Download citation
Download citation
link to html
The isomorphous title complexes, dichlorido[4-(3,5-dimethyl-4H-1,2,4-triazol-4-yl)benzoic acid-κN1]zinc(II) dihydrate, [ZnCl2(C11H11N3O2)2]·2H2O, and dibromido[4-(3,5-dimethyl-4H-1,2,4-triazol-4-yl)benzoic acid-κN1]zinc(II) dihydrate, [ZnBr2(C11H11N3O2)2]·2H2O, were synthesized and crystallized by slow evaporation of the solvent from a solution of the ligand and either zinc chloride or zinc bromide, respectively, in water/ethanol. The ZnII ions occupy twofold axes in the noncentrosymmetric ortho­rhom­bic space group Fdd2. The metal ion is approximately tetra­hedrally coordinated by two monodentate triazole groups of the ligands and additionally by two halide ions. The water mol­ecules incorporate the complexes into a three-dimensional framework made up by hydrogen bonds. Furthermore, each complex possesses two hydrogen-bond-donor sites represented by the carb­oxy groups and two acceptor sites at the noncoordinating N atoms of the triazoles.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S010827010904668X/eg3026sup1.cif
Contains datablocks global, I, II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S010827010904668X/eg3026Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S010827010904668X/eg3026IIsup3.hkl
Contains datablock II

CCDC references: 763591; 763592

Comment top

Typically, metal–organic frameworks (MOFs) consist of inorganic building blocks, e.g. metal ions, or more complex secondary building blocks connected by bridging organic linkers. Knowledge of hydrogen bonding as well as of self-assembly is essential for understanding the underlying processes of MOF formation, and for the design of coordination polymers. The complexes reported herein, [ZnCl2(C11H11N3O2)2].2H2O, (I), and [ZnBr2(C11H11N3O2)2].2H2O, (II), containing additional noncoordinating water molecules, are excellent examples for investigating these properties.

Lukashuk et al. (2007) and Zou et al. (2005) reported the hydrogen-bonding behaviour of 4-(1,2,4-triazol-4-yl)benzoic acid. Depending on the reaction conditions, varying coordination behaviour of the ligand was observed. We synthesized 3,5-dimethyl-4-(1,2,4-triazol-4-yl)benzoic acid [H(Me2trzpba)] [ok?], the corresponding dimethylated triazol ligand. The methyl groups lead to a higher torsion angle of 59.44 (4)° between the phenyl ring and the triazole unit in the neat ligand H(Me2trzpba) in comparison to the unsubstituted 4-(1,2,4-triazol-4-yl)benzoic acid [33.79 (7)°, 20.77 (6)°]. This leads to enhanced solubility due to reduced ππ-stacking interactions (Lässig et al., 2009).

The crystal structures of two isostructural zinc halide complexes incorporating this new ligand are reported here. The synthesis of both complexes was performed by reacting the ligand with the respective zinc halide (chloride or bromide) in a water/ethanol mixture (1:1, v/v). While the pure ligand is only slightly soluble in water/ethanol, the addition of zinc chloride or zinc bromide increases the solubility significantly. A clear solution results, from which single crystals of (I) and (II), respectively, were obtained by slow evaporation of the solvent.

The asymmetric unit is represented by half of the complex where the Zn ions reside on the twofold axis in the achiral noncentrosymmetric orthorhombic space group Fdd2 (No. 43).

The Zn ion is approximately tetrahedrally coordinated by two monodentate triazol units and two halide ions (see scheme). The bond length of the coordinating N atoms to the metal ion is 2.055 (2) Å in (I) which correlates quite well with a typical Zn—N bond, as can be seen from Zn(dmatrz)2Cl2 (dmatrz = 3,5-dimethyl-4-amino-1,2,4-triazole) (Du, 2004).

The hydrogen-bonding interactions are discussed for (I). There are three types of hydrogen bonds (Fig. 2), all incorporating the water molecule (O3). As a result, a three-dimensional network (Fig. 3) is formed. A strong hydrogen bond can be found between O1 and O3 with a donor–acceptor distance of 2.605 (3) Å. Furthermore, the water molecule (O3) acts as a donor group in two further hydrogen-bonding interactions. One involves the carbonyl O atom O2 of a neighbouring complex with a distance of 2.788 (3) Å. The second, weaker hydrogen bond is directed to the N atom N2 of the triazole with a distance of 2.971 (3) Å.

The observation that the ligand HMe2trzpba is soluble in the presence of zinc halides led us to the conclusion that (I) and (II) already exist in solution. This shows impressively the ability of this ligand to competitively replace coordinating water and the dramatic change in solubility due to coordination.

Related literature top

For related literature, see: Du (2004); Lässig et al. (2009); Lukashuk et al. (2007); Zou et al. (2005).

Experimental top

All chemicals and solvents were commercially available and used without further purification. The ligand H(Me2trzpba) was synthesized according to Lässig et al. (2009). (I) and (II) were synthesized as follows: in a typical procedure 21.7 mg (0.1 mmol) of the ligand was suspended in 2 ml of ethanol, to which a solution of 0.1 mmol zinc halide, dissolved in 2 ml distilled water, was added and stirred for 5 min at room temperature. Colourless prismatic crystals of (I) and (II) were obtained after 3–4 d by slow evaporation of the solvent under ambient conditions.

For (I): yield 13.3 mg; 22.0 µmol; 44% of th. (based on the ligand). IR (KBr): [cm-1] 3085m, 2968w, 1679 s, 1610 s, 1548 s, 1513m, 1418 s, 1387m, 1340m, 1313m, 1274 s, 1179m, 1131m, 1066w, 1044m, 1014 s, 871m, 805m, 793m, 770m, 701m, 632w, 558m, 528m.

For (II): yield: 7.5 mg; 10.8 µmol; 22% of th. (based on the ligand). IR (KBr): [cm-1] 3081m, 2973w, 1698m, 1607m, 1546 s, 1510m, 1416 s, 1381m, 1335m, 1300m, 1259 s, 1173m, 1124m, 1062w, 1037m, 1011 s, 871m, 807m, 788m, 764m, 698m, 629w, 555m, 525m.

Refinement top

Methyl H atoms were located in difference syntheses and thereafter refined as part of rigid rotating groups, with C—-H = 0.98Å and Uiso(H) = 1.5Ueq(C). Aromatic H atoms were placed geometrically and refined using a riding model, with C—H = 0.95Å and Uiso(H) = 1.2Ueq(C). In each case, the acidic H1 atom on O1 was located in a difference Fourier map and refined as part of a rigid rotating group, with O—H = 0.84Å and Uiso(H) = 1.5Ueq(O). The H atoms of the water molecule in each structure were located from difference Fourier maps and refined using distance restraints [O—H = 0.84 (2)Å and H···H = 1.33 (2)Å] and with Uiso(H) = 1.5Ueq(O).

Computing details top

For both compounds, data collection: X-AREA (Stoe & Cie, 2000); cell refinement: X-AREA (Stoe & Cie, 2000); data reduction: X-AREA, X-RED (Stoe & Cie, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) including the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. Symmetry code: a: 1 - x, 1 - y, z.
[Figure 2] Fig. 2. Hydrogen bonding between different complexes of (I). Displacement ellipsoids are drawn at the 50% probability level. Symmetry codes: b: -1/2 + x, y, -1.5 + z; c: -1/4 + x, 1.25 - y, -1.25 + z.
[Figure 3] Fig. 3. Packing diagram in [001] showing the hydrogen-bonded three-dimensional network of (I). H atoms are omitted for clarity.
(I) dichlorido[4-(3,5-dimethyl-4H-1,2,4-triazol-4-yl)benzoic acid-κN1]zinc(II) dihydrate top
Crystal data top
[ZnCl2(C11H11N3O2)2]·2H2OF(000) = 2496
Mr = 606.76Dx = 1.557 Mg m3
Orthorhombic, Fdd2Mo Kα radiation, λ = 0.71073 Å
Hall symbol: F 2 -2dCell parameters from 10095 reflections
a = 15.893 (3) Åθ = 1.8–29.7°
b = 44.480 (5) ŵ = 1.21 mm1
c = 7.3582 (10) ÅT = 180 K
V = 5201.7 (14) Å3Prism, colourless
Z = 80.50 × 0.32 × 0.15 mm
Data collection top
Stoe IPDS-2T
diffractometer
2189 independent reflections
Radiation source: fine-focus sealed tube2157 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
Detector resolution: 6.67 pixels mm-1θmax = 26.0°, θmin = 1.8°
ω scansh = 1419
Absorption correction: numerical
(X-RED; Stoe & Cie, 2000)
k = 5452
Tmin = 0.417, Tmax = 0.583l = 79
3974 measured reflections
Refinement top
Refinement on F2 w = 1/[σ2(Fo2) + (0.0497P)2 + 3.2765P]
where P = (Fo2 + 2Fc2)/3
Least-squares matrix: full(Δ/σ)max = 0.001
R[F2 > 2σ(F2)] = 0.025Δρmax = 0.29 e Å3
wR(F2) = 0.068Δρmin = 0.31 e Å3
S = 1.09Extinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
2189 reflectionsExtinction coefficient: 0.00178 (17)
180 parametersAbsolute structure: Flack (1983)
4 restraintsAbsolute structure parameter: 0.009 (10)
H atoms treated by a mixture of independent and constrained refinement
Crystal data top
[ZnCl2(C11H11N3O2)2]·2H2OV = 5201.7 (14) Å3
Mr = 606.76Z = 8
Orthorhombic, Fdd2Mo Kα radiation
a = 15.893 (3) ŵ = 1.21 mm1
b = 44.480 (5) ÅT = 180 K
c = 7.3582 (10) Å0.50 × 0.32 × 0.15 mm
Data collection top
Stoe IPDS-2T
diffractometer
2189 independent reflections
Absorption correction: numerical
(X-RED; Stoe & Cie, 2000)
2157 reflections with I > 2σ(I)
Tmin = 0.417, Tmax = 0.583Rint = 0.023
3974 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.025H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.068Δρmax = 0.29 e Å3
S = 1.09Δρmin = 0.31 e Å3
2189 reflectionsAbsolute structure: Flack (1983)
180 parametersAbsolute structure parameter: 0.009 (10)
4 restraints
Special details top

Geometry. All s.u. (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u. are taken into account individually in the estimation of s.u. in distances, angles and torsion angles; correlations between s.u. in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u. is used for estimating s.u. involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.50.50.15366 (4)0.02374 (13)
Cl10.38859 (4)0.516648 (14)0.00346 (10)0.04152 (18)
C10.75803 (14)0.58751 (5)1.2215 (4)0.0270 (5)
C20.71742 (14)0.57952 (5)1.0452 (3)0.0255 (5)
C30.76203 (14)0.56792 (4)0.8980 (4)0.0259 (4)
H30.82090.56470.90860.031*
C40.72149 (15)0.56110 (4)0.7366 (3)0.0263 (4)
H40.75250.5540.63480.032*
C50.63477 (14)0.56483 (5)0.7257 (3)0.0246 (4)
C60.58891 (14)0.57584 (6)0.8723 (4)0.0321 (5)
H60.52950.57780.86420.039*
C70.63062 (15)0.58390 (6)1.0300 (3)0.0305 (5)
H70.60010.59241.12830.037*
C80.64289 (18)0.50414 (5)0.5165 (4)0.0356 (6)
H8A0.62270.48660.44840.053*
H8B0.63880.50010.64710.053*
H8C0.70170.50810.48440.053*
C90.59046 (14)0.53078 (4)0.4701 (3)0.0250 (4)
C100.53203 (13)0.57535 (4)0.4742 (3)0.0249 (4)
C110.51341 (16)0.60743 (5)0.5204 (4)0.0321 (5)
H11A0.46820.60820.61080.048*
H11B0.49580.61820.41040.048*
H11C0.56410.61690.57010.048*
N10.53600 (12)0.53250 (4)0.3363 (3)0.0259 (4)
N20.49881 (11)0.56078 (4)0.3381 (3)0.0256 (4)
N30.58990 (12)0.55756 (4)0.5624 (3)0.0243 (4)
O10.83617 (11)0.57818 (4)1.2366 (3)0.0379 (4)
H10.8550.5831.33930.057*
O20.72146 (13)0.60109 (4)1.3419 (3)0.0388 (4)
O30.40044 (12)0.59201 (4)0.0514 (2)0.0339 (4)
H3A0.426 (2)0.5790 (6)0.113 (5)0.054 (10)*
H3B0.423 (2)0.6088 (5)0.068 (5)0.056 (11)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.02843 (19)0.02259 (17)0.02020 (19)0.00080 (13)00
Cl10.0411 (3)0.0437 (3)0.0397 (4)0.0097 (2)0.0151 (3)0.0036 (3)
C10.0324 (12)0.0250 (10)0.0235 (13)0.0014 (7)0.0024 (9)0.0031 (9)
C20.0297 (12)0.0233 (10)0.0236 (12)0.0021 (8)0.0018 (9)0.0038 (8)
C30.0248 (11)0.0254 (9)0.0274 (12)0.0005 (7)0.0017 (9)0.0010 (11)
C40.0284 (11)0.0253 (9)0.0252 (11)0.0022 (8)0.0009 (9)0.0000 (9)
C50.0274 (10)0.0253 (9)0.0213 (11)0.0018 (8)0.0030 (9)0.0012 (8)
C60.0239 (10)0.0432 (12)0.0292 (13)0.0015 (9)0.0011 (9)0.0017 (10)
C70.0278 (11)0.0396 (11)0.0242 (12)0.0026 (9)0.0006 (9)0.0009 (9)
C80.0425 (14)0.0280 (10)0.0363 (15)0.0063 (9)0.0098 (12)0.0036 (10)
C90.0294 (11)0.0225 (9)0.0233 (11)0.0015 (7)0.0032 (8)0.0015 (8)
C100.0251 (10)0.0242 (9)0.0255 (11)0.0003 (8)0.0008 (9)0.0004 (9)
C110.0358 (11)0.0244 (11)0.0361 (13)0.0025 (8)0.0021 (10)0.0042 (9)
N10.0305 (10)0.0224 (8)0.0247 (9)0.0008 (7)0.0027 (7)0.0004 (7)
N20.0292 (10)0.0210 (9)0.0266 (11)0.0016 (6)0.0021 (7)0.0005 (7)
N30.0259 (9)0.0229 (8)0.0240 (10)0.0005 (7)0.0030 (7)0.0008 (7)
O10.0323 (9)0.0528 (10)0.0286 (9)0.0053 (7)0.0082 (7)0.0047 (8)
O20.0427 (10)0.0469 (10)0.0267 (9)0.0105 (8)0.0068 (8)0.0059 (8)
O30.0348 (9)0.0363 (9)0.0305 (10)0.0008 (7)0.0092 (7)0.0010 (7)
Geometric parameters (Å, º) top
Zn1—N12.0550 (19)C7—H70.95
Zn1—N1i2.0550 (19)C8—C91.488 (3)
Zn1—Cl1i2.2147 (7)C8—H8A0.98
Zn1—Cl12.2147 (7)C8—H8B0.98
C1—O21.220 (3)C8—H8C0.98
C1—O11.314 (3)C9—N11.313 (3)
C1—C21.492 (3)C9—N31.371 (3)
C2—C31.393 (3)C10—N21.304 (3)
C2—C71.398 (3)C10—N31.376 (3)
C3—C41.385 (4)C10—C111.496 (3)
C3—H30.95C11—H11A0.98
C4—C51.390 (3)C11—H11B0.98
C4—H40.95C11—H11C0.98
C5—C61.391 (3)N1—N21.390 (3)
C5—N31.434 (3)O1—H10.84
C6—C71.383 (3)O3—H3A0.843 (18)
C6—H60.95O3—H3B0.840 (18)
N1—Zn1—N1i98.31 (11)C9—C8—H8A109.5
N1—Zn1—Cl1i109.82 (6)C9—C8—H8B109.5
N1i—Zn1—Cl1i108.28 (6)H8A—C8—H8B109.5
N1—Zn1—Cl1108.28 (6)C9—C8—H8C109.5
N1i—Zn1—Cl1109.82 (6)H8A—C8—H8C109.5
Cl1i—Zn1—Cl1120.13 (4)H8B—C8—H8C109.5
O2—C1—O1123.0 (2)N1—C9—N3108.45 (18)
O2—C1—C2122.9 (2)N1—C9—C8126.0 (2)
O1—C1—C2114.0 (2)N3—C9—C8125.6 (2)
C3—C2—C7119.4 (2)N2—C10—N3110.31 (17)
C3—C2—C1122.9 (2)N2—C10—C11124.6 (2)
C7—C2—C1117.6 (2)N3—C10—C11125.0 (2)
C4—C3—C2120.7 (2)C10—C11—H11A109.5
C4—C3—H3119.6C10—C11—H11B109.5
C2—C3—H3119.6H11A—C11—H11B109.5
C3—C4—C5119.0 (2)C10—C11—H11C109.5
C3—C4—H4120.5H11A—C11—H11C109.5
C5—C4—H4120.5H11B—C11—H11C109.5
C6—C5—C4121.1 (2)C9—N1—N2109.00 (18)
C6—C5—N3117.94 (19)C9—N1—Zn1129.27 (15)
C4—C5—N3120.9 (2)N2—N1—Zn1121.64 (15)
C7—C6—C5119.4 (2)C10—N2—N1106.56 (18)
C7—C6—H6120.3C9—N3—C10105.68 (18)
C5—C6—H6120.3C9—N3—C5127.41 (18)
C6—C7—C2120.3 (2)C10—N3—C5126.73 (17)
C6—C7—H7119.9C1—O1—H1109.5
C2—C7—H7119.9H3A—O3—H3B109 (3)
Symmetry code: (i) x+1, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3A···N20.84 (2)2.17 (2)2.971 (3)158 (3)
O3—H3B···O2ii0.84 (2)1.95 (2)2.787 (3)176 (4)
O1—H1···O3iii0.841.772.605 (3)176
Symmetry codes: (ii) x1/4, y+5/4, z5/4; (iii) x+1/2, y, z+3/2.
(II) dibromido[4-(3,5-dimethyl-4H-1,2,4-triazol-4-yl)benzoic acid-κN1]zinc(II) dihydrate top
Crystal data top
[ZnBr2(C11H11N3O2)2]·2H2OF(000) = 2784
Mr = 695.68Dx = 1.748 Mg m3
Orthorhombic, Fdd2Mo Kα radiation, λ = 0.71073 Å
Hall symbol: F 2 -2dCell parameters from 10693 reflections
a = 16.1158 (12) Åθ = 1.8–29.6°
b = 44.425 (4) ŵ = 4.01 mm1
c = 7.3861 (5) ÅT = 180 K
V = 5288.0 (7) Å3Prism, colourless
Z = 80.34 × 0.25 × 0.11 mm
Data collection top
Stoe IPDS-2T
diffractometer
3189 independent reflections
Radiation source: fine-focus sealed tube2987 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.052
Detector resolution: 6.67 pixels mm-1θmax = 28°, θmin = 2.7°
ω scansh = 2121
Absorption correction: numerical
(X-RED; Stoe & Cie, 2000)
k = 5850
Tmin = 0.396, Tmax = 0.713l = 99
8551 measured reflections
Refinement top
Refinement on F2 w = 1/[σ2(Fo2) + (0.0658P)2]
where P = (Fo2 + 2Fc2)/3
Least-squares matrix: full(Δ/σ)max = 0.002
R[F2 > 2σ(F2)] = 0.033Δρmax = 0.62 e Å3
wR(F2) = 0.09Δρmin = 0.65 e Å3
S = 1.01Extinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
3189 reflectionsExtinction coefficient: 0.00096 (10)
179 parametersAbsolute structure: Flack (1983)
4 restraintsAbsolute structure parameter: 0.007 (10)
H atoms treated by a mixture of independent and constrained refinement
Crystal data top
[ZnBr2(C11H11N3O2)2]·2H2OV = 5288.0 (7) Å3
Mr = 695.68Z = 8
Orthorhombic, Fdd2Mo Kα radiation
a = 16.1158 (12) ŵ = 4.01 mm1
b = 44.425 (4) ÅT = 180 K
c = 7.3861 (5) Å0.34 × 0.25 × 0.11 mm
Data collection top
Stoe IPDS-2T
diffractometer
3189 independent reflections
Absorption correction: numerical
(X-RED; Stoe & Cie, 2000)
2987 reflections with I > 2σ(I)
Tmin = 0.396, Tmax = 0.713Rint = 0.052
8551 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.033H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.09Δρmax = 0.62 e Å3
S = 1.01Δρmin = 0.65 e Å3
3189 reflectionsAbsolute structure: Flack (1983)
179 parametersAbsolute structure parameter: 0.007 (10)
4 restraints
Special details top

Geometry. All s.u. (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u. are taken into account individually in the estimation of s.u. in distances, angles and torsion angles; correlations between s.u. in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u. is used for estimating s.u. involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.50.50.15980 (6)0.02364 (13)
Br10.38200 (2)0.515555 (9)0.00035 (5)0.04164 (13)
C10.75146 (17)0.58742 (8)1.2218 (5)0.0277 (6)
C20.71176 (19)0.57958 (7)1.0464 (4)0.0253 (6)
C30.75579 (18)0.56818 (7)0.8990 (5)0.0265 (6)
H30.81380.56480.90940.032*
C40.71572 (17)0.56171 (7)0.7374 (5)0.0266 (6)
H40.74630.55510.63490.032*
C50.62950 (17)0.56505 (7)0.7277 (5)0.0254 (6)
C60.58480 (19)0.57582 (9)0.8737 (5)0.0311 (7)
H60.52620.57790.86570.037*
C70.62594 (18)0.58361 (9)1.0319 (4)0.0301 (7)
H70.59570.59171.13090.036*
C80.6409 (2)0.50520 (8)0.5136 (6)0.0350 (7)
H8A0.61950.48730.45110.053*
H8B0.6410.50160.64450.053*
H8C0.69760.50930.47260.053*
C90.58709 (17)0.53142 (7)0.4722 (4)0.0250 (6)
C100.52695 (17)0.57572 (7)0.4798 (5)0.0257 (6)
C110.5081 (2)0.60745 (8)0.5256 (6)0.0340 (7)
H11A0.49420.61850.41490.051*
H11B0.55660.61670.58320.051*
H11C0.46090.60810.60920.051*
N10.53273 (16)0.53308 (6)0.3404 (4)0.0252 (5)
N20.49473 (15)0.56101 (6)0.3429 (4)0.0251 (5)
N30.58543 (16)0.55784 (6)0.5651 (4)0.0252 (5)
O10.83002 (15)0.57899 (7)1.2334 (4)0.0380 (6)
H10.84910.5841.33490.057*
O20.71477 (17)0.60028 (7)1.3436 (4)0.0391 (6)
H3B0.416 (3)0.6093 (6)0.077 (7)0.047 (14)*
H3A0.419 (3)0.5796 (8)0.119 (6)0.039 (12)*
O30.39598 (16)0.59261 (6)0.0495 (4)0.0351 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0265 (2)0.0232 (2)0.0212 (2)0.00084 (18)00
Br10.04058 (19)0.0433 (2)0.0411 (2)0.01080 (15)0.01645 (15)0.00694 (17)
C10.0304 (14)0.0270 (14)0.0259 (15)0.0011 (11)0.0013 (12)0.0023 (12)
C20.0292 (13)0.0253 (14)0.0214 (14)0.0018 (11)0.0021 (11)0.0032 (11)
C30.0244 (12)0.0260 (12)0.0291 (15)0.0034 (11)0.0007 (11)0.0000 (14)
C40.0263 (12)0.0264 (13)0.0271 (14)0.0032 (11)0.0017 (12)0.0012 (13)
C50.0266 (12)0.0263 (14)0.0232 (15)0.0018 (10)0.0034 (11)0.0033 (13)
C60.0246 (13)0.0405 (18)0.0283 (16)0.0012 (13)0.0024 (12)0.0020 (14)
C70.0259 (13)0.0402 (17)0.0242 (16)0.0002 (12)0.0012 (11)0.0018 (14)
C80.0405 (17)0.0298 (16)0.0347 (17)0.0103 (14)0.0103 (15)0.0024 (14)
C90.0282 (12)0.0258 (14)0.0212 (14)0.0010 (11)0.0001 (11)0.0017 (13)
C100.0246 (12)0.0251 (13)0.0272 (14)0.0009 (11)0.0000 (12)0.0014 (13)
C110.0371 (15)0.0274 (15)0.0374 (18)0.0042 (13)0.0021 (13)0.0059 (14)
N10.0290 (12)0.0211 (12)0.0253 (12)0.0009 (9)0.0054 (10)0.0039 (10)
N20.0272 (11)0.0216 (12)0.0265 (12)0.0023 (9)0.0011 (10)0.0015 (10)
N30.0270 (11)0.0260 (13)0.0227 (12)0.0014 (10)0.0018 (10)0.0005 (10)
O10.0326 (10)0.0522 (15)0.0291 (12)0.0047 (10)0.0048 (10)0.0013 (13)
O20.0425 (13)0.0488 (15)0.0261 (12)0.0098 (12)0.0062 (10)0.0071 (12)
O30.0387 (12)0.0326 (13)0.0339 (14)0.0002 (11)0.0096 (10)0.0007 (11)
Geometric parameters (Å, º) top
Zn1—N12.054 (3)C7—H70.95
Zn1—N1i2.054 (3)C8—C91.484 (4)
Zn1—Br12.3438 (4)C8—H8A0.98
Zn1—Br1i2.3438 (4)C8—H8B0.98
C1—O21.219 (4)C8—H8C0.98
C1—O11.323 (4)C9—N11.312 (4)
C1—C21.486 (4)C9—N31.360 (4)
C2—C31.394 (5)C10—N21.311 (4)
C2—C71.399 (4)C10—N31.384 (4)
C3—C41.387 (5)C10—C111.482 (5)
C3—H30.95C11—H11A0.98
C4—C51.399 (4)C11—H11B0.98
C4—H40.95C11—H11C0.98
C5—C61.382 (5)N1—N21.384 (4)
C5—N31.431 (4)O1—H10.84
C6—C71.388 (5)O3—H3B0.835 (19)
C6—H60.95O3—H3A0.855 (19)
N1—Zn1—N1i98.97 (16)C9—C8—H8A109.5
N1—Zn1—Br1108.98 (7)C9—C8—H8B109.5
N1i—Zn1—Br1109.29 (7)H8A—C8—H8B109.5
N1—Zn1—Br1i109.29 (7)C9—C8—H8C109.5
N1i—Zn1—Br1i108.98 (7)H8A—C8—H8C109.5
Br1—Zn1—Br1i119.38 (3)H8B—C8—H8C109.5
O2—C1—O1123.3 (3)N1—C9—N3108.2 (3)
O2—C1—C2123.0 (3)N1—C9—C8126.0 (3)
O1—C1—C2113.7 (3)N3—C9—C8125.8 (3)
C3—C2—C7119.3 (3)N2—C10—N3109.6 (3)
C3—C2—C1123.1 (3)N2—C10—C11124.7 (3)
C7—C2—C1117.5 (3)N3—C10—C11125.6 (3)
C4—C3—C2120.7 (3)C10—C11—H11A109.5
C4—C3—H3119.7C10—C11—H11B109.5
C2—C3—H3119.7H11A—C11—H11B109.5
C3—C4—C5119.0 (3)C10—C11—H11C109.5
C3—C4—H4120.5H11A—C11—H11C109.5
C5—C4—H4120.5H11B—C11—H11C109.5
C6—C5—C4121.0 (3)C9—N1—N2109.6 (3)
C6—C5—N3118.2 (3)C9—N1—Zn1127.8 (2)
C4—C5—N3120.8 (3)N2—N1—Zn1122.5 (2)
C5—C6—C7119.6 (3)C10—N2—N1106.4 (2)
C5—C6—H6120.2C9—N3—C10106.2 (3)
C7—C6—H6120.2C9—N3—C5127.4 (3)
C6—C7—C2120.3 (3)C10—N3—C5126.3 (3)
C6—C7—H7119.8C1—O1—H1109.5
C2—C7—H7119.8H3B—O3—H3A107 (4)
Symmetry code: (i) x+1, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3A···N20.86 (2)2.22 (3)3.033 (4)159 (4)
O3—H3B···O2ii0.84 (2)1.96 (2)2.788 (4)169 (5)
O1—H1···O3iii0.841.802.636 (4)176
Symmetry codes: (ii) x1/4, y+5/4, z5/4; (iii) x+1/2, y, z+3/2.

Experimental details

(I)(II)
Crystal data
Chemical formula[ZnCl2(C11H11N3O2)2]·2H2O[ZnBr2(C11H11N3O2)2]·2H2O
Mr606.76695.68
Crystal system, space groupOrthorhombic, Fdd2Orthorhombic, Fdd2
Temperature (K)180180
a, b, c (Å)15.893 (3), 44.480 (5), 7.3582 (10)16.1158 (12), 44.425 (4), 7.3861 (5)
V3)5201.7 (14)5288.0 (7)
Z88
Radiation typeMo KαMo Kα
µ (mm1)1.214.01
Crystal size (mm)0.50 × 0.32 × 0.150.34 × 0.25 × 0.11
Data collection
DiffractometerStoe IPDS2T
diffractometer
Stoe IPDS2T
diffractometer
Absorption correctionNumerical
(X-RED; Stoe & Cie, 2000)
Numerical
(X-RED; Stoe & Cie, 2000)
Tmin, Tmax0.417, 0.5830.396, 0.713
No. of measured, independent and
observed [I > 2σ(I)] reflections
3974, 2189, 2157 8551, 3189, 2987
Rint0.0230.052
(sin θ/λ)max1)0.6170.661
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.025, 0.068, 1.09 0.033, 0.09, 1.01
No. of reflections21893189
No. of parameters180179
No. of restraints44
H-atom treatmentH atoms treated by a mixture of independent and constrained refinementH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.29, 0.310.62, 0.65
Absolute structureFlack (1983)Flack (1983)
Absolute structure parameter0.009 (10)0.007 (10)

Computer programs: X-AREA (Stoe & Cie, 2000), X-AREA, X-RED (Stoe & Cie, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2006), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
O3—H3A···N20.843 (18)2.17 (2)2.971 (3)158 (3)
O3—H3B···O2i0.840 (18)1.949 (19)2.787 (3)176 (4)
O1—H1···O3ii0.841.772.605 (3)176
Symmetry codes: (i) x1/4, y+5/4, z5/4; (ii) x+1/2, y, z+3/2.
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
O3—H3A···N20.855 (19)2.22 (3)3.033 (4)159 (4)
O3—H3B···O2i0.835 (19)1.96 (2)2.788 (4)169 (5)
O1—H1···O3ii0.841.802.636 (4)176
Symmetry codes: (i) x1/4, y+5/4, z5/4; (ii) x+1/2, y, z+3/2.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds