4179.2 (2)C22—C17—C18—C190.0 (3)
C9—C2—C3—C45.0 (4)S1—C17—C18—C19178.76 (19)
C1—C2—C3—C81.0 (2)C17—C18—C19—C201.3 (4)
C9—C2—C3—C8174.9 (2)C18—C19—C20—C211.1 (4)
C8—C3—C4—C51.8 (3)C19—C20—C21—C220.4 (5)
C2—C3—C4—C5178.3 (2)C20—C21—C22—C171.7 (4)
C3—C4—C5—C62.3 (3)C18—C17—C22—C211.5 (4)
C3—C4—C5—C15177.66 (18)S1—C17—C22—C21177.3 (2)
C4—C5—C6—C71.2 (3)C7—C8—N1—C1179.3 (2)
C15—C5—C6—C7178.8 (2)C3—C8—N1—C10.0 (2)
C5—C6—C7—C80.4 (3)C2—C1—N1—C80.6 (3)
C6—C7—C8—N1178.3 (2)C12—C13—N2—C14164.8 (2)
C6—C7—C8—C31.0 (3)C12—C13—N2—C1038.9 (3)
C4—C3—C8—N1179.53 (18)C9—C10—N2—C13148.7 (2)
C2—C3—C8—N10.6 (2)C11—C10—N2—C1323.9 (3)
C4—C3—C8—C70.2 (3)C9—C10—N2—C1484.7 (3)
C2—C3—C8—C7179.97 (19)C11—C10—N2—C14150.4 (3)
C1—C2—C9—C1024.5 (3)C18—C17—S1—O23.2 (2)
C3—C2—C9—C10160.6 (2)C22—C17—S1—O2175.67 (18)
C2—C9—C10—N2164.60 (19)C18—C17—S1—O1124.82 (18)
C2—C9—C10—C1176.7 (3)C22—C17—S1—O156.3 (2)
C9—C10—C11—C12121.9 (3)C18—C17—S1—C16119.14 (19)
N2—C10—C11—C120.2 (3)C22—C17—S1—C1659.7 (2)
C10—C11—C12—C1323.6 (3)C15—C16—S1—O260.44 (18)
C11—C12—C13—N238.4 (3)C15—C16—S1—O168.29 (17)
C4—C5—C15—C16114.1 (2)C15—C16—S1—C17175.86 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···Br10.80 (2)2.71 (2)3.4747 (19)159 (2)
N2—H2N···O1W0.81 (3)1.96 (3)2.740 (3)162 (2)
O1W—H1W···Br1i0.78 (4)2.47 (4)3.244 (2)175 (3)
O1W—H2W···O1ii0.78 (4)2.08 (4)2.827 (3)162 (3)
Symmetry codes: (i) x1/2, y+3/2, z+1; (ii) x+1/2, y+1, z+1/2.
(II) 1-methyl-4-{5-[2-(methylsulfamoyl)ethyl]-1H-indol-3-yl}piperidinium chloride top
Crystal data top
C17H26N3O2S+·ClZ = 2
Mr = 371.92F(000) = 396
Triclinic, P1Dx = 1.319 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.1914 (5) ÅCell parameters from 5193 reflections
b = 12.2298 (10) Åθ = 2.6–28.0°
c = 12.9948 (11) ŵ = 0.33 mm1
α = 78.348 (1)°T = 294 K
β = 76.338 (1)°Block, colourless
γ = 86.033 (1)°0.18 × 0.15 × 0.08 mm
V = 936.18 (13) Å3
Data collection top
Burker SMART APEX CCD area-detector
diffractometer
3006 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.018
Graphite monochromatorθmax = 25.0°, θmin = 1.6°
ω scansh = 77
9097 measured reflectionsk = 1414
3301 independent reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.097H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0486P)2 + 0.3147P]
where P = (Fo2 + 2Fc2)/3
3301 reflections(Δ/σ)max = 0.001
231 parametersΔρmax = 0.24 e Å3
0 restraintsΔρmin = 0.34 e Å3
Crystal data top
C17H26N3O2S+·Clγ = 86.033 (1)°
Mr = 371.92V = 936.18 (13) Å3
Triclinic, P1Z = 2
a = 6.1914 (5) ÅMo Kα radiation
b = 12.2298 (10) ŵ = 0.33 mm1
c = 12.9948 (11) ÅT = 294 K
α = 78.348 (1)°0.18 × 0.15 × 0.08 mm
β = 76.338 (1)°
Data collection top
Burker SMART APEX CCD area-detector
diffractometer
3006 reflections with I > 2σ(I)
9097 measured reflectionsRint = 0.018
3301 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.097H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.24 e Å3
3301 reflectionsΔρmin = 0.34 e Å3
231 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.5449 (3)0.98809 (16)0.65005 (17)0.0562 (5)
H10.65281.01890.59010.067*
C20.5646 (3)0.88617 (14)0.71365 (14)0.0441 (4)
C30.3612 (3)0.87256 (14)0.79556 (14)0.0418 (4)
C40.2735 (3)0.78710 (14)0.88254 (13)0.0422 (4)
H40.35560.72140.89660.051*
C50.0654 (3)0.80058 (16)0.94706 (14)0.0460 (4)
C60.0569 (3)0.90060 (17)0.92507 (16)0.0543 (5)
H60.19590.90940.96960.065*
C70.0218 (3)0.98533 (16)0.84045 (17)0.0553 (5)
H70.06171.05060.82680.066*
C80.2305 (3)0.97032 (14)0.77583 (15)0.0483 (4)
C90.7580 (3)0.80530 (14)0.70112 (14)0.0420 (4)
H90.80910.79000.76860.050*
C100.9532 (3)0.85169 (14)0.60995 (15)0.0473 (4)
H10A0.90370.87190.54300.057*
H10B1.00400.91880.62500.057*
C111.1431 (3)0.76844 (15)0.59688 (16)0.0500 (4)
H11A1.26260.80010.53760.060*
H11B1.19950.75170.66210.060*
C120.8864 (3)0.61234 (15)0.66696 (15)0.0464 (4)
H12A0.94040.59320.73280.056*
H12B0.83860.54450.65200.056*
C130.6933 (3)0.69450 (14)0.68115 (15)0.0445 (4)
H13A0.57700.66170.74150.053*
H13B0.63360.70850.61690.053*
C141.2579 (3)0.58442 (16)0.55097 (17)0.0547 (5)
H14A1.32590.56500.61160.082*
H14B1.36530.61870.48870.082*
H14C1.20470.51820.53700.082*
C150.0332 (3)0.70945 (17)1.03972 (15)0.0515 (5)
H15A0.07770.73991.10510.062*
H15B0.07910.65161.05020.062*
C160.2340 (3)0.65810 (16)1.02022 (14)0.0479 (4)
H16A0.18380.61500.96370.057*
H16B0.33200.71760.99510.057*
C170.6003 (4)0.7424 (2)1.2136 (2)0.0837 (8)
H17A0.72500.72431.18860.126*
H17B0.51700.80011.16080.126*
H17C0.65250.76811.28050.126*
N10.3461 (3)1.03869 (14)0.68603 (15)0.0601 (5)
H1N0.297 (4)1.105 (2)0.6619 (18)0.064 (6)*
N21.0693 (2)0.66347 (12)0.57513 (12)0.0420 (3)
H2N1.013 (3)0.6777 (16)0.5170 (17)0.053 (6)*
N30.4582 (3)0.64332 (17)1.23026 (14)0.0608 (5)
H3N0.358 (4)0.6518 (19)1.2550 (18)0.062 (7)*
O10.5847 (2)0.54093 (13)1.11255 (11)0.0635 (4)
O20.2388 (3)0.48404 (12)1.17328 (12)0.0682 (4)
S10.38571 (7)0.57068 (4)1.13655 (4)0.04786 (15)
Cl10.83672 (9)0.71229 (4)0.38363 (4)0.05522 (16)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0587 (12)0.0429 (10)0.0590 (12)0.0056 (9)0.0049 (9)0.0001 (9)
C20.0478 (10)0.0388 (9)0.0450 (10)0.0050 (7)0.0108 (8)0.0050 (7)
C30.0451 (9)0.0394 (9)0.0439 (9)0.0011 (7)0.0146 (7)0.0092 (7)
C40.0425 (9)0.0438 (9)0.0419 (9)0.0002 (7)0.0146 (7)0.0063 (7)
C50.0443 (10)0.0544 (10)0.0421 (9)0.0038 (8)0.0136 (8)0.0105 (8)
C60.0475 (11)0.0599 (12)0.0568 (11)0.0039 (9)0.0081 (9)0.0203 (9)
C70.0560 (11)0.0440 (10)0.0682 (13)0.0094 (8)0.0160 (10)0.0173 (9)
C80.0549 (11)0.0380 (9)0.0544 (11)0.0004 (8)0.0160 (9)0.0108 (8)
C90.0431 (9)0.0431 (9)0.0395 (9)0.0051 (7)0.0116 (7)0.0030 (7)
C100.0475 (10)0.0397 (9)0.0531 (10)0.0116 (8)0.0078 (8)0.0059 (8)
C110.0397 (9)0.0509 (10)0.0584 (11)0.0120 (8)0.0077 (8)0.0082 (9)
C120.0424 (9)0.0410 (9)0.0517 (10)0.0069 (7)0.0068 (8)0.0015 (8)
C130.0378 (9)0.0414 (9)0.0508 (10)0.0075 (7)0.0075 (7)0.0015 (8)
C140.0471 (10)0.0516 (11)0.0615 (12)0.0044 (8)0.0095 (9)0.0068 (9)
C150.0424 (10)0.0691 (12)0.0414 (9)0.0055 (9)0.0104 (8)0.0046 (9)
C160.0496 (10)0.0560 (11)0.0379 (9)0.0042 (8)0.0126 (8)0.0047 (8)
C170.0595 (14)0.111 (2)0.0876 (18)0.0127 (14)0.0122 (13)0.0464 (16)
N10.0664 (11)0.0363 (9)0.0695 (11)0.0036 (8)0.0111 (9)0.0019 (8)
N20.0390 (8)0.0431 (8)0.0437 (8)0.0023 (6)0.0133 (6)0.0031 (6)
N30.0491 (10)0.0898 (14)0.0458 (9)0.0096 (9)0.0105 (8)0.0160 (9)
O10.0580 (8)0.0756 (10)0.0605 (9)0.0186 (7)0.0204 (7)0.0076 (7)
O20.0711 (10)0.0586 (9)0.0723 (10)0.0023 (7)0.0276 (8)0.0071 (7)
S10.0467 (3)0.0543 (3)0.0422 (3)0.0076 (2)0.01441 (19)0.0012 (2)
Cl10.0698 (3)0.0475 (3)0.0532 (3)0.0039 (2)0.0278 (2)0.0064 (2)
Geometric parameters (Å, º) top
C1—N11.363 (3)C12—C131.509 (2)
C1—C21.365 (3)C12—H12A0.9700
C1—H10.9300C12—H12B0.9700
C2—C31.439 (2)C13—H13A0.9700
C2—C91.499 (2)C13—H13B0.9700
C3—C41.406 (2)C14—N21.480 (2)
C3—C81.411 (2)C14—H14A0.9600
C4—C51.380 (3)C14—H14B0.9600
C4—H40.9300C14—H14C0.9600
C5—C61.409 (3)C15—C161.525 (3)
C5—C151.506 (3)C15—H15A0.9700
C6—C71.370 (3)C15—H15B0.9700
C6—H60.9300C16—S11.7679 (18)
C7—C81.388 (3)C16—H16A0.9700
C7—H70.9300C16—H16B0.9700
C8—N11.366 (2)C17—N31.458 (3)
C9—C131.527 (2)C17—H17A0.9600
C9—C101.527 (2)C17—H17B0.9600
C9—H90.9800C17—H17C0.9600
C10—C111.503 (3)N1—H1N0.87 (2)
C10—H10A0.9700N2—H2N0.89 (2)
C10—H10B0.9700N3—S11.6116 (19)
C11—N21.492 (2)N3—H3N0.78 (2)
C11—H11A0.9700O1—S11.4272 (14)
C11—H11B0.9700O2—S11.4301 (15)
C12—N21.502 (2)
N1—C1—C2110.95 (18)C12—C13—C9112.80 (14)
N1—C1—H1124.5C12—C13—H13A109.0
C2—C1—H1124.5C9—C13—H13A109.0
C1—C2—C3105.67 (16)C12—C13—H13B109.0
C1—C2—C9127.22 (17)C9—C13—H13B109.0
C3—C2—C9127.11 (15)H13A—C13—H13B107.8
C4—C3—C8118.36 (16)N2—C14—H14A109.5
C4—C3—C2134.72 (16)N2—C14—H14B109.5
C8—C3—C2106.91 (15)H14A—C14—H14B109.5
C5—C4—C3120.04 (16)N2—C14—H14C109.5
C5—C4—H4120.0H14A—C14—H14C109.5
C3—C4—H4120.0H14B—C14—H14C109.5
C4—C5—C6119.39 (17)C5—C15—C16112.07 (15)
C4—C5—C15120.92 (17)C5—C15—H15A109.2
C6—C5—C15119.68 (17)C16—C15—H15A109.2
C7—C6—C5122.34 (18)C5—C15—H15B109.2
C7—C6—H6118.8C16—C15—H15B109.2
C5—C6—H6118.8H15A—C15—H15B107.9
C6—C7—C8117.64 (18)C15—C16—S1113.24 (12)
C6—C7—H7121.2C15—C16—H16A108.9
C8—C7—H7121.2S1—C16—H16A108.9
N1—C8—C7130.05 (18)C15—C16—H16B108.9
N1—C8—C3107.73 (17)S1—C16—H16B108.9
C7—C8—C3122.22 (18)H16A—C16—H16B107.7
C2—C9—C13111.95 (14)N3—C17—H17A109.5
C2—C9—C10112.59 (14)N3—C17—H17B109.5
C13—C9—C10108.55 (14)H17A—C17—H17B109.5
C2—C9—H9107.9N3—C17—H17C109.5
C13—C9—H9107.9H17A—C17—H17C109.5
C10—C9—H9107.9H17B—C17—H17C109.5
C11—C10—C9111.80 (14)C1—N1—C8108.74 (16)
C11—C10—H10A109.3C1—N1—H1N128.8 (15)
C9—C10—H10A109.3C8—N1—H1N122.4 (15)
C11—C10—H10B109.3C14—N2—C11111.69 (14)
C9—C10—H10B109.3C14—N2—C12112.41 (14)
H10A—C10—H10B107.9C11—N2—C12110.27 (14)
N2—C11—C10110.57 (14)C14—N2—H2N105.4 (13)
N2—C11—H11A109.5C11—N2—H2N110.6 (13)
C10—C11—H11A109.5C12—N2—H2N106.2 (13)
N2—C11—H11B109.5C17—N3—S1119.18 (16)
C10—C11—H11B109.5C17—N3—H3N114.2 (17)
H11A—C11—H11B108.1S1—N3—H3N111.8 (17)
N2—C12—C13109.36 (14)O1—S1—O2119.03 (9)
N2—C12—H12A109.8O1—S1—N3107.23 (10)
C13—C12—H12A109.8O2—S1—N3106.20 (10)
N2—C12—H12B109.8O1—S1—C16107.89 (9)
C13—C12—H12B109.8O2—S1—C16108.31 (9)
H12A—C12—H12B108.3N3—S1—C16107.69 (10)
N1—C1—C2—C30.1 (2)C2—C9—C10—C11178.59 (15)
N1—C1—C2—C9179.73 (17)C13—C9—C10—C1154.06 (19)
C1—C2—C3—C4177.9 (2)C9—C10—C11—N258.1 (2)
C9—C2—C3—C42.3 (3)N2—C12—C13—C957.48 (19)
C1—C2—C3—C80.6 (2)C2—C9—C13—C12179.30 (14)
C9—C2—C3—C8179.18 (16)C10—C9—C13—C1254.40 (19)
C8—C3—C4—C50.8 (2)C4—C5—C15—C16112.37 (19)
C2—C3—C4—C5179.24 (18)C6—C5—C15—C1667.0 (2)
C3—C4—C5—C60.2 (3)C5—C15—C16—S1168.50 (14)
C3—C4—C5—C15179.14 (16)C2—C1—N1—C80.5 (2)
C4—C5—C6—C70.9 (3)C7—C8—N1—C1180.0 (2)
C15—C5—C6—C7178.44 (18)C3—C8—N1—C10.9 (2)
C5—C6—C7—C80.5 (3)C10—C11—N2—C14174.23 (15)
C6—C7—C8—N1178.3 (2)C10—C11—N2—C1260.02 (19)
C6—C7—C8—C30.7 (3)C13—C12—N2—C14175.61 (15)
C4—C3—C8—N1177.86 (16)C13—C12—N2—C1159.04 (19)
C2—C3—C8—N10.9 (2)C17—N3—S1—O154.9 (2)
C4—C3—C8—C71.3 (3)C17—N3—S1—O2176.81 (17)
C2—C3—C8—C7179.87 (17)C17—N3—S1—C1660.96 (19)
C1—C2—C9—C13118.4 (2)C15—C16—S1—O1171.84 (14)
C3—C2—C9—C1361.9 (2)C15—C16—S1—O258.07 (17)
C1—C2—C9—C104.3 (3)C15—C16—S1—N356.39 (17)
C3—C2—C9—C10175.50 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···Cl1i0.87 (2)2.34 (2)3.2045 (18)173 (2)
N2—H2N···Cl10.89 (2)2.21 (2)3.0978 (16)174 (2)
N3—H3N···Cl1ii0.78 (2)2.53 (2)3.2601 (19)157 (2)
Symmetry codes: (i) x+1, y+2, z+1; (ii) x1, y, z+1.

Experimental details

(I)(II)
Crystal data
Chemical formulaC22H27N2O2S+·Br·H2OC17H26N3O2S+·Cl
Mr481.44371.92
Crystal system, space groupOrthorhombic, P212121Triclinic, P1
Temperature (K)294294
a, b, c (Å)9.4019 (6), 13.4089 (8), 18.0173 (11)6.1914 (5), 12.2298 (10), 12.9948 (11)
α, β, γ (°)90, 90, 9078.348 (1), 76.338 (1), 86.033 (1)
V3)2271.4 (2)936.18 (13)
Z42
Radiation typeMo KαMo Kα
µ (mm1)1.930.33
Crystal size (mm)0.16 × 0.12 × 0.070.18 × 0.15 × 0.08
Data collection
DiffractometerBruker SMART APEX CCD area-detector
diffractometer
Burker SMART APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.75, 0.86
No. of measured, independent and
observed [I > 2σ(I)] reflections
21861, 3984, 3761 9097, 3301, 3006
Rint0.0660.018
(sin θ/λ)max1)0.5950.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.024, 0.066, 1.06 0.036, 0.097, 1.03
No. of reflections39843301
No. of parameters279231
H-atom treatmentH atoms treated by a mixture of independent and constrained refinementH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.36, 0.250.24, 0.34
Absolute structureFlack & Bernardinelli (2000), with how many Friedel pairs??
Absolute structure parameter0.007 (5)?

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg & Putz, 2005) and PLATON (Spek, 2003).

Selected geometric parameters (Å, º) for (I) top
C1—N11.369 (3)C13—N21.473 (3)
C10—N21.516 (3)C17—S11.759 (2)
C13—N2—C14114.5 (3)C14—N2—C10113.4 (2)
C13—N2—C10106.1 (2)C17—S1—C16104.28 (9)
Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···Br10.80 (2)2.71 (2)3.4747 (19)159 (2)
N2—H2N···O1W0.81 (3)1.96 (3)2.740 (3)162 (2)
O1W—H1W···Br1i0.78 (4)2.47 (4)3.244 (2)175 (3)
O1W—H2W···O1ii0.78 (4)2.08 (4)2.827 (3)162 (3)
Symmetry codes: (i) x1/2, y+3/2, z+1; (ii) x+1/2, y+1, z+1/2.
Selected geometric parameters (Å, º) for (II) top
C1—N11.363 (3)C12—N21.502 (2)
C11—N21.492 (2)N3—S11.6116 (19)
C14—N2—C11111.69 (14)C11—N2—C12110.27 (14)
C14—N2—C12112.41 (14)N3—S1—C16107.69 (10)
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···Cl1i0.87 (2)2.34 (2)3.2045 (18)173 (2)
N2—H2N···Cl10.89 (2)2.21 (2)3.0978 (16)174 (2)
N3—H3N···Cl1ii0.78 (2)2.53 (2)3.2601 (19)157 (2)
Symmetry codes: (i) x+1, y+2, z+1; (ii) x1, y, z+1.
Selected topographical solid-state features of triptans top
Crystal structureτ1 (°)τ2 (°)τ3 (°)d1* (Å)d2# (Å)Reference
Sumatriptan3.1 (4)79.5 (2)a-179.6 (2)c-0.166 (2)6.41Ravikumar et al. (2006)
Almotriptan-23.7 (6)87.7 (4)a59.3 (3)c0.162 (3)6.45Ravikumar et al. (2008)
Almotriptan malate22.9 (3)79.8 (2)a-174.8 (2)c-0.021 (2)6.37Ravikumar et al. (2008)
Eletriptan hydrobromide24.5 (3)65.9 (3)168.7 (2)-0.080 (2)6.48Present work
Naratriptan hydrochloride4.3 (3)67.0 (2)-168.5 (1)1.123 (2)6.76Present work
Rizatriptan benzoate-100.5 (2)80.2 (2)b85.4 (2)d1.456 (2)5.71Ravikumar et al. (2007b)
Sumatriptan succinate-112.1 (3)83.1 (3)a-177.1 (2)c0.884 (1)5.82Ravikumar et al. (2004)
Zolmitriptan108.8 (3)-84.4 (3)65.8 (3)b2.433 (2)5.24Ravikumar et al. (2007a)
τ1 = C1—C2—C9—C10; τ2 = C6—C5—C15—C16; τ3 = C5—C15—C16—S1; * displacement distance of N2 from the mean plane of the indole ring. # distance of N2 from the centre of the aromatic ring. a C—C—C—S; b C—C—C—N; c C—C—S—N; d C—C—N—N.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds