Download citation
Download citation
link to html
The crystal structures of eight benzoyl­hydrazones with different substituents have been investigated, namely 1-benzoyl-2-(propan-2-yl­idene)hydrazone, C10H12N2O, (I), 1-benzoyl-2-(1-cyclo­hexyl­ethyl­idene)hydrazone, C15H20N2O, (II), 1-benzoyl-2-[1-(naphthalen-2-yl)ethyl­idene]hydrazone, C19H16N2O, (III), 1-benzoyl-2-(1-cyclo­hexyl­benzyl­idene)hydrazone, C20H22N2O, (IV), 1-benzoyl-2-(1-phenyl­benzyl­idene)hydrazone, C20H16N2O, (V), 1-benzoyl-2-[1-(4-chloro­phen­yl)benzyl­idene]hydrazone, C20H15ClN2O, (VI), 1-ben­zoyl-2-(4-hy­droxy­benzyl­idene)hydrazone methanol monosolvate, C14H12N2O2·CH3OH, (VII), and 1-benzoyl-2-(1,1-di­phenyl­propan-2-yl­idene)hydrazone, C22H20N2O, (VIII). The ten mol­ecules in the eight crystal structures [there are two independent mol­ecules in the structures of (V) and (VI)] show similar conformations and hydrogen-bonding patterns. The C=N—NH—C=O group is planar, but the plane of the phenyl ring of the benzoyl group is rotated by about 30° with respect to that of the keto group [except for (IV), where the groups are coplanar]. Only in the amide group of (VIII) is the N—H group syn to the C=O bond, whereas the seven other compounds exhibit the anti conformation. Unless prevented by steric hindrance, N—H...O hydrogen bonds help to stabilize the crystal structure, which leads to infinite chains or dimers depending upon the mol­ecular conformation. The mol­ecular packing is supported by inter­molecular C—H...O inter­actions. In the crystal structure of (VII), the methanol solvent mol­ecule participates in two strong hydrogen bonds and two weak C—H...O inter­actions, thus acting as a link between the mol­ecular chains.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2053229614018658/eg3169sup1.cif
Contains datablocks I, II, III, IV, V, VI, VII, VIII, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229614018658/eg3169Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229614018658/eg3169IIsup3.hkl
Contains datablock II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229614018658/eg3169IIIsup4.hkl
Contains datablock III

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229614018658/eg3169IVsup5.hkl
Contains datablock IV

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229614018658/eg3169Vsup6.hkl
Contains datablock V

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229614018658/eg3169VIsup7.hkl
Contains datablock VI

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229614018658/eg3169VIIsup8.hkl
Contains datablock VII

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229614018658/eg3169VIIIsup9.hkl
Contains datablock VIII

pdf

Portable Document Format (PDF) file https://doi.org/10.1107/S2053229614018658/eg3169sup10.pdf
Packing diagrams for compounds (I)-(VIII)

CCDC references: 1019653; 1019654; 1019655; 1019656; 1019657; 1019658; 1019659; 1019660

Introduction top

Hydrazones are important derivatives of carbonyl compounds; they are easy to synthesize and have been used for a long time for the identification and characterization of aldehydes and ketones. In addition, N-acyl­hydrazones are versatile electrophiles for the synthesis of nitro­gen-containing compounds, since their molecular structure provides a suitable template for the chelation of Lewis acids, which activate the imino C atom as a target for nucleophilic attack (Sugiura & Kobayashi, 2005). They also play an important role in the catalytic asymmetric reductive amination of ketones via highly enanti­oselective hydrogenation of the CN double bond (Burk et al., 1994). One characteristic feature of N-acyl­hydrazones is the presence of an amide next to an imine group, so that one donor (N—H) and two acceptor groups (CO and CN) are able to participate in hydrogen bonds. The two preferred conformations of the amide group (syn or anti) give rise to different hydrogen-bonding patterns: the syn conformation allows the formation of dimers connected by two N—H···O bonds, whereas the anti conformation tends to favour chains of molecules. We have studied eight benzoyl­hydrazones, (I)–(VIII), with different substituents R1 and R2 (which are anti- or synperiplanar to the amide N atom, respectively); they were readily obtained by a condensation reaction from benzoyl­hydrazine (benzoic acid hydrazide) and a suitable aldehyde or ketone.

Experimental top

Synthesis and crystallization top

All eight compounds were synthesized by a similar procedure. A 1:1 mixture of the reaction components (0.01 mol), a small amount of dried sodium sulfate and an adequate volume (5–20 ml) of a suitable solvent were added to a 100 ml flask. If the reaction did not proceed, one drop of concentrated sulfuric acid was added. The mixture was stirred overnight at room temperature. After purification, each product was characterized by IR, NMR and mass spectroscopy (Ton, 2004), and crystallized as colourless blocks from di­chloro­methane [for (I), (II), (III) and (VIII)], di­ethyl ether [for (IV) and (V)], tetra­hydro­furan [for (VI)] or methanol [for (VII)] by slow evaporation of the solvent at room temperature.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 1. All H atoms in (I)–(VIII) were unequivocally located by difference Fourier synthesis. Subsequently, C-bound H atoms were refined using a riding model, with C—H = 0.98 (methyl), 0.99 (methyl­ene), 1.00 (methine) and 0.95 Å (aromatic), but methyl groups were allowed to rotate about their local threefold axis. O- and N-bound H atoms were refined isotropically. For all riding H atoms, fixed individual displacement parameters were employed, with Uiso(H) = 1.5Ueq(C) for methyl or 1.2Ueq(C) for the other H atoms. Since the isotropic displacement parameter of the H atom bonded to N1' in (VI) was significantly lower than the Ueq(N) value it was also refined with Uiso(H1') = 1.2Ueq(N1').

In (IV) and (VIII), the refinement of an extinction coefficient improved the agreement between structure model and experimental data significantly. The crystal of (VI) showing similar lengths for a and c was a pseudomerohedral twin (twin law: 001/010/100). All reflections overlap and could be integrated using the same orientation matrix. The contribution of the major component refined to 0.6819 (6).

Comment top

The structures of compounds (I)–(III), which differ only in the R1 substituent (methyl, cyclo­hexyl or naphthalen-2-yl), show many common features. The hydrazone group of (I) including the two methyl substituents is planar, but the phenyl ring is rotated by 34 (2)° with respect to the CO bond (Fig. 1). Replacement of one methyl group by a cyclo­hexyl [in (II)] or a naphthalen-2-yl [in (III)] substituent does not change the molecular conformation significantly. While the naphthyl group in (III) is coplanar with the CN—NH—CO group, the phenyl ring of the benzoyl group is again rotated by 39.0 (7) [in (II)] and 23.9 (2)° [in (III)] (Figs. 2 and 3). In all three compounds, the anti conformation of the amide group gives rise to the formation of infinite chains held together by inter­molecular N—H···O hydrogen bonds between molecules related by a glide plane [in (I) and (II)] or by translation along a [in (III)] (Tables 2–4). These chains are further stabilized by short C—H···O contacts, especially from the methyl group which is syn to N1 (Figs. 4–6). In (I) there is also a short inter­molecular N—H···N contact between the amide and imine groups. In the crystal packing of (I)–(III), no direct stacking of aromatic rings is observed, although they are almost parallel, which gives rise to layer-like arrangements.

In contrast with (I)–(III), compounds (IV)–(VI) possess a phenyl ring instead of a methyl group as R2 substituent. Replacement of the methyl group in (II) by a phenyl ring leads to (IV), where two phenyl rings shield the N—H group, thus preventing the formation of an N—H···O bond, but several C—H···O inter­actions from the aromatic rings to the CO group stabilize the packing (Figs. 7 and 8; Table 5). The two phenyl rings are perpendicular to each other [angle 88 (2)°], but in contrast with (I)–(III) the phenyl ring of the benzoyl group is coplanar with the hydrazone group [angle 4(2)°]. If the cyclo­hexyl substituent is also replaced by a phenyl group, a benzoyl­hydrazone with three phenyl rings is formed, (V). The two independent molecules (both with an anti amide group) show similar conformations, with the phenyl ring of the benzoyl group rotated by 25.2 (9) and 26.1 (10)° with respect to the CO bond. However, one of the phenyl rings of the second molecule (atoms C21'–C26') is almost perpendicular [89 (2)°] to the hydrazone group (Fig. 9). As in (IV), the bulky substituents prevent the formation of hydrogen-bonded chains, but one N—H···O hydrogen bond between the two independent molecules is observed (Fig. 10 and Table 6).

Compound (VI) differs from (V) only by a 4-chloro substituent at one phenyl ring. Both compounds crystallize in the same space group P21/n, but the cell constants are rather different. The two independent molecules of (VI) show similar conformations: an anti amide group with rotations of the aromatic rings by 21.3 (10)/34.8 (18) (benzoyl), 15.5 (8)/24.7 (10) (4-chloro­phenyl) and 66.4 (9)/67.3 (13)° (unsubstituted phenyl substituent) with respect to the hydrazone group (Fig. 11); a least-squares fit of all non-H atoms shows an r.m.s. deviation of 0.145 Å. The conformations of the two molecules of (VI) compare reasonably well with those of (V) except for the unsubstituted phenyl ring, the orientation of which is different. Without this ring, the four pairwise fits between (V) and (VI) show r.m.s. deviations between 0.433 and 0.542 Å. Like in (IV) and (V), the phenyl rings prevent the formation of N—H···O hydrogen-bonded molecular chains, but several C—H···O contacts from the phenyl rings to the keto groups help to stabilize the packing (Fig. 12 and Table 7). Apart from steric arguments, the absence of chains formed by N—H···O hydrogen bonds, which would be favoured by cooperative effects (Steiner, 2002), in the structures of (IV), (V) and (VI) can also be explained by the formation of N—H···π hydrogen bonds to the neighbouring phenyl rings. This view is supported by H···π distances of about 3.05 Å to the ring centroid and N—H···π angles of approximately 130° for the five N—H groups in (IV)–(VI), in agreement with the geometric conditions defined by Malone et al. (1997).

Whereas the seven other benzoyl­hydrazones were prepared from a ketone, compound (VII) was synthesized from an aldehyde. The 4-hy­droxy­phenyl ring is coplanar with the CN—NH—CO group (again in the anti conformation) but the phenyl ring of the benzoyl group is rotated by 22.8 (10)° (Fig. 13). A methanol solvent molecule participates in two hydrogen bonds (N—H···O and O—H···O), thus linking the N—H and CO groups of neighbouring molecules. In addition, the keto group accepts a second hydrogen bond from the O—H substituent, which also inter­acts with atom N2. Short C—H···O contacts to both O—H groups further contribute to the stabilization of the crystal packing (Fig. 14 and Table 8). Two pseudo-polymorphs of this hydrazone have already been published, viz. a di­methyl­formamide (DMF) monosolvate [Cambridge Structural Database (CSD, Version 5.35 of November 2013 plus two updates; Allen, 2002) refcode JAXQEF; Jing et al., 2005] and a monohydrate (CSD refcode WIPFEH; Tai et al., 2007), which both crystallize in the same Pbca space group but are not isostructural with (VII). Both structures exhibit the anti conformation of the amide group. In the DMF monosolvate, in which the molecules form chains with the aid of (O,N)—H···(O,N) hydrogen bonds, the phenyl ring of the benzoyl group is rotated by only about 10° with respect to the keto group, while this value is approximately 35° in the monohydrate. In the latter structure, the water molecule plays a prominent role and participates in all hydrogen bonds (one N—H···O and three O—H···O, two of them to symmetry-equivalent carbonyl O atoms and one from the O—H group of the 4-hy­droxy­phenyl ring).

In compound (VIII), the aromatic ring of the benzoyl group is also rotated with respect to the planar hydrazone group [angle 35 (2)°]. However, in contrast with (I)–(VII) this compound exhibits a syn conformation of the amide group, with the methyl group at C2 synperiplanar to N1, whereas the phenyl rings of the large di­phenyl­methyl substituent point away from the amide group (Fig. 15). This enables the formation of a hydrogen-bonded dimer across an inversion centre [with an R22(8) pattern, according to the notation of Bernstein et al. (1995)], which is further stabilized by short C—H···O contacts from the neighbouring methyl groups (Fig. 16 and Table 9).

A comparison of these eight structures shows that, in most cases, the phenyl ring of the benzoyl group is rotated with respect to the CO bond, which makes it easier for a hydrogen-bond acceptor to approach the N—H group. Consequently, the benzoyl group is planar when a large substituent prevents such an approach (cf. Fig. 7). In the absence of steric crowding, each N—H group is involved in an inter­molecular hydrogen bond to the keto group [or in (VII) to the solvent], occasionally supported by an inter­action with the neighbouring imine (cf. Fig. 4), which can be inter­preted as the minor component of a bifurcated hydrogen bond. In addition, a number of short C—H···O contacts are present. Another stabilizing factor of the crystal packing is partial stacking of aromatic rings (cf. Figs. 8 and 12), whereas direct parallel stacking is never observed.

A search of the CSD yielded 121 structures of benzoyl­hydrazones with an unsubstituted benzoyl group and no additional cyclic bonds. Only five of them [CSD refcodes CAVPEU (Baker et al., 1983), COFGOU (Ni et al., 2008), EXINEF01 (Singh et al., 2011), TUMDIP01 (López-Torres & Mendiola, 2009) and WENVUH (Ali et al., 2006)] show a syn amide and form an R22(8) pattern with two N—H···O hydrogen bonds, while the other structures exhibit the anti conformation. Also, the orientation of the phenyl ring of the benzoyl group with respect to the hydrazone group (torsion angles 0–48°, usually around 30°) and the packing motifs (syn = dimer; anti = tendeny to form chains; solvent molecules bridge amide groups via hydrogen bonds) agree well with the gross structural features of (I)–(VIII).

The situation is quite different if strong hydrogen-bond donor and acceptor groups within the molecule compete with N—H and CO. One example are the isonicotinoylhydrazones, in which the phenyl is replaced by a pyridyl group (Wardell et al., 2007). These structures also show a planar hydrazone group, but there is a clear preference for the pyridyl N atom (instead of the CO group) to act as a hydrogen-bond acceptor. Therefore, the supra­molecular aggregation is more complex than in the structures of the benzoyl­hydrazones (I)–(VIII). Also, the inter­molecular arrangement in the structures of 1-benzoyl-2-benzyl­idenehydrazones in which the phenyl ring of the benzoyl group is substituted by a 4-hy­droxy group is clearly different, not just because of the formation of additional O—H···O or O—H···N hydrogen bonds from the O—H substituent; here the molecules really stack head-to-tail or head-to-head and form two-dimensional networks (Subashini et al., 2012).

Why do some N-acyl­hydrazones adopt a syn instead of the favoured anti conformation? Is this an intrinsic tendency which arises from the molecular constitution or is the crystal packing responsible for it? These questions are difficult to answer in the case of the benzoyl­hydrazones since the bulky phenyl groups strongly influence the molecular packing. Therefore, we have systematically investigated a number of simpler hydrazones where we have found some rules concerning the conformation of the amide group (Degen et al., 2015).

Related literature top

For related literature, see: Ali et al. (2006); Allen (2002); Baker et al. (1983); Bernstein et al. (1995); Burk et al. (1994); Degen et al. (2015); Jing et al. (2005); López-Torres & Mendiola (2009); Malone et al. (1997); Ni et al. (2008); Singh et al. (2011); Steiner (2002); Subashini et al. (2012); Sugiura & Kobayashi (2005); Tai et al. (2007); Ton (2004); Wardell et al. (2007).

Computing details top

For all compounds, data collection: X-AREA (Stoe & Cie, 2001); cell refinement: X-AREA (Stoe & Cie, 2001); data reduction: X-AREA (Stoe & Cie, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008) and XP in SHELXTL-Plus (Sheldrick, 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. A perspective view of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. A perspective view of (II), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 3] Fig. 3. A perspective view of (III), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 4] Fig. 4. A packing diagram for (I), viewed along the b axis. Hydrogen bonds (black) and short C—H···O contacts (cyan) are shown as dotted lines. The H atoms of the phenyl groups have been omitted. [Symmetry code: (i) x, -y + 3/2, z + 1/2.]
[Figure 5] Fig. 5. A packing diagram for (II), viewed along the b axis. Hydrogen bonds (black) and short C—H···O contacts (cyan) are shown as dotted lines. The H atoms of the phenyl and cyclohexyl groups have been omitted. [Symmetry code: (i) x, -y + 1/2, z + 1/2.]
[Figure 6] Fig. 6. A partial packing diagram for (III). Hydrogen bonds (black) and short C—H···O contacts (cyan) are shown as dotted lines. For a full packing diagram, see extra figure in the Supporting information. [Symmetry codes: (i) x + 1, y, z; (ii) -x + 1, -y + 1, -z.]
[Figure 7] Fig. 7. A perspective view of (IV), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 8] Fig. 8. A partial packing diagram for (IV). Short C—H···O contacts are shown as dotted lines. For a full packing diagram, see extra figure in the Supporting information. [Symmetry codes: (i) -x + 1/2, y + 1/2, -z + 1/2; (ii) -x + 1/2, -y + 3/2, -z; (iii) -x + 1, y, -z + 1/2.]
[Figure 9] Fig. 9. Perspective views of (a) the first molecule and (b) the second molecule of (V), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 10] Fig. 10. A partial packing diagram for (V). Hydrogen bonds (black) and short C—H···O contacts (cyan) are shown as dotted lines. For a full packing diagram, see extra figure in the Supporting information. [Symmetry code: (i) -x + 1, -y + 2, -z.]
[Figure 11] Fig. 11. Perspective views of (a) the first molecule and (b) the second molecule of (VI), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 12] Fig. 12. A partial packing diagram for (VI). Short C—H···O contacts are shown as dotted lines. For a full packing diagram, see extra figure in the Supporting information. [Symmetry codes: (i) -x + 1, -y + 1, -z; (ii) x - 1/2, -y + 1/2, z - 1/2; (iii) -x + 1, -y, -z + 1; (iv) x, y - 1, z.]
[Figure 13] Fig. 13. A perspective view of (VII), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. The O—H···O hydrogen bond from the methanol solvent molecule is shown as a dashed line.
[Figure 14] Fig. 14. A partial packing diagram for (VII). Hydrogen bonds (black) and short C—H···O contacts (cyan) are shown as dotted lines. For a full packing diagram, see extra figure in the Supporting information. [Symmetry codes: (i) -x + 1/2, y - 1/2, z; (ii) -x, y - 1/2, -z + 3/2; (iii) -x, y + 1/2, -z + 3/2.]
[Figure 15] Fig. 15. A perspective view of (VIII), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 16] Fig. 16. A partial packing diagram for (VIII). Hydrogen bonds (black) and short C—H···O (cyan) and C—H···N (blue) contacts are shown as dotted lines. For a full packing diagram, see extra figure in the Supporting information. [Symmetry codes: (i) -x + 1, -y + 2, -z; (ii) x + 1/2, -y + 3/2, z - 1/2.]
(I) 1-Benzoyl-2-(propan-2-ylidene)hydrazone top
Crystal data top
C10H12N2OZ = 4
Mr = 176.22F(000) = 376
Monoclinic, P21/cDx = 1.257 Mg m3
a = 7.6950 (8) ÅMo Kα radiation, λ = 0.71073 Å
b = 17.129 (1) ŵ = 0.08 mm1
c = 7.8316 (8) ÅT = 173 K
β = 115.525 (8)°Block, colourless
V = 931.51 (15) Å30.47 × 0.21 × 0.20 mm
Data collection top
Stoe IPDS II two-circle
diffractometer
1443 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.056
Graphite monochromatorθmax = 26.5°, θmin = 2.9°
φ scansh = 99
18245 measured reflectionsk = 2121
1929 independent reflectionsl = 99
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.089H atoms treated by a mixture of independent and constrained refinement
S = 0.94 w = 1/[σ2(Fo2) + (0.062P)2]
where P = (Fo2 + 2Fc2)/3
1929 reflections(Δ/σ)max = 0.001
124 parametersΔρmax = 0.15 e Å3
0 restraintsΔρmin = 0.26 e Å3
Crystal data top
C10H12N2OV = 931.51 (15) Å3
Mr = 176.22Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.6950 (8) ŵ = 0.08 mm1
b = 17.129 (1) ÅT = 173 K
c = 7.8316 (8) Å0.47 × 0.21 × 0.20 mm
β = 115.525 (8)°
Data collection top
Stoe IPDS II two-circle
diffractometer
1443 reflections with I > 2σ(I)
18245 measured reflectionsRint = 0.056
1929 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.089H atoms treated by a mixture of independent and constrained refinement
S = 0.94Δρmax = 0.15 e Å3
1929 reflectionsΔρmin = 0.26 e Å3
124 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.22954 (15)0.84831 (5)0.23713 (12)0.0504 (3)
N10.17395 (13)0.74071 (6)0.37381 (14)0.0344 (2)
H10.1758 (19)0.7193 (8)0.475 (2)0.043 (4)*
N20.04325 (13)0.71503 (6)0.19575 (13)0.0365 (2)
C10.25616 (16)0.81092 (7)0.37968 (16)0.0357 (3)
C20.00615 (16)0.64339 (7)0.17855 (16)0.0358 (3)
C30.0664 (2)0.58229 (7)0.32874 (19)0.0486 (3)
H3A0.20580.57650.37350.073*
H3B0.00290.53250.27680.073*
H3C0.03810.59780.43460.073*
C40.14684 (19)0.61897 (8)0.01587 (19)0.0483 (3)
H4A0.16550.66190.10480.072*
H4B0.27030.60580.01470.072*
H4C0.09680.57320.05520.072*
C110.39024 (15)0.84070 (6)0.57065 (15)0.0336 (3)
C120.50952 (17)0.79238 (7)0.71591 (17)0.0388 (3)
H120.50310.73740.69850.047*
C130.63808 (18)0.82412 (8)0.88634 (18)0.0457 (3)
H130.72070.79100.98540.055*
C140.64574 (19)0.90401 (8)0.91180 (19)0.0488 (3)
H140.73240.92561.02960.059*
C150.52895 (19)0.95269 (8)0.7680 (2)0.0494 (3)
H150.53511.00760.78650.059*
C160.40294 (18)0.92116 (7)0.59707 (18)0.0411 (3)
H160.32430.95460.49680.049*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0736 (6)0.0411 (5)0.0303 (4)0.0044 (4)0.0166 (4)0.0055 (4)
N10.0400 (5)0.0367 (5)0.0226 (5)0.0016 (4)0.0099 (4)0.0004 (4)
N20.0371 (5)0.0416 (6)0.0254 (5)0.0010 (4)0.0083 (4)0.0021 (4)
C10.0417 (6)0.0341 (6)0.0300 (6)0.0041 (5)0.0143 (5)0.0018 (5)
C20.0356 (5)0.0402 (6)0.0308 (6)0.0031 (5)0.0136 (5)0.0028 (5)
C30.0590 (7)0.0410 (7)0.0391 (7)0.0007 (6)0.0150 (6)0.0004 (5)
C40.0488 (7)0.0471 (7)0.0378 (7)0.0035 (5)0.0081 (6)0.0076 (6)
C110.0364 (5)0.0349 (6)0.0308 (6)0.0009 (4)0.0158 (5)0.0001 (4)
C120.0422 (6)0.0354 (6)0.0351 (6)0.0021 (5)0.0131 (5)0.0011 (5)
C130.0423 (6)0.0487 (7)0.0361 (6)0.0036 (5)0.0075 (5)0.0029 (5)
C140.0473 (7)0.0519 (7)0.0389 (7)0.0112 (6)0.0105 (6)0.0098 (6)
C150.0562 (7)0.0374 (6)0.0501 (8)0.0069 (5)0.0187 (6)0.0087 (6)
C160.0458 (6)0.0350 (6)0.0400 (6)0.0001 (5)0.0160 (5)0.0003 (5)
Geometric parameters (Å, º) top
O1—C11.2253 (14)C4—H4C0.9800
N1—C11.3505 (15)C11—C121.3863 (16)
N1—N21.3931 (13)C11—C161.3907 (16)
N1—H10.868 (16)C12—C131.3849 (17)
N2—C21.2745 (15)C12—H120.9500
C1—C111.4939 (16)C13—C141.3804 (19)
C2—C31.4915 (17)C13—H130.9500
C2—C41.4983 (16)C14—C151.378 (2)
C3—H3A0.9800C14—H140.9500
C3—H3B0.9800C15—C161.3805 (18)
C3—H3C0.9800C15—H150.9500
C4—H4A0.9800C16—H160.9500
C4—H4B0.9800
C1—N1—N2116.15 (10)H4A—C4—H4C109.5
C1—N1—H1121.5 (9)H4B—C4—H4C109.5
N2—N1—H1120.1 (9)C12—C11—C16119.36 (11)
C2—N2—N1117.62 (10)C12—C11—C1123.03 (10)
O1—C1—N1122.86 (11)C16—C11—C1117.47 (10)
O1—C1—C11120.39 (10)C13—C12—C11120.13 (11)
N1—C1—C11116.71 (10)C13—C12—H12119.9
N2—C2—C3126.80 (11)C11—C12—H12119.9
N2—C2—C4115.35 (11)C14—C13—C12119.78 (12)
C3—C2—C4117.81 (11)C14—C13—H13120.1
C2—C3—H3A109.5C12—C13—H13120.1
C2—C3—H3B109.5C15—C14—C13120.64 (12)
H3A—C3—H3B109.5C15—C14—H14119.7
C2—C3—H3C109.5C13—C14—H14119.7
H3A—C3—H3C109.5C14—C15—C16119.60 (12)
H3B—C3—H3C109.5C14—C15—H15120.2
C2—C4—H4A109.5C16—C15—H15120.2
C2—C4—H4B109.5C15—C16—C11120.46 (12)
H4A—C4—H4B109.5C15—C16—H16119.8
C2—C4—H4C109.5C11—C16—H16119.8
C1—N1—N2—C2165.72 (10)C16—C11—C12—C130.85 (17)
N2—N1—C1—O14.91 (16)C1—C11—C12—C13176.46 (11)
N2—N1—C1—C11177.48 (9)C11—C12—C13—C140.64 (19)
N1—N2—C2—C32.20 (17)C12—C13—C14—C151.1 (2)
N1—N2—C2—C4179.97 (10)C13—C14—C15—C160.1 (2)
O1—C1—C11—C12142.74 (12)C14—C15—C16—C111.4 (2)
N1—C1—C11—C1234.93 (15)C12—C11—C16—C151.89 (18)
O1—C1—C11—C1632.94 (16)C1—C11—C16—C15177.74 (11)
N1—C1—C11—C16149.38 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.868 (16)2.235 (16)3.0912 (14)169.0 (12)
N1—H1···N2i0.868 (16)2.611 (15)3.1826 (14)124.4 (11)
C3—H3C···O1i0.982.373.1238 (17)133
Symmetry code: (i) x, y+3/2, z+1/2.
(II) 1-Benzoyl-2-(1-cyclohexylethylidene)hydrazone top
Crystal data top
C15H20N2OZ = 4
Mr = 244.33F(000) = 528
Monoclinic, P21/cDx = 1.202 Mg m3
a = 9.3086 (9) ÅMo Kα radiation, λ = 0.71073 Å
b = 18.283 (2) ŵ = 0.08 mm1
c = 8.1543 (7) ÅT = 173 K
β = 103.328 (7)°Block, colourless
V = 1350.4 (2) Å30.54 × 0.36 × 0.24 mm
Data collection top
Stoe IPDS II two-circle
diffractometer
1909 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.105
Graphite monochromatorθmax = 25.9°, θmin = 3.2°
φ scansh = 1111
18518 measured reflectionsk = 2222
2589 independent reflectionsl = 99
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.109H atoms treated by a mixture of independent and constrained refinement
S = 0.97 w = 1/[σ2(Fo2) + (0.067P)2]
where P = (Fo2 + 2Fc2)/3
2589 reflections(Δ/σ)max < 0.001
168 parametersΔρmax = 0.30 e Å3
0 restraintsΔρmin = 0.19 e Å3
Crystal data top
C15H20N2OV = 1350.4 (2) Å3
Mr = 244.33Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.3086 (9) ŵ = 0.08 mm1
b = 18.283 (2) ÅT = 173 K
c = 8.1543 (7) Å0.54 × 0.36 × 0.24 mm
β = 103.328 (7)°
Data collection top
Stoe IPDS II two-circle
diffractometer
1909 reflections with I > 2σ(I)
18518 measured reflectionsRint = 0.105
2589 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.109H atoms treated by a mixture of independent and constrained refinement
S = 0.97Δρmax = 0.30 e Å3
2589 reflectionsΔρmin = 0.19 e Å3
168 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.13515 (12)0.16917 (5)0.46486 (12)0.0418 (3)
N10.08197 (12)0.26595 (6)0.61526 (14)0.0328 (3)
H10.0817 (16)0.2824 (8)0.712 (2)0.036 (4)*
N20.01675 (12)0.29356 (6)0.47372 (13)0.0347 (3)
C10.15294 (14)0.20326 (7)0.59794 (16)0.0326 (3)
C20.10240 (15)0.34517 (8)0.49664 (17)0.0358 (3)
C30.10804 (19)0.37784 (9)0.66290 (18)0.0484 (4)
H3A0.12110.33890.74080.073*
H3B0.19110.41210.64780.073*
H3C0.01570.40400.70920.073*
C110.25713 (14)0.17564 (7)0.75383 (16)0.0317 (3)
C120.34857 (15)0.22194 (8)0.86722 (16)0.0348 (3)
H120.34680.27310.84720.042*
C130.44224 (15)0.19306 (9)1.00958 (17)0.0403 (3)
H130.50550.22461.08660.048*
C140.44405 (16)0.11902 (9)1.04003 (19)0.0440 (4)
H140.50620.09971.13970.053*
C150.35541 (17)0.07253 (8)0.9257 (2)0.0454 (4)
H150.35770.02130.94580.055*
C160.26328 (16)0.10108 (8)0.78181 (18)0.0388 (3)
H160.20400.06920.70200.047*
C210.20740 (15)0.37763 (8)0.34427 (17)0.0376 (3)
H210.30570.38270.37300.045*
C220.22981 (19)0.33092 (8)0.18650 (19)0.0458 (4)
H22A0.26540.28180.20970.055*
H22B0.13450.32490.15370.055*
C230.34218 (19)0.36667 (9)0.0418 (2)0.0510 (4)
H23A0.35270.33650.06120.061*
H23B0.43960.36880.07100.061*
C240.2944 (2)0.44324 (10)0.00727 (19)0.0521 (4)
H24A0.20220.44050.03350.063*
H24B0.37140.46590.08260.063*
C250.2688 (2)0.49043 (9)0.1627 (2)0.0504 (4)
H25A0.36340.49790.19620.060*
H25B0.23140.53890.13760.060*
C260.15720 (17)0.45463 (8)0.30795 (18)0.0429 (4)
H26A0.14600.48520.41040.051*
H26B0.05990.45170.27870.051*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0525 (6)0.0415 (6)0.0272 (5)0.0010 (5)0.0004 (4)0.0049 (4)
N10.0361 (6)0.0387 (6)0.0206 (6)0.0028 (5)0.0004 (4)0.0009 (5)
N20.0372 (6)0.0397 (6)0.0235 (5)0.0010 (5)0.0005 (4)0.0049 (5)
C10.0337 (6)0.0367 (7)0.0255 (6)0.0043 (5)0.0028 (5)0.0003 (5)
C20.0361 (7)0.0365 (7)0.0317 (7)0.0016 (6)0.0013 (5)0.0033 (5)
C30.0554 (9)0.0524 (9)0.0337 (7)0.0151 (7)0.0028 (7)0.0014 (7)
C110.0305 (6)0.0380 (7)0.0260 (6)0.0012 (5)0.0050 (5)0.0003 (5)
C120.0366 (7)0.0359 (7)0.0306 (7)0.0008 (6)0.0051 (5)0.0008 (5)
C130.0360 (7)0.0507 (8)0.0311 (7)0.0017 (6)0.0010 (6)0.0030 (6)
C140.0373 (7)0.0556 (9)0.0356 (7)0.0057 (7)0.0015 (6)0.0108 (6)
C150.0449 (8)0.0395 (8)0.0490 (9)0.0031 (6)0.0048 (7)0.0097 (6)
C160.0373 (7)0.0383 (7)0.0381 (7)0.0014 (6)0.0031 (6)0.0009 (6)
C210.0354 (7)0.0428 (8)0.0311 (7)0.0024 (6)0.0006 (6)0.0032 (6)
C220.0510 (9)0.0414 (8)0.0371 (8)0.0028 (7)0.0058 (7)0.0002 (6)
C230.0552 (9)0.0502 (9)0.0366 (8)0.0002 (7)0.0121 (7)0.0006 (7)
C240.0583 (10)0.0576 (10)0.0330 (8)0.0019 (8)0.0046 (7)0.0096 (7)
C250.0586 (10)0.0425 (8)0.0439 (8)0.0046 (7)0.0007 (7)0.0071 (7)
C260.0485 (8)0.0399 (8)0.0347 (7)0.0008 (7)0.0018 (6)0.0005 (6)
Geometric parameters (Å, º) top
O1—C11.2290 (16)C15—H150.9500
N1—C11.3464 (18)C16—H160.9500
N1—N21.3937 (15)C21—C221.518 (2)
N1—H10.847 (17)C21—C261.533 (2)
N2—C21.2767 (19)C21—H211.0000
C1—C111.4977 (18)C22—C231.531 (2)
C2—C31.493 (2)C22—H22A0.9900
C2—C211.5137 (18)C22—H22B0.9900
C3—H3A0.9800C23—C241.515 (2)
C3—H3B0.9800C23—H23A0.9900
C3—H3C0.9800C23—H23B0.9900
C11—C161.381 (2)C24—C251.506 (2)
C11—C121.3902 (19)C24—H24A0.9900
C12—C131.386 (2)C24—H24B0.9900
C12—H120.9500C25—C261.531 (2)
C13—C141.376 (2)C25—H25A0.9900
C13—H130.9500C25—H25B0.9900
C14—C151.385 (2)C26—H26A0.9900
C14—H140.9500C26—H26B0.9900
C15—C161.386 (2)
C1—N1—N2117.85 (11)C2—C21—C26110.52 (11)
C1—N1—H1120.4 (10)C22—C21—C26109.96 (12)
N2—N1—H1120.1 (10)C2—C21—H21107.2
C2—N2—N1117.47 (11)C22—C21—H21107.2
O1—C1—N1123.70 (12)C26—C21—H21107.2
O1—C1—C11120.50 (12)C21—C22—C23110.43 (12)
N1—C1—C11115.81 (11)C21—C22—H22A109.6
N2—C2—C3125.62 (12)C23—C22—H22A109.6
N2—C2—C21118.46 (12)C21—C22—H22B109.6
C3—C2—C21115.92 (12)C23—C22—H22B109.6
C2—C3—H3A109.5H22A—C22—H22B108.1
C2—C3—H3B109.5C24—C23—C22111.09 (13)
H3A—C3—H3B109.5C24—C23—H23A109.4
C2—C3—H3C109.5C22—C23—H23A109.4
H3A—C3—H3C109.5C24—C23—H23B109.4
H3B—C3—H3C109.5C22—C23—H23B109.4
C16—C11—C12119.69 (12)H23A—C23—H23B108.0
C16—C11—C1117.84 (12)C25—C24—C23111.68 (13)
C12—C11—C1122.45 (12)C25—C24—H24A109.3
C13—C12—C11119.72 (13)C23—C24—H24A109.3
C13—C12—H12120.1C25—C24—H24B109.3
C11—C12—H12120.1C23—C24—H24B109.3
C14—C13—C12120.35 (13)H24A—C24—H24B107.9
C14—C13—H13119.8C24—C25—C26110.71 (13)
C12—C13—H13119.8C24—C25—H25A109.5
C13—C14—C15120.12 (13)C26—C25—H25A109.5
C13—C14—H14119.9C24—C25—H25B109.5
C15—C14—H14119.9C26—C25—H25B109.5
C14—C15—C16119.68 (14)H25A—C25—H25B108.1
C14—C15—H15120.2C25—C26—C21111.05 (12)
C16—C15—H15120.2C25—C26—H26A109.4
C11—C16—C15120.37 (14)C21—C26—H26A109.4
C11—C16—H16119.8C25—C26—H26B109.4
C15—C16—H16119.8C21—C26—H26B109.4
C2—C21—C22114.31 (12)H26A—C26—H26B108.0
C1—N1—N2—C2167.93 (12)C1—C11—C16—C15178.66 (13)
N2—N1—C1—O10.2 (2)C14—C15—C16—C111.4 (2)
N2—N1—C1—C11179.67 (11)N2—C2—C21—C2216.6 (2)
N1—N2—C2—C31.2 (2)C3—C2—C21—C22163.95 (14)
N1—N2—C2—C21178.18 (11)N2—C2—C21—C26108.03 (15)
O1—C1—C11—C1638.09 (18)C3—C2—C21—C2671.37 (17)
N1—C1—C11—C16141.40 (13)C2—C21—C22—C23177.68 (13)
O1—C1—C11—C12140.47 (14)C26—C21—C22—C2357.34 (17)
N1—C1—C11—C1240.04 (18)C21—C22—C23—C2456.94 (19)
C16—C11—C12—C131.7 (2)C22—C23—C24—C2556.1 (2)
C1—C11—C12—C13179.77 (12)C23—C24—C25—C2655.42 (19)
C11—C12—C13—C140.7 (2)C24—C25—C26—C2156.13 (19)
C12—C13—C14—C152.0 (2)C2—C21—C26—C25175.59 (13)
C13—C14—C15—C161.0 (2)C22—C21—C26—C2557.28 (17)
C12—C11—C16—C152.7 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.847 (17)2.191 (18)3.0213 (16)166.6 (14)
C3—H3C···O1i0.982.603.0589 (18)109
Symmetry code: (i) x, y+1/2, z+1/2.
(III) 1-Benzoyl-2-[1-(naphthalen-2-yl)ethylidene]hydrazone top
Crystal data top
C19H16N2OZ = 4
Mr = 288.34F(000) = 608
Monoclinic, P21/nDx = 1.348 Mg m3
a = 5.5789 (5) ÅMo Kα radiation, λ = 0.71073 Å
b = 7.6868 (9) ŵ = 0.09 mm1
c = 33.128 (3) ÅT = 173 K
β = 90.356 (7)°Block, colourless
V = 1420.6 (2) Å30.53 × 0.26 × 0.21 mm
Data collection top
Stoe IPDS II two-circle
diffractometer
1715 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.061
Graphite monochromatorθmax = 25.9°, θmin = 2.5°
φ scansh = 66
19261 measured reflectionsk = 99
2754 independent reflectionsl = 4040
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.080H atoms treated by a mixture of independent and constrained refinement
S = 0.85 w = 1/[σ2(Fo2) + (0.044P)2]
where P = (Fo2 + 2Fc2)/3
2754 reflections(Δ/σ)max < 0.001
204 parametersΔρmax = 0.11 e Å3
0 restraintsΔρmin = 0.14 e Å3
Crystal data top
C19H16N2OV = 1420.6 (2) Å3
Mr = 288.34Z = 4
Monoclinic, P21/nMo Kα radiation
a = 5.5789 (5) ŵ = 0.09 mm1
b = 7.6868 (9) ÅT = 173 K
c = 33.128 (3) Å0.53 × 0.26 × 0.21 mm
β = 90.356 (7)°
Data collection top
Stoe IPDS II two-circle
diffractometer
1715 reflections with I > 2σ(I)
19261 measured reflectionsRint = 0.061
2754 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0330 restraints
wR(F2) = 0.080H atoms treated by a mixture of independent and constrained refinement
S = 0.85Δρmax = 0.11 e Å3
2754 reflectionsΔρmin = 0.14 e Å3
204 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.56121 (19)0.65071 (15)0.12680 (3)0.0530 (3)
N10.9449 (2)0.69057 (16)0.10642 (3)0.0424 (3)
H11.098 (3)0.697 (2)0.1131 (5)0.059 (5)*
N20.8799 (2)0.69289 (15)0.06596 (3)0.0415 (3)
C10.7759 (3)0.66225 (19)0.13468 (4)0.0421 (3)
C21.0365 (3)0.75648 (18)0.04154 (4)0.0391 (3)
C31.2686 (3)0.8376 (2)0.05458 (4)0.0458 (4)
H3A1.24790.89350.08090.069*
H3B1.31720.92490.03470.069*
H3C1.39230.74750.05670.069*
C110.8672 (3)0.64625 (19)0.17717 (4)0.0400 (3)
C121.0829 (3)0.7171 (2)0.19055 (4)0.0455 (4)
H121.18140.77980.17230.055*
C131.1546 (3)0.6965 (2)0.23041 (4)0.0485 (4)
H131.30140.74600.23950.058*
C141.0138 (3)0.6046 (2)0.25695 (4)0.0485 (4)
H141.06420.58980.28420.058*
C150.7991 (3)0.5337 (2)0.24390 (4)0.0495 (4)
H150.70160.47040.26210.059*
C160.7270 (3)0.5553 (2)0.20436 (4)0.0452 (4)
H160.57880.50700.19560.054*
C210.9744 (3)0.74471 (17)0.00194 (4)0.0376 (3)
C220.7602 (2)0.65897 (18)0.01471 (4)0.0408 (3)
H220.65700.61020.00500.049*
C230.7003 (3)0.64553 (19)0.05435 (4)0.0423 (3)
H230.55630.58760.06180.051*
C240.8487 (3)0.71636 (18)0.08483 (4)0.0401 (3)
C250.7932 (3)0.70564 (19)0.12645 (4)0.0474 (4)
H250.65060.64850.13500.057*
C260.9418 (3)0.7763 (2)0.15444 (4)0.0521 (4)
H260.90300.76700.18230.062*
C271.1520 (3)0.8628 (2)0.14244 (4)0.0528 (4)
H271.25360.91300.16220.063*
C281.2110 (3)0.8753 (2)0.10260 (4)0.0479 (4)
H281.35340.93440.09480.057*
C291.0633 (3)0.80149 (18)0.07271 (4)0.0404 (3)
C301.1204 (3)0.81296 (18)0.03115 (4)0.0405 (3)
H301.26440.86970.02320.049*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0455 (6)0.0726 (7)0.0410 (5)0.0031 (6)0.0029 (5)0.0047 (5)
N10.0449 (8)0.0506 (8)0.0315 (6)0.0012 (6)0.0012 (5)0.0003 (5)
N20.0479 (7)0.0443 (7)0.0323 (6)0.0038 (6)0.0003 (5)0.0004 (5)
C10.0469 (9)0.0421 (8)0.0372 (7)0.0017 (7)0.0005 (6)0.0015 (6)
C20.0411 (8)0.0382 (8)0.0379 (7)0.0061 (6)0.0012 (6)0.0006 (6)
C30.0450 (9)0.0541 (9)0.0382 (7)0.0010 (7)0.0034 (6)0.0005 (6)
C110.0442 (8)0.0417 (8)0.0342 (7)0.0037 (7)0.0019 (6)0.0017 (6)
C120.0463 (9)0.0518 (9)0.0385 (8)0.0027 (7)0.0045 (6)0.0019 (6)
C130.0436 (9)0.0603 (10)0.0416 (8)0.0013 (7)0.0006 (7)0.0050 (7)
C140.0524 (10)0.0587 (10)0.0344 (7)0.0034 (8)0.0033 (7)0.0003 (7)
C150.0549 (10)0.0575 (10)0.0362 (8)0.0052 (8)0.0033 (7)0.0037 (7)
C160.0446 (9)0.0527 (9)0.0383 (8)0.0039 (7)0.0006 (6)0.0017 (6)
C210.0394 (8)0.0375 (8)0.0361 (7)0.0062 (6)0.0002 (6)0.0003 (6)
C220.0424 (8)0.0406 (8)0.0393 (7)0.0012 (7)0.0019 (6)0.0000 (6)
C230.0428 (8)0.0416 (8)0.0423 (8)0.0004 (7)0.0028 (6)0.0008 (6)
C240.0424 (8)0.0397 (8)0.0381 (7)0.0072 (6)0.0020 (6)0.0027 (6)
C250.0523 (9)0.0507 (9)0.0389 (8)0.0066 (7)0.0055 (7)0.0031 (7)
C260.0602 (10)0.0627 (10)0.0334 (7)0.0135 (8)0.0029 (7)0.0011 (7)
C270.0535 (10)0.0647 (10)0.0402 (8)0.0095 (8)0.0064 (7)0.0071 (7)
C280.0441 (8)0.0584 (10)0.0411 (8)0.0010 (8)0.0029 (6)0.0043 (7)
C290.0418 (8)0.0427 (8)0.0368 (7)0.0072 (7)0.0005 (6)0.0005 (6)
C300.0386 (8)0.0436 (8)0.0393 (7)0.0018 (7)0.0021 (6)0.0009 (6)
Geometric parameters (Å, º) top
O1—C11.2273 (17)C15—H150.9500
N1—C11.3507 (18)C16—H160.9500
N1—N21.3864 (16)C21—C301.3730 (19)
N1—H10.885 (17)C21—C221.427 (2)
N2—C21.2907 (17)C22—C231.3569 (19)
C1—C111.4988 (19)C22—H220.9500
C2—C211.4820 (19)C23—C241.4184 (19)
C2—C31.498 (2)C23—H230.9500
C3—H3A0.9800C24—C251.414 (2)
C3—H3B0.9800C24—C291.420 (2)
C3—H3C0.9800C25—C261.361 (2)
C11—C161.3860 (19)C25—H250.9500
C11—C121.391 (2)C26—C271.404 (2)
C12—C131.387 (2)C26—H260.9500
C12—H120.9500C27—C281.362 (2)
C13—C141.378 (2)C27—H270.9500
C13—H130.9500C28—C291.411 (2)
C14—C151.383 (2)C28—H280.9500
C14—H140.9500C29—C301.4140 (19)
C15—C161.378 (2)C30—H300.9500
C1—N1—N2119.52 (13)C15—C16—H16119.5
C1—N1—H1121.0 (11)C11—C16—H16119.5
N2—N1—H1119.2 (11)C30—C21—C22117.84 (13)
C2—N2—N1115.90 (12)C30—C21—C2121.71 (13)
O1—C1—N1123.27 (13)C22—C21—C2120.45 (12)
O1—C1—C11121.29 (13)C23—C22—C21121.54 (13)
N1—C1—C11115.44 (13)C23—C22—H22119.2
N2—C2—C21115.53 (13)C21—C22—H22119.2
N2—C2—C3124.33 (12)C22—C23—C24121.21 (14)
C21—C2—C3120.14 (12)C22—C23—H23119.4
C2—C3—H3A109.5C24—C23—H23119.4
C2—C3—H3B109.5C25—C24—C23123.14 (14)
H3A—C3—H3B109.5C25—C24—C29118.79 (13)
C2—C3—H3C109.5C23—C24—C29118.07 (12)
H3A—C3—H3C109.5C26—C25—C24120.71 (15)
H3B—C3—H3C109.5C26—C25—H25119.6
C16—C11—C12118.76 (13)C24—C25—H25119.6
C16—C11—C1117.50 (13)C25—C26—C27120.51 (14)
C12—C11—C1123.74 (13)C25—C26—H26119.7
C13—C12—C11120.18 (14)C27—C26—H26119.7
C13—C12—H12119.9C28—C27—C26120.27 (15)
C11—C12—H12119.9C28—C27—H27119.9
C14—C13—C12120.26 (15)C26—C27—H27119.9
C14—C13—H13119.9C27—C28—C29120.90 (15)
C12—C13—H13119.9C27—C28—H28119.6
C13—C14—C15119.92 (13)C29—C28—H28119.6
C13—C14—H14120.0C28—C29—C30121.95 (14)
C15—C14—H14120.0C28—C29—C24118.80 (13)
C16—C15—C14119.81 (14)C30—C29—C24119.23 (13)
C16—C15—H15120.1C21—C30—C29122.10 (14)
C14—C15—H15120.1C21—C30—H30118.9
C15—C16—C11121.06 (14)C29—C30—H30118.9
C1—N1—N2—C2165.74 (13)C30—C21—C22—C230.4 (2)
N2—N1—C1—O15.6 (2)C2—C21—C22—C23179.56 (13)
N2—N1—C1—C11174.73 (12)C21—C22—C23—C240.0 (2)
N1—N2—C2—C21174.98 (12)C22—C23—C24—C25179.91 (14)
N1—N2—C2—C34.82 (19)C22—C23—C24—C290.3 (2)
O1—C1—C11—C1624.1 (2)C23—C24—C25—C26179.85 (14)
N1—C1—C11—C16156.18 (13)C29—C24—C25—C260.3 (2)
O1—C1—C11—C12155.91 (15)C24—C25—C26—C270.7 (2)
N1—C1—C11—C1223.8 (2)C25—C26—C27—C280.8 (2)
C16—C11—C12—C130.1 (2)C26—C27—C28—C290.2 (2)
C1—C11—C12—C13179.97 (14)C27—C28—C29—C30179.87 (15)
C11—C12—C13—C140.5 (2)C27—C28—C29—C241.2 (2)
C12—C13—C14—C150.6 (2)C25—C24—C29—C281.24 (19)
C13—C14—C15—C160.1 (2)C23—C24—C29—C28178.94 (13)
C14—C15—C16—C110.4 (2)C25—C24—C29—C30179.98 (13)
C12—C11—C16—C150.4 (2)C23—C24—C29—C300.19 (19)
C1—C11—C16—C15179.55 (14)C22—C21—C30—C290.5 (2)
N2—C2—C21—C30177.53 (13)C2—C21—C30—C29179.63 (13)
C3—C2—C21—C302.7 (2)C28—C29—C30—C21178.51 (14)
N2—C2—C21—C223.33 (19)C24—C29—C30—C210.2 (2)
C3—C2—C21—C22176.47 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.885 (17)2.643 (18)3.5134 (18)168.1 (15)
C3—H3C···O1i0.982.613.2256 (18)121
C25—H25···O1ii0.952.603.378 (2)139
Symmetry codes: (i) x+1, y, z; (ii) x+1, y+1, z.
(IV) 1-Benzoyl-2-(1-cyclohexylbenzylidene)hydrazone top
Crystal data top
C20H22N2OZ = 8
Mr = 306.40F(000) = 1312
Monoclinic, C2/cDx = 1.211 Mg m3
a = 16.0939 (15) ÅMo Kα radiation, λ = 0.71073 Å
b = 13.8666 (8) ŵ = 0.08 mm1
c = 16.8556 (16) ÅT = 173 K
β = 116.661 (7)°Block, colourless
V = 3361.7 (5) Å30.54 × 0.52 × 0.50 mm
Data collection top
Stoe IPDS II two-circle
diffractometer
3004 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.069
Graphite monochromatorθmax = 27.9°, θmin = 3.9°
φ scansh = 2120
27068 measured reflectionsk = 1818
3956 independent reflectionsl = 2122
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.036H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.098 w = 1/[σ2(Fo2) + (0.055P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.001
3956 reflectionsΔρmax = 0.27 e Å3
213 parametersΔρmin = 0.16 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0023 (4)
Crystal data top
C20H22N2OV = 3361.7 (5) Å3
Mr = 306.40Z = 8
Monoclinic, C2/cMo Kα radiation
a = 16.0939 (15) ŵ = 0.08 mm1
b = 13.8666 (8) ÅT = 173 K
c = 16.8556 (16) Å0.54 × 0.52 × 0.50 mm
β = 116.661 (7)°
Data collection top
Stoe IPDS II two-circle
diffractometer
3004 reflections with I > 2σ(I)
27068 measured reflectionsRint = 0.069
3956 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.098H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.27 e Å3
3956 reflectionsΔρmin = 0.16 e Å3
213 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.24605 (5)0.67792 (5)0.19028 (5)0.03552 (18)
N10.35016 (7)0.67643 (6)0.13423 (7)0.0355 (2)
H10.3861 (10)0.6413 (11)0.1180 (10)0.048 (4)*
N20.34463 (6)0.77523 (6)0.11967 (6)0.0324 (2)
C10.29883 (7)0.63355 (7)0.16982 (6)0.0280 (2)
C20.39419 (7)0.80748 (7)0.08319 (7)0.0293 (2)
C110.31176 (7)0.52677 (7)0.18315 (6)0.0280 (2)
C120.37577 (8)0.47322 (7)0.16725 (8)0.0361 (2)
H120.41570.50450.14760.043*
C130.38133 (9)0.37404 (8)0.18013 (8)0.0410 (3)
H130.42410.33740.16790.049*
C140.32513 (8)0.32849 (8)0.21056 (8)0.0393 (3)
H140.32920.26060.21910.047*
C150.26294 (8)0.38124 (8)0.22867 (8)0.0399 (3)
H150.22520.35000.25090.048*
C160.25572 (8)0.47997 (7)0.21436 (7)0.0348 (2)
H160.21210.51600.22590.042*
C210.45368 (7)0.74368 (7)0.05807 (7)0.0289 (2)
C220.54414 (8)0.72163 (8)0.11993 (7)0.0365 (2)
H220.56900.74930.17760.044*
C230.59806 (8)0.65961 (9)0.09792 (8)0.0404 (3)
H230.66020.64580.14000.048*
C240.56153 (9)0.61783 (9)0.01477 (8)0.0408 (3)
H240.59820.57460.00000.049*
C250.47170 (8)0.63889 (9)0.04693 (8)0.0412 (3)
H250.44680.61010.10410.049*
C260.41769 (8)0.70182 (8)0.02588 (7)0.0351 (2)
H260.35610.71640.06870.042*
C310.39266 (7)0.91430 (7)0.06529 (7)0.0292 (2)
H310.37770.92200.00130.035*
C320.31905 (8)0.96972 (8)0.08020 (8)0.0379 (2)
H32A0.33110.96300.14290.045*
H32B0.25690.94220.04230.045*
C330.31997 (9)1.07659 (8)0.05806 (9)0.0429 (3)
H33A0.30281.08350.00590.051*
H33B0.27311.11140.07010.051*
C340.41514 (9)1.12120 (8)0.11249 (9)0.0427 (3)
H34A0.41451.18920.09420.051*
H34B0.42951.12060.17610.051*
C350.49010 (9)1.06638 (8)0.10004 (9)0.0425 (3)
H35A0.55171.09380.13980.051*
H35B0.48031.07430.03810.051*
C360.48926 (8)0.95898 (8)0.12024 (7)0.0345 (2)
H36A0.50730.95050.18420.041*
H36B0.53550.92490.10680.041*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0402 (4)0.0283 (3)0.0471 (4)0.0040 (3)0.0276 (4)0.0015 (3)
N10.0446 (5)0.0232 (4)0.0513 (6)0.0021 (4)0.0328 (5)0.0019 (4)
N20.0377 (5)0.0230 (4)0.0424 (5)0.0008 (3)0.0233 (4)0.0023 (3)
C10.0291 (5)0.0257 (4)0.0301 (5)0.0007 (4)0.0141 (4)0.0009 (4)
C20.0296 (5)0.0271 (5)0.0322 (5)0.0004 (4)0.0147 (4)0.0011 (4)
C110.0287 (5)0.0253 (5)0.0298 (5)0.0016 (3)0.0129 (4)0.0008 (3)
C120.0435 (6)0.0289 (5)0.0469 (6)0.0004 (4)0.0300 (5)0.0005 (4)
C130.0490 (7)0.0296 (5)0.0536 (7)0.0046 (5)0.0312 (6)0.0009 (5)
C140.0458 (6)0.0251 (5)0.0482 (6)0.0006 (4)0.0221 (5)0.0016 (4)
C150.0404 (6)0.0320 (5)0.0522 (6)0.0031 (4)0.0252 (5)0.0063 (5)
C160.0334 (6)0.0304 (5)0.0458 (6)0.0007 (4)0.0224 (5)0.0030 (4)
C210.0317 (5)0.0250 (4)0.0343 (5)0.0007 (4)0.0187 (4)0.0038 (4)
C220.0361 (6)0.0397 (6)0.0325 (5)0.0042 (4)0.0145 (4)0.0005 (4)
C230.0334 (6)0.0466 (6)0.0392 (6)0.0107 (5)0.0146 (5)0.0032 (5)
C240.0427 (6)0.0422 (6)0.0447 (6)0.0094 (5)0.0259 (5)0.0000 (5)
C250.0426 (6)0.0449 (6)0.0370 (6)0.0030 (5)0.0188 (5)0.0065 (5)
C260.0325 (5)0.0362 (5)0.0360 (5)0.0027 (4)0.0148 (4)0.0003 (4)
C310.0328 (5)0.0246 (4)0.0339 (5)0.0011 (4)0.0182 (4)0.0021 (4)
C320.0345 (6)0.0290 (5)0.0550 (7)0.0017 (4)0.0245 (5)0.0006 (4)
C330.0400 (6)0.0281 (5)0.0620 (7)0.0052 (4)0.0241 (5)0.0001 (5)
C340.0475 (7)0.0290 (5)0.0555 (7)0.0008 (5)0.0268 (6)0.0068 (5)
C350.0417 (6)0.0300 (5)0.0618 (7)0.0058 (4)0.0285 (6)0.0044 (5)
C360.0324 (5)0.0308 (5)0.0428 (6)0.0002 (4)0.0189 (4)0.0014 (4)
Geometric parameters (Å, º) top
O1—C11.2174 (12)C23—H230.9500
N1—C11.3567 (13)C24—C251.3812 (17)
N1—N21.3876 (11)C24—H240.9500
N1—H10.887 (15)C25—C261.3854 (16)
N2—C21.2864 (13)C25—H250.9500
C1—C111.4980 (13)C26—H260.9500
C2—C211.4975 (14)C31—C321.5246 (14)
C2—C311.5097 (13)C31—C361.5382 (15)
C11—C121.3900 (14)C31—H311.0000
C11—C161.3919 (14)C32—C331.5298 (15)
C12—C131.3889 (15)C32—H32A0.9900
C12—H120.9500C32—H32B0.9900
C13—C141.3770 (17)C33—C341.5197 (17)
C13—H130.9500C33—H33A0.9900
C14—C151.3801 (17)C33—H33B0.9900
C14—H140.9500C34—C351.5181 (17)
C15—C161.3858 (15)C34—H34A0.9900
C15—H150.9500C34—H34B0.9900
C16—H160.9500C35—C361.5291 (15)
C21—C221.3921 (15)C35—H35A0.9900
C21—C261.3925 (15)C35—H35B0.9900
C22—C231.3854 (16)C36—H36A0.9900
C22—H220.9500C36—H36B0.9900
C23—C241.3806 (17)
C1—N1—N2120.49 (9)C24—C25—H25119.8
C1—N1—H1120.4 (9)C26—C25—H25119.8
N2—N1—H1119.1 (9)C25—C26—C21120.00 (10)
C2—N2—N1115.05 (9)C25—C26—H26120.0
O1—C1—N1122.98 (9)C21—C26—H26120.0
O1—C1—C11121.65 (9)C2—C31—C32113.94 (9)
N1—C1—C11115.36 (8)C2—C31—C36110.69 (8)
N2—C2—C21122.83 (9)C32—C31—C36110.36 (8)
N2—C2—C31118.60 (9)C2—C31—H31107.2
C21—C2—C31118.57 (8)C32—C31—H31107.2
C12—C11—C16119.06 (9)C36—C31—H31107.2
C12—C11—C1124.35 (9)C31—C32—C33110.78 (9)
C16—C11—C1116.59 (9)C31—C32—H32A109.5
C13—C12—C11120.01 (10)C33—C32—H32A109.5
C13—C12—H12120.0C31—C32—H32B109.5
C11—C12—H12120.0C33—C32—H32B109.5
C14—C13—C12120.36 (10)H32A—C32—H32B108.1
C14—C13—H13119.8C34—C33—C32111.38 (10)
C12—C13—H13119.8C34—C33—H33A109.4
C13—C14—C15120.13 (10)C32—C33—H33A109.4
C13—C14—H14119.9C34—C33—H33B109.4
C15—C14—H14119.9C32—C33—H33B109.4
C14—C15—C16119.84 (10)H33A—C33—H33B108.0
C14—C15—H15120.1C35—C34—C33111.16 (10)
C16—C15—H15120.1C35—C34—H34A109.4
C15—C16—C11120.56 (10)C33—C34—H34A109.4
C15—C16—H16119.7C35—C34—H34B109.4
C11—C16—H16119.7C33—C34—H34B109.4
C22—C21—C26119.20 (9)H34A—C34—H34B108.0
C22—C21—C2120.29 (9)C34—C35—C36111.71 (10)
C26—C21—C2120.43 (9)C34—C35—H35A109.3
C23—C22—C21120.40 (10)C36—C35—H35A109.3
C23—C22—H22119.8C34—C35—H35B109.3
C21—C22—H22119.8C36—C35—H35B109.3
C24—C23—C22119.98 (10)H35A—C35—H35B107.9
C24—C23—H23120.0C35—C36—C31111.45 (9)
C22—C23—H23120.0C35—C36—H36A109.3
C23—C24—C25120.05 (10)C31—C36—H36A109.3
C23—C24—H24120.0C35—C36—H36B109.3
C25—C24—H24120.0C31—C36—H36B109.3
C24—C25—C26120.36 (10)H36A—C36—H36B108.0
C1—N1—N2—C2177.97 (10)C26—C21—C22—C230.71 (16)
N2—N1—C1—O10.25 (16)C2—C21—C22—C23177.47 (10)
N2—N1—C1—C11179.36 (9)C21—C22—C23—C241.25 (18)
N1—N2—C2—C210.01 (14)C22—C23—C24—C250.92 (19)
N1—N2—C2—C31179.73 (9)C23—C24—C25—C260.06 (19)
O1—C1—C11—C12175.09 (10)C24—C25—C26—C210.48 (18)
N1—C1—C11—C124.52 (14)C22—C21—C26—C250.15 (16)
O1—C1—C11—C164.28 (14)C2—C21—C26—C25176.60 (10)
N1—C1—C11—C16176.11 (9)N2—C2—C31—C329.16 (14)
C16—C11—C12—C131.80 (16)C21—C2—C31—C32171.11 (9)
C1—C11—C12—C13178.84 (10)N2—C2—C31—C36115.91 (11)
C11—C12—C13—C141.46 (18)C21—C2—C31—C3663.82 (12)
C12—C13—C14—C150.15 (18)C2—C31—C32—C33178.30 (9)
C13—C14—C15—C161.39 (18)C36—C31—C32—C3356.45 (12)
C14—C15—C16—C111.03 (17)C31—C32—C33—C3457.18 (14)
C12—C11—C16—C150.57 (16)C32—C33—C34—C3555.83 (14)
C1—C11—C16—C15179.97 (10)C33—C34—C35—C3654.53 (14)
N2—C2—C21—C2286.56 (13)C34—C35—C36—C3154.56 (13)
C31—C2—C21—C2293.16 (12)C2—C31—C36—C35177.58 (9)
N2—C2—C21—C2690.16 (13)C32—C31—C36—C3555.34 (12)
C31—C2—C21—C2690.12 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C14—H14···O1i0.952.603.1911 (14)121
C15—H15···O1i0.952.543.1644 (13)123
C26—H26···O1ii0.952.453.2940 (14)147
C23—H23···O1iii0.952.603.3266 (15)133
Symmetry codes: (i) x+1/2, y1/2, z+1/2; (ii) x+1/2, y+3/2, z; (iii) x+1, y, z+1/2.
(V) 1-Benzoyl-2-(1-phenylbenzylidene)hydrazone top
Crystal data top
C20H16N2OZ = 8
Mr = 300.35F(000) = 1264
Monoclinic, P21/nDx = 1.273 Mg m3
a = 16.863 (1) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.1678 (8) ŵ = 0.08 mm1
c = 18.694 (2) ÅT = 173 K
β = 102.079 (6)°Block, colourless
V = 3134.3 (5) Å30.40 × 0.40 × 0.30 mm
Data collection top
Stoe IPDS II two-circle
diffractometer
3934 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.104
Graphite monochromatorθmax = 25.9°, θmin = 3.7°
φ scansh = 2020
42459 measured reflectionsk = 1212
6006 independent reflectionsl = 2222
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.072H atoms treated by a mixture of independent and constrained refinement
S = 0.81 w = 1/[σ2(Fo2) + (0.030P)2]
where P = (Fo2 + 2Fc2)/3
6006 reflections(Δ/σ)max = 0.001
423 parametersΔρmax = 0.14 e Å3
0 restraintsΔρmin = 0.15 e Å3
Crystal data top
C20H16N2OV = 3134.3 (5) Å3
Mr = 300.35Z = 8
Monoclinic, P21/nMo Kα radiation
a = 16.863 (1) ŵ = 0.08 mm1
b = 10.1678 (8) ÅT = 173 K
c = 18.694 (2) Å0.40 × 0.40 × 0.30 mm
β = 102.079 (6)°
Data collection top
Stoe IPDS II two-circle
diffractometer
3934 reflections with I > 2σ(I)
42459 measured reflectionsRint = 0.104
6006 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.072H atoms treated by a mixture of independent and constrained refinement
S = 0.81Δρmax = 0.14 e Å3
6006 reflectionsΔρmin = 0.15 e Å3
423 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.62400 (6)0.57831 (10)0.11953 (6)0.0469 (3)
N10.72692 (7)0.71078 (11)0.10099 (6)0.0308 (2)
H10.7817 (10)0.7148 (15)0.1000 (8)0.045 (4)*
N20.67358 (7)0.80383 (11)0.06448 (6)0.0324 (2)
C10.69633 (8)0.60124 (13)0.12687 (7)0.0314 (3)
C20.70490 (8)0.91454 (13)0.05148 (7)0.0298 (3)
C110.75907 (8)0.50953 (13)0.16759 (7)0.0307 (3)
C120.83620 (9)0.54952 (15)0.20251 (8)0.0393 (3)
H120.85130.63930.20080.047*
C130.89093 (11)0.45974 (17)0.23958 (9)0.0534 (4)
H130.94370.48790.26290.064*
C140.86975 (11)0.32946 (17)0.24310 (9)0.0541 (4)
H140.90780.26800.26870.065*
C150.79323 (10)0.28874 (15)0.20939 (9)0.0444 (4)
H150.77830.19910.21200.053*
C160.73808 (9)0.37774 (13)0.17174 (8)0.0354 (3)
H160.68540.34890.14850.042*
C210.79116 (8)0.95346 (13)0.07642 (7)0.0304 (3)
C220.83542 (9)0.99480 (13)0.02559 (8)0.0371 (3)
H220.81050.99620.02490.044*
C230.91505 (10)1.03383 (15)0.04767 (11)0.0543 (5)
H230.94521.05960.01240.065*
C240.95072 (10)1.03544 (17)0.12084 (13)0.0648 (6)
H241.00541.06320.13610.078*
C250.90739 (11)0.99685 (16)0.17224 (11)0.0589 (5)
H250.93220.99900.22280.071*
C260.82782 (9)0.95495 (14)0.15028 (8)0.0411 (3)
H260.79830.92730.18570.049*
C310.64826 (8)1.01266 (13)0.00989 (7)0.0316 (3)
C320.58138 (8)0.97448 (15)0.04322 (7)0.0367 (3)
H320.57420.88470.05710.044*
C330.52553 (9)1.06753 (17)0.07563 (8)0.0447 (4)
H330.48001.04110.11190.054*
C340.53502 (9)1.19852 (17)0.05601 (9)0.0475 (4)
H340.49551.26130.07750.057*
C350.60206 (9)1.23718 (16)0.00519 (9)0.0467 (4)
H350.60931.32740.00780.056*
C360.65916 (9)1.14543 (14)0.02721 (8)0.0390 (3)
H360.70601.17330.06140.047*
O1'0.90552 (6)0.68520 (10)0.08764 (5)0.0353 (2)
N1'0.88923 (7)0.69785 (12)0.03585 (6)0.0316 (2)
H1'0.9113 (10)0.7140 (15)0.0722 (9)0.042 (4)*
N2'0.80623 (6)0.69018 (11)0.04685 (6)0.0311 (2)
C1'0.93512 (8)0.68921 (13)0.03332 (7)0.0296 (3)
C2'0.76632 (8)0.70836 (13)0.11272 (7)0.0289 (3)
C11'1.02467 (8)0.68440 (13)0.03825 (7)0.0297 (3)
C12'1.05980 (8)0.63562 (13)0.01757 (8)0.0341 (3)
H12'1.02630.60600.06200.041*
C13'1.14339 (9)0.63025 (14)0.00857 (9)0.0409 (3)
H13'1.16710.59670.04670.049*
C14'1.19216 (9)0.67368 (15)0.05569 (9)0.0437 (4)
H14'1.24950.66970.06180.052*
C15'1.15805 (9)0.72292 (16)0.11120 (8)0.0439 (4)
H15'1.19190.75380.15510.053*
C16'1.07451 (9)0.72726 (15)0.10285 (8)0.0379 (3)
H16'1.05120.75970.14150.045*
C21'0.80575 (8)0.73981 (13)0.17535 (7)0.0299 (3)
C22'0.81780 (9)0.86896 (15)0.19420 (8)0.0386 (3)
H22'0.80030.93900.16760.046*
C23'0.85550 (10)0.89611 (17)0.25198 (8)0.0473 (4)
H23'0.86330.98480.26490.057*
C24'0.88139 (9)0.79596 (19)0.29035 (8)0.0501 (4)
H24'0.90740.81530.32950.060*
C25'0.86975 (10)0.66766 (19)0.27228 (9)0.0534 (4)
H25'0.88740.59820.29920.064*
C26'0.83210 (9)0.63906 (16)0.21469 (8)0.0424 (4)
H26'0.82440.55010.20220.051*
C31'0.67719 (8)0.69210 (13)0.12642 (7)0.0305 (3)
C32'0.64182 (9)0.61621 (14)0.07915 (8)0.0365 (3)
H32'0.67510.57610.03760.044*
C33'0.55860 (9)0.59899 (16)0.09240 (9)0.0439 (4)
H33'0.53500.54760.05990.053*
C34'0.50985 (9)0.65653 (16)0.15287 (9)0.0465 (4)
H34'0.45280.64380.16210.056*
C35'0.54356 (9)0.73232 (16)0.19987 (8)0.0431 (4)
H35'0.50970.77290.24100.052*
C36'0.62723 (8)0.74946 (14)0.18711 (8)0.0352 (3)
H36'0.65040.80060.22000.042*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0321 (6)0.0400 (6)0.0700 (7)0.0007 (4)0.0140 (5)0.0101 (5)
N10.0247 (6)0.0331 (6)0.0353 (6)0.0022 (5)0.0075 (5)0.0047 (5)
N20.0287 (6)0.0350 (6)0.0340 (6)0.0041 (5)0.0078 (5)0.0033 (5)
C10.0316 (8)0.0304 (7)0.0342 (7)0.0031 (6)0.0116 (6)0.0027 (5)
C20.0312 (7)0.0315 (7)0.0287 (7)0.0006 (6)0.0106 (5)0.0001 (5)
C110.0355 (7)0.0323 (7)0.0273 (6)0.0012 (6)0.0134 (5)0.0002 (5)
C120.0434 (8)0.0404 (8)0.0332 (7)0.0064 (7)0.0055 (6)0.0056 (6)
C130.0488 (9)0.0575 (11)0.0469 (9)0.0045 (8)0.0058 (7)0.0169 (8)
C140.0543 (10)0.0519 (11)0.0530 (10)0.0093 (8)0.0041 (8)0.0174 (8)
C150.0563 (10)0.0325 (8)0.0480 (9)0.0041 (7)0.0193 (8)0.0057 (7)
C160.0390 (8)0.0321 (8)0.0386 (7)0.0011 (6)0.0161 (6)0.0015 (6)
C210.0301 (7)0.0251 (7)0.0358 (7)0.0051 (5)0.0061 (6)0.0027 (5)
C220.0354 (8)0.0302 (7)0.0474 (8)0.0035 (6)0.0127 (6)0.0059 (6)
C230.0366 (8)0.0353 (9)0.0951 (14)0.0022 (7)0.0228 (9)0.0132 (9)
C240.0318 (9)0.0389 (10)0.1135 (17)0.0035 (7)0.0079 (10)0.0097 (10)
C250.0572 (11)0.0372 (9)0.0668 (11)0.0038 (8)0.0228 (9)0.0034 (8)
C260.0471 (9)0.0324 (8)0.0398 (8)0.0042 (6)0.0003 (7)0.0040 (6)
C310.0290 (7)0.0374 (8)0.0308 (7)0.0036 (6)0.0119 (5)0.0043 (6)
C320.0323 (7)0.0488 (9)0.0311 (7)0.0003 (6)0.0116 (6)0.0020 (6)
C330.0305 (8)0.0721 (12)0.0321 (7)0.0052 (7)0.0077 (6)0.0128 (7)
C340.0380 (8)0.0595 (11)0.0486 (9)0.0164 (8)0.0169 (7)0.0223 (8)
C350.0405 (8)0.0429 (9)0.0588 (10)0.0112 (7)0.0148 (7)0.0103 (7)
C360.0339 (8)0.0384 (8)0.0448 (8)0.0033 (6)0.0083 (6)0.0033 (6)
O1'0.0326 (5)0.0431 (6)0.0319 (5)0.0020 (4)0.0107 (4)0.0034 (4)
N1'0.0254 (6)0.0412 (7)0.0299 (6)0.0000 (5)0.0094 (5)0.0044 (5)
N2'0.0263 (6)0.0341 (6)0.0338 (6)0.0011 (5)0.0085 (5)0.0005 (5)
C1'0.0301 (7)0.0269 (7)0.0327 (7)0.0001 (5)0.0085 (6)0.0033 (5)
C2'0.0301 (7)0.0279 (7)0.0300 (7)0.0002 (5)0.0093 (5)0.0005 (5)
C11'0.0299 (7)0.0274 (7)0.0326 (7)0.0009 (5)0.0083 (5)0.0056 (5)
C12'0.0351 (8)0.0310 (7)0.0374 (7)0.0002 (6)0.0104 (6)0.0002 (6)
C13'0.0373 (8)0.0389 (8)0.0511 (9)0.0035 (7)0.0199 (7)0.0019 (7)
C14'0.0282 (8)0.0473 (9)0.0564 (9)0.0025 (6)0.0110 (7)0.0111 (7)
C15'0.0322 (8)0.0566 (10)0.0399 (8)0.0008 (7)0.0012 (6)0.0059 (7)
C16'0.0341 (7)0.0469 (9)0.0325 (7)0.0029 (6)0.0067 (6)0.0052 (6)
C21'0.0225 (6)0.0382 (8)0.0284 (6)0.0013 (5)0.0037 (5)0.0025 (5)
C22'0.0387 (8)0.0406 (8)0.0364 (8)0.0030 (6)0.0074 (6)0.0029 (6)
C23'0.0455 (9)0.0559 (10)0.0392 (8)0.0128 (8)0.0059 (7)0.0147 (7)
C24'0.0371 (9)0.0819 (13)0.0339 (8)0.0042 (8)0.0134 (7)0.0094 (8)
C25'0.0494 (10)0.0705 (12)0.0461 (9)0.0073 (8)0.0229 (8)0.0038 (8)
C26'0.0435 (9)0.0438 (9)0.0432 (8)0.0033 (7)0.0168 (7)0.0003 (7)
C31'0.0291 (7)0.0316 (7)0.0321 (7)0.0015 (6)0.0095 (5)0.0063 (6)
C32'0.0351 (8)0.0397 (8)0.0369 (8)0.0047 (6)0.0125 (6)0.0047 (6)
C33'0.0373 (8)0.0503 (9)0.0488 (9)0.0099 (7)0.0199 (7)0.0078 (7)
C34'0.0284 (7)0.0607 (10)0.0525 (10)0.0072 (7)0.0131 (7)0.0163 (8)
C35'0.0295 (7)0.0573 (10)0.0407 (8)0.0060 (7)0.0032 (6)0.0083 (7)
C36'0.0315 (7)0.0406 (8)0.0344 (7)0.0006 (6)0.0091 (6)0.0038 (6)
Geometric parameters (Å, º) top
O1—C11.2210 (16)O1'—C1'1.2224 (15)
N1—C11.3583 (17)N1'—C1'1.3637 (17)
N1—N21.3832 (15)N1'—N2'1.3737 (15)
N1—H10.930 (17)N1'—H1'0.855 (17)
N2—C21.2880 (17)N2'—C2'1.2871 (16)
C1—C111.4937 (19)C1'—C11'1.4943 (18)
C2—C311.4837 (18)C2'—C31'1.4803 (18)
C2—C211.4853 (19)C2'—C21'1.4969 (18)
C11—C121.389 (2)C11'—C16'1.3892 (19)
C11—C161.3922 (19)C11'—C12'1.3945 (19)
C12—C131.377 (2)C12'—C13'1.385 (2)
C12—H120.9500C12'—H12'0.9500
C13—C141.377 (2)C13'—C14'1.379 (2)
C13—H130.9500C13'—H13'0.9500
C14—C151.376 (2)C14'—C15'1.381 (2)
C14—H140.9500C14'—H14'0.9500
C15—C161.380 (2)C15'—C16'1.385 (2)
C15—H150.9500C15'—H15'0.9500
C16—H160.9500C16'—H16'0.9500
C21—C261.3899 (19)C21'—C22'1.386 (2)
C21—C221.391 (2)C21'—C26'1.387 (2)
C22—C231.378 (2)C22'—C23'1.391 (2)
C22—H220.9500C22'—H22'0.9500
C23—C241.374 (3)C23'—C24'1.369 (2)
C23—H230.9500C23'—H23'0.9500
C24—C251.380 (3)C24'—C25'1.372 (2)
C24—H240.9500C24'—H24'0.9500
C25—C261.386 (2)C25'—C26'1.390 (2)
C25—H250.9500C25'—H25'0.9500
C26—H260.9500C26'—H26'0.9500
C31—C361.391 (2)C31'—C36'1.3918 (19)
C31—C321.3927 (19)C31'—C32'1.3973 (19)
C32—C331.382 (2)C32'—C33'1.384 (2)
C32—H320.9500C32'—H32'0.9500
C33—C341.382 (2)C33'—C34'1.381 (2)
C33—H330.9500C33'—H33'0.9500
C34—C351.373 (2)C34'—C35'1.378 (2)
C34—H340.9500C34'—H34'0.9500
C35—C361.386 (2)C35'—C36'1.392 (2)
C35—H350.9500C35'—H35'0.9500
C36—H360.9500C36'—H36'0.9500
C1—N1—N2118.71 (11)C1'—N1'—N2'119.77 (11)
C1—N1—H1119.8 (10)C1'—N1'—H1'120.7 (10)
N2—N1—H1120.5 (10)N2'—N1'—H1'119.4 (10)
C2—N2—N1116.16 (11)C2'—N2'—N1'116.58 (11)
O1—C1—N1124.15 (13)O1'—C1'—N1'122.72 (12)
O1—C1—C11121.49 (12)O1'—C1'—C11'122.06 (12)
N1—C1—C11114.34 (11)N1'—C1'—C11'115.22 (11)
N2—C2—C31116.24 (12)N2'—C2'—C31'117.27 (11)
N2—C2—C21125.94 (12)N2'—C2'—C21'123.38 (11)
C31—C2—C21117.79 (11)C31'—C2'—C21'119.32 (11)
C12—C11—C16118.66 (13)C16'—C11'—C12'119.18 (13)
C12—C11—C1123.41 (12)C16'—C11'—C1'117.58 (12)
C16—C11—C1117.91 (12)C12'—C11'—C1'123.21 (12)
C13—C12—C11120.36 (14)C13'—C12'—C11'120.26 (13)
C13—C12—H12119.8C13'—C12'—H12'119.9
C11—C12—H12119.8C11'—C12'—H12'119.9
C14—C13—C12120.56 (15)C14'—C13'—C12'119.97 (14)
C14—C13—H13119.7C14'—C13'—H13'120.0
C12—C13—H13119.7C12'—C13'—H13'120.0
C15—C14—C13119.69 (15)C13'—C14'—C15'120.28 (13)
C15—C14—H14120.2C13'—C14'—H14'119.9
C13—C14—H14120.2C15'—C14'—H14'119.9
C14—C15—C16120.23 (15)C14'—C15'—C16'120.03 (14)
C14—C15—H15119.9C14'—C15'—H15'120.0
C16—C15—H15119.9C16'—C15'—H15'120.0
C15—C16—C11120.49 (14)C15'—C16'—C11'120.27 (14)
C15—C16—H16119.8C15'—C16'—H16'119.9
C11—C16—H16119.8C11'—C16'—H16'119.9
C26—C21—C22119.00 (13)C22'—C21'—C26'118.99 (13)
C26—C21—C2121.17 (13)C22'—C21'—C2'120.94 (12)
C22—C21—C2119.77 (12)C26'—C21'—C2'120.06 (12)
C23—C22—C21120.74 (15)C21'—C22'—C23'120.05 (14)
C23—C22—H22119.6C21'—C22'—H22'120.0
C21—C22—H22119.6C23'—C22'—H22'120.0
C24—C23—C22119.85 (17)C24'—C23'—C22'120.47 (15)
C24—C23—H23120.1C24'—C23'—H23'119.8
C22—C23—H23120.1C22'—C23'—H23'119.8
C23—C24—C25120.29 (16)C23'—C24'—C25'120.04 (14)
C23—C24—H24119.9C23'—C24'—H24'120.0
C25—C24—H24119.9C25'—C24'—H24'120.0
C24—C25—C26120.14 (17)C24'—C25'—C26'120.11 (16)
C24—C25—H25119.9C24'—C25'—H25'119.9
C26—C25—H25119.9C26'—C25'—H25'119.9
C25—C26—C21119.97 (16)C21'—C26'—C25'120.33 (15)
C25—C26—H26120.0C21'—C26'—H26'119.8
C21—C26—H26120.0C25'—C26'—H26'119.8
C36—C31—C32118.96 (13)C36'—C31'—C32'118.77 (12)
C36—C31—C2119.41 (12)C36'—C31'—C2'120.91 (12)
C32—C31—C2121.51 (13)C32'—C31'—C2'120.31 (12)
C33—C32—C31119.83 (14)C33'—C32'—C31'120.50 (14)
C33—C32—H32120.1C33'—C32'—H32'119.7
C31—C32—H32120.1C31'—C32'—H32'119.7
C34—C33—C32120.86 (14)C34'—C33'—C32'120.03 (14)
C34—C33—H33119.6C34'—C33'—H33'120.0
C32—C33—H33119.6C32'—C33'—H33'120.0
C35—C34—C33119.50 (14)C35'—C34'—C33'120.31 (14)
C35—C34—H34120.2C35'—C34'—H34'119.8
C33—C34—H34120.2C33'—C34'—H34'119.8
C34—C35—C36120.38 (16)C34'—C35'—C36'119.97 (15)
C34—C35—H35119.8C34'—C35'—H35'120.0
C36—C35—H35119.8C36'—C35'—H35'120.0
C35—C36—C31120.37 (14)C35'—C36'—C31'120.40 (14)
C35—C36—H36119.8C35'—C36'—H36'119.8
C31—C36—H36119.8C31'—C36'—H36'119.8
C1—N1—N2—C2169.23 (12)C1'—N1'—N2'—C2'175.22 (12)
N2—N1—C1—O10.6 (2)N2'—N1'—C1'—O1'6.0 (2)
N2—N1—C1—C11178.00 (11)N2'—N1'—C1'—C11'173.78 (11)
N1—N2—C2—C31177.79 (11)N1'—N2'—C2'—C31'176.22 (11)
N1—N2—C2—C214.40 (19)N1'—N2'—C2'—C21'1.51 (19)
O1—C1—C11—C12153.42 (14)O1'—C1'—C11'—C16'25.23 (19)
N1—C1—C11—C1225.25 (19)N1'—C1'—C11'—C16'155.01 (12)
O1—C1—C11—C1625.2 (2)O1'—C1'—C11'—C12'152.74 (13)
N1—C1—C11—C16156.09 (12)N1'—C1'—C11'—C12'27.02 (19)
C16—C11—C12—C130.9 (2)C16'—C11'—C12'—C13'0.1 (2)
C1—C11—C12—C13179.51 (14)C1'—C11'—C12'—C13'178.02 (13)
C11—C12—C13—C140.6 (3)C11'—C12'—C13'—C14'0.2 (2)
C12—C13—C14—C150.1 (3)C12'—C13'—C14'—C15'0.2 (2)
C13—C14—C15—C160.5 (3)C13'—C14'—C15'—C16'0.8 (2)
C14—C15—C16—C110.2 (2)C14'—C15'—C16'—C11'1.1 (2)
C12—C11—C16—C150.5 (2)C12'—C11'—C16'—C15'0.8 (2)
C1—C11—C16—C15179.22 (13)C1'—C11'—C16'—C15'178.82 (14)
N2—C2—C21—C2658.02 (19)N2'—C2'—C21'—C22'91.72 (17)
C31—C2—C21—C26119.76 (14)C31'—C2'—C21'—C22'90.60 (16)
N2—C2—C21—C22124.86 (15)N2'—C2'—C21'—C26'87.16 (17)
C31—C2—C21—C2257.36 (17)C31'—C2'—C21'—C26'90.52 (16)
C26—C21—C22—C231.5 (2)C26'—C21'—C22'—C23'0.3 (2)
C2—C21—C22—C23178.70 (13)C2'—C21'—C22'—C23'179.17 (13)
C21—C22—C23—C241.8 (2)C21'—C22'—C23'—C24'0.4 (2)
C22—C23—C24—C250.7 (3)C22'—C23'—C24'—C25'0.5 (2)
C23—C24—C25—C260.7 (3)C23'—C24'—C25'—C26'0.4 (3)
C24—C25—C26—C210.9 (2)C22'—C21'—C26'—C25'0.2 (2)
C22—C21—C26—C250.2 (2)C2'—C21'—C26'—C25'179.12 (14)
C2—C21—C26—C25177.34 (13)C24'—C25'—C26'—C21'0.3 (2)
N2—C2—C31—C36143.29 (13)N2'—C2'—C31'—C36'158.77 (12)
C21—C2—C31—C3634.71 (18)C21'—C2'—C31'—C36'23.41 (19)
N2—C2—C31—C3232.76 (18)N2'—C2'—C31'—C32'22.56 (19)
C21—C2—C31—C32149.24 (13)C21'—C2'—C31'—C32'155.26 (12)
C36—C31—C32—C332.5 (2)C36'—C31'—C32'—C33'0.3 (2)
C2—C31—C32—C33173.54 (13)C2'—C31'—C32'—C33'178.95 (13)
C31—C32—C33—C340.1 (2)C31'—C32'—C33'—C34'0.3 (2)
C32—C33—C34—C351.9 (2)C32'—C33'—C34'—C35'0.6 (2)
C33—C34—C35—C361.1 (2)C33'—C34'—C35'—C36'1.0 (2)
C34—C35—C36—C311.5 (2)C34'—C35'—C36'—C31'1.0 (2)
C32—C31—C36—C353.3 (2)C32'—C31'—C36'—C35'0.6 (2)
C2—C31—C36—C35172.82 (13)C2'—C31'—C36'—C35'179.30 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O10.930 (17)2.168 (17)3.0846 (15)168.5 (14)
C12—H12···O10.952.522.9884 (17)111
C34—H34···O1i0.952.583.5238 (18)171
Symmetry code: (i) x+1, y+2, z.
(VI) 1-Benzoyl-2-[1-(4-chlorophenyl)benzylidene]hydrazone top
Crystal data top
C20H15ClN2OZ = 8
Mr = 334.79F(000) = 1392
Monoclinic, P21/nDx = 1.344 Mg m3
a = 19.432 (4) ÅMo Kα radiation, λ = 0.71073 Å
b = 8.9330 (18) ŵ = 0.24 mm1
c = 19.496 (4) ÅT = 173 K
β = 102.18 (3)°Block, colourless
V = 3308.1 (12) Å30.56 × 0.48 × 0.31 mm
Data collection top
Stoe IPDS II two-circle
diffractometer
4590 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.074
Graphite monochromatorθmax = 26.0°, θmin = 2.7°
φ scansh = 2323
46062 measured reflectionsk = 1010
6453 independent reflectionsl = 2423
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.064H atoms treated by a mixture of independent and constrained refinement
S = 0.81 w = 1/[σ2(Fo2) + (0.030P)2]
where P = (Fo2 + 2Fc2)/3
6453 reflections(Δ/σ)max = 0.001
441 parametersΔρmax = 0.30 e Å3
0 restraintsΔρmin = 0.27 e Å3
Crystal data top
C20H15ClN2OV = 3308.1 (12) Å3
Mr = 334.79Z = 8
Monoclinic, P21/nMo Kα radiation
a = 19.432 (4) ŵ = 0.24 mm1
b = 8.9330 (18) ÅT = 173 K
c = 19.496 (4) Å0.56 × 0.48 × 0.31 mm
β = 102.18 (3)°
Data collection top
Stoe IPDS II two-circle
diffractometer
4590 reflections with I > 2σ(I)
46062 measured reflectionsRint = 0.074
6453 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0310 restraints
wR(F2) = 0.064H atoms treated by a mixture of independent and constrained refinement
S = 0.81Δρmax = 0.30 e Å3
6453 reflectionsΔρmin = 0.27 e Å3
441 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.24104 (4)0.03180 (9)0.22787 (4)0.0817 (2)
O10.56343 (7)0.56746 (17)0.08803 (7)0.0470 (3)
N10.44952 (8)0.6375 (2)0.04511 (9)0.0392 (4)
H10.4193 (12)0.706 (3)0.0155 (11)0.056 (7)*
N20.42312 (8)0.52314 (19)0.07895 (8)0.0393 (4)
C10.52100 (10)0.6485 (2)0.04991 (10)0.0391 (5)
C20.35518 (10)0.5124 (2)0.06926 (10)0.0381 (4)
C110.54334 (10)0.7694 (2)0.00645 (10)0.0410 (5)
C120.49973 (11)0.8309 (2)0.05241 (10)0.0471 (5)
H120.45250.79730.06680.056*
C130.52539 (13)0.9415 (3)0.09007 (12)0.0560 (6)
H130.49560.98390.13030.067*
C140.59419 (14)0.9905 (3)0.06951 (13)0.0597 (6)
H140.61151.06650.09550.072*
C150.63742 (13)0.9292 (3)0.01152 (14)0.0623 (7)
H150.68470.96270.00260.075*
C160.61240 (11)0.8193 (3)0.02623 (12)0.0517 (6)
H160.64270.77710.06620.062*
C210.30470 (10)0.6146 (2)0.02279 (10)0.0392 (5)
C220.26304 (11)0.7133 (2)0.05217 (12)0.0475 (5)
H220.26600.71380.10140.057*
C230.21760 (11)0.8100 (3)0.00940 (13)0.0528 (6)
H230.19000.87830.02950.063*
C240.21218 (11)0.8079 (3)0.06229 (14)0.0559 (6)
H240.18050.87390.09140.067*
C250.25248 (11)0.7107 (3)0.09160 (12)0.0529 (6)
H250.24850.70930.14100.064*
C260.29921 (11)0.6141 (2)0.04922 (11)0.0452 (5)
H260.32740.54780.06970.054*
C310.32717 (10)0.3934 (2)0.10856 (10)0.0385 (4)
C320.37082 (11)0.3217 (2)0.16447 (10)0.0442 (5)
H320.41890.34970.17780.053*
C330.34491 (12)0.2103 (2)0.20070 (11)0.0491 (5)
H330.37490.16110.23880.059*
C340.27410 (12)0.1702 (3)0.18085 (11)0.0504 (5)
C350.23008 (11)0.2391 (3)0.12546 (12)0.0492 (5)
H350.18210.21000.11210.059*
C360.25615 (11)0.3502 (2)0.08983 (11)0.0430 (5)
H360.22580.39890.05180.052*
Cl1'0.71520 (3)0.54781 (7)0.23796 (3)0.06059 (16)
O1'0.61656 (7)0.02612 (16)0.56664 (7)0.0435 (3)
N1'0.56737 (9)0.09548 (19)0.45548 (8)0.0377 (4)
H1'0.5415 (11)0.161 (2)0.4276 (11)0.045*
N2'0.59881 (8)0.02004 (18)0.42680 (8)0.0377 (4)
C1'0.57913 (10)0.1112 (2)0.52639 (9)0.0343 (4)
C2'0.58456 (10)0.0303 (2)0.35943 (9)0.0360 (4)
C11'0.54246 (10)0.2406 (2)0.55113 (10)0.0366 (4)
C12'0.47518 (11)0.2876 (2)0.51814 (10)0.0403 (5)
H12'0.45170.24100.47580.048*
C13'0.44252 (12)0.4025 (2)0.54712 (12)0.0479 (5)
H13'0.39630.43300.52500.057*
C14'0.47655 (13)0.4724 (3)0.60743 (12)0.0523 (6)
H14'0.45420.55170.62680.063*
C15'0.54352 (13)0.4269 (3)0.63997 (11)0.0549 (6)
H15'0.56720.47570.68160.066*
C16'0.57640 (11)0.3109 (2)0.61238 (10)0.0449 (5)
H16'0.62220.27950.63540.054*
C21'0.53733 (11)0.0741 (2)0.31215 (9)0.0372 (4)
C22'0.56492 (12)0.1709 (2)0.26916 (10)0.0485 (5)
H22'0.61360.16730.26820.058*
C23'0.52069 (16)0.2738 (3)0.22731 (11)0.0616 (7)
H23'0.53940.34170.19850.074*
C24'0.44943 (16)0.2767 (3)0.22789 (12)0.0618 (7)
H24'0.41940.34590.19890.074*
C25'0.42208 (13)0.1813 (3)0.26963 (11)0.0547 (6)
H25'0.37320.18400.26950.066*
C26'0.46501 (11)0.0814 (2)0.31182 (10)0.0448 (5)
H26'0.44560.01610.34130.054*
C31'0.61802 (10)0.1565 (2)0.32892 (10)0.0372 (4)
C32'0.68001 (11)0.2224 (2)0.36577 (11)0.0420 (5)
H32'0.70210.18450.41050.050*
C33'0.70960 (11)0.3428 (2)0.33759 (11)0.0443 (5)
H33'0.75190.38730.36260.053*
C34'0.67673 (11)0.3972 (2)0.27263 (10)0.0432 (5)
C35'0.61536 (12)0.3350 (2)0.23533 (10)0.0470 (5)
H35'0.59300.37440.19090.056*
C36'0.58676 (11)0.2139 (2)0.26376 (10)0.0427 (5)
H36'0.54480.16920.23810.051*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0716 (4)0.0801 (5)0.0964 (5)0.0007 (4)0.0245 (4)0.0435 (4)
O10.0393 (8)0.0561 (9)0.0445 (8)0.0078 (7)0.0066 (6)0.0017 (7)
N10.0352 (9)0.0382 (10)0.0434 (9)0.0012 (8)0.0066 (7)0.0004 (8)
N20.0391 (10)0.0388 (10)0.0403 (9)0.0024 (8)0.0093 (7)0.0058 (7)
C10.0337 (11)0.0455 (12)0.0369 (10)0.0017 (9)0.0046 (8)0.0117 (9)
C20.0364 (11)0.0395 (12)0.0378 (10)0.0036 (9)0.0069 (8)0.0063 (9)
C110.0414 (12)0.0397 (12)0.0426 (11)0.0000 (9)0.0107 (9)0.0106 (9)
C120.0495 (13)0.0470 (13)0.0440 (12)0.0005 (11)0.0084 (10)0.0079 (10)
C130.0743 (17)0.0492 (15)0.0462 (12)0.0033 (13)0.0164 (11)0.0055 (11)
C140.0801 (18)0.0442 (14)0.0618 (15)0.0107 (13)0.0313 (14)0.0104 (12)
C150.0555 (15)0.0589 (16)0.0753 (17)0.0160 (13)0.0204 (13)0.0099 (14)
C160.0417 (12)0.0535 (15)0.0582 (13)0.0058 (11)0.0071 (10)0.0075 (11)
C210.0319 (10)0.0381 (11)0.0476 (12)0.0011 (9)0.0085 (8)0.0012 (9)
C220.0467 (12)0.0428 (13)0.0566 (13)0.0013 (11)0.0191 (10)0.0039 (11)
C230.0416 (12)0.0394 (13)0.0829 (17)0.0089 (10)0.0252 (11)0.0130 (12)
C240.0349 (12)0.0501 (15)0.0810 (18)0.0006 (10)0.0079 (11)0.0209 (13)
C250.0449 (13)0.0592 (15)0.0507 (13)0.0017 (12)0.0012 (10)0.0098 (11)
C260.0402 (11)0.0485 (13)0.0465 (12)0.0005 (10)0.0079 (9)0.0005 (10)
C310.0404 (11)0.0370 (11)0.0390 (10)0.0056 (9)0.0102 (8)0.0040 (9)
C320.0455 (12)0.0412 (12)0.0445 (11)0.0044 (10)0.0065 (9)0.0015 (10)
C330.0549 (14)0.0472 (14)0.0428 (12)0.0095 (11)0.0051 (10)0.0045 (10)
C340.0528 (14)0.0474 (13)0.0546 (13)0.0019 (11)0.0191 (11)0.0063 (11)
C350.0396 (12)0.0518 (14)0.0565 (13)0.0029 (10)0.0110 (10)0.0063 (11)
C360.0395 (12)0.0446 (13)0.0439 (11)0.0061 (10)0.0067 (9)0.0017 (10)
Cl1'0.0725 (4)0.0534 (4)0.0591 (4)0.0169 (3)0.0211 (3)0.0046 (3)
O1'0.0437 (8)0.0501 (9)0.0359 (7)0.0080 (7)0.0067 (6)0.0024 (7)
N1'0.0446 (10)0.0340 (10)0.0334 (9)0.0008 (8)0.0059 (7)0.0002 (7)
N2'0.0416 (9)0.0352 (9)0.0378 (9)0.0030 (8)0.0113 (7)0.0013 (7)
C1'0.0316 (10)0.0390 (11)0.0322 (10)0.0048 (9)0.0069 (8)0.0029 (9)
C2'0.0392 (10)0.0340 (10)0.0354 (10)0.0076 (9)0.0094 (8)0.0000 (9)
C11'0.0401 (11)0.0343 (11)0.0366 (10)0.0034 (9)0.0109 (8)0.0033 (9)
C12'0.0443 (11)0.0358 (12)0.0408 (11)0.0020 (9)0.0090 (9)0.0039 (9)
C13'0.0462 (12)0.0427 (13)0.0557 (13)0.0062 (10)0.0128 (10)0.0097 (10)
C14'0.0679 (15)0.0387 (13)0.0564 (13)0.0076 (11)0.0272 (12)0.0001 (11)
C15'0.0712 (16)0.0518 (15)0.0435 (12)0.0028 (13)0.0164 (11)0.0112 (11)
C16'0.0449 (11)0.0492 (13)0.0396 (11)0.0047 (10)0.0071 (9)0.0039 (10)
C21'0.0507 (12)0.0317 (11)0.0301 (9)0.0038 (9)0.0104 (8)0.0029 (8)
C22'0.0643 (14)0.0437 (13)0.0397 (11)0.0105 (11)0.0162 (10)0.0012 (10)
C23'0.111 (2)0.0381 (14)0.0348 (12)0.0109 (14)0.0121 (13)0.0040 (10)
C24'0.092 (2)0.0458 (15)0.0400 (13)0.0149 (14)0.0022 (13)0.0006 (11)
C25'0.0600 (14)0.0578 (15)0.0415 (12)0.0139 (12)0.0002 (10)0.0020 (11)
C26'0.0538 (13)0.0440 (13)0.0369 (11)0.0014 (10)0.0105 (9)0.0003 (9)
C31'0.0426 (11)0.0339 (11)0.0364 (10)0.0025 (9)0.0113 (8)0.0007 (9)
C32'0.0426 (12)0.0431 (12)0.0406 (11)0.0046 (10)0.0095 (9)0.0037 (9)
C33'0.0415 (11)0.0433 (12)0.0477 (12)0.0020 (10)0.0085 (9)0.0039 (10)
C34'0.0535 (13)0.0360 (11)0.0437 (11)0.0029 (10)0.0186 (9)0.0007 (9)
C35'0.0591 (14)0.0458 (14)0.0354 (11)0.0005 (11)0.0086 (10)0.0020 (10)
C36'0.0463 (12)0.0400 (12)0.0407 (11)0.0042 (10)0.0066 (9)0.0008 (9)
Geometric parameters (Å, º) top
Cl1—C341.741 (2)Cl1'—C34'1.744 (2)
O1—C11.224 (2)O1'—C1'1.217 (2)
N1—N21.373 (2)N1'—C1'1.360 (2)
N1—C11.376 (2)N1'—N2'1.376 (2)
N1—H10.95 (2)N1'—H1'0.88 (2)
N2—C21.297 (2)N2'—C2'1.287 (2)
C1—C111.492 (3)C1'—C11'1.491 (3)
C2—C311.479 (3)C2'—C21'1.485 (3)
C2—C211.497 (3)C2'—C31'1.486 (3)
C11—C121.388 (3)C11'—C16'1.387 (3)
C11—C161.389 (3)C11'—C12'1.394 (3)
C12—C131.385 (3)C12'—C13'1.388 (3)
C12—H120.9500C12'—H12'0.9500
C13—C141.383 (3)C13'—C14'1.372 (3)
C13—H130.9500C13'—H13'0.9500
C14—C151.372 (3)C14'—C15'1.383 (3)
C14—H140.9500C14'—H14'0.9500
C15—C161.376 (3)C15'—C16'1.384 (3)
C15—H150.9500C15'—H15'0.9500
C16—H160.9500C16'—H16'0.9500
C21—C261.385 (3)C21'—C22'1.389 (3)
C21—C221.399 (3)C21'—C26'1.405 (3)
C22—C231.383 (3)C22'—C23'1.397 (3)
C22—H220.9500C22'—H22'0.9500
C23—C241.379 (3)C23'—C24'1.387 (4)
C23—H230.9500C23'—H23'0.9500
C24—C251.372 (3)C24'—C25'1.361 (4)
C24—H240.9500C24'—H24'0.9500
C25—C261.391 (3)C25'—C26'1.371 (3)
C25—H250.9500C25'—H25'0.9500
C26—H260.9500C26'—H26'0.9500
C31—C321.389 (3)C31'—C36'1.386 (3)
C31—C361.405 (3)C31'—C32'1.396 (3)
C32—C331.376 (3)C32'—C33'1.387 (3)
C32—H320.9500C32'—H32'0.9500
C33—C341.395 (3)C33'—C34'1.380 (3)
C33—H330.9500C33'—H33'0.9500
C34—C351.374 (3)C34'—C35'1.376 (3)
C35—C361.368 (3)C35'—C36'1.384 (3)
C35—H350.9500C35'—H35'0.9500
C36—H360.9500C36'—H36'0.9500
N2—N1—C1119.67 (17)C1'—N1'—N2'119.75 (17)
N2—N1—H1121.6 (13)C1'—N1'—H1'120.6 (13)
C1—N1—H1118.6 (13)N2'—N1'—H1'119.5 (13)
C2—N2—N1117.22 (17)C2'—N2'—N1'116.72 (16)
O1—C1—N1122.68 (19)O1'—C1'—N1'122.72 (18)
O1—C1—C11122.24 (18)O1'—C1'—C11'122.49 (17)
N1—C1—C11115.06 (18)N1'—C1'—C11'114.79 (17)
N2—C2—C31116.89 (18)N2'—C2'—C21'124.07 (17)
N2—C2—C21124.03 (18)N2'—C2'—C31'116.39 (17)
C31—C2—C21119.07 (17)C21'—C2'—C31'119.54 (16)
C12—C11—C16119.2 (2)C16'—C11'—C12'119.35 (19)
C12—C11—C1123.76 (18)C16'—C11'—C1'117.18 (17)
C16—C11—C1117.01 (19)C12'—C11'—C1'123.37 (17)
C13—C12—C11119.7 (2)C13'—C12'—C11'119.98 (19)
C13—C12—H12120.2C13'—C12'—H12'120.0
C11—C12—H12120.2C11'—C12'—H12'120.0
C14—C13—C12120.4 (2)C14'—C13'—C12'120.4 (2)
C14—C13—H13119.8C14'—C13'—H13'119.8
C12—C13—H13119.8C12'—C13'—H13'119.8
C15—C14—C13119.9 (2)C13'—C14'—C15'119.8 (2)
C15—C14—H14120.0C13'—C14'—H14'120.1
C13—C14—H14120.0C15'—C14'—H14'120.1
C14—C15—C16120.1 (2)C14'—C15'—C16'120.5 (2)
C14—C15—H15120.0C14'—C15'—H15'119.7
C16—C15—H15120.0C16'—C15'—H15'119.7
C15—C16—C11120.7 (2)C15'—C16'—C11'119.9 (2)
C15—C16—H16119.7C15'—C16'—H16'120.0
C11—C16—H16119.7C11'—C16'—H16'120.0
C26—C21—C22119.3 (2)C22'—C21'—C26'118.76 (19)
C26—C21—C2120.79 (18)C22'—C21'—C2'119.96 (19)
C22—C21—C2119.89 (18)C26'—C21'—C2'121.24 (17)
C23—C22—C21119.9 (2)C21'—C22'—C23'119.6 (2)
C23—C22—H22120.1C21'—C22'—H22'120.2
C21—C22—H22120.1C23'—C22'—H22'120.2
C24—C23—C22120.3 (2)C24'—C23'—C22'120.0 (2)
C24—C23—H23119.8C24'—C23'—H23'120.0
C22—C23—H23119.8C22'—C23'—H23'120.0
C25—C24—C23120.2 (2)C25'—C24'—C23'120.6 (2)
C25—C24—H24119.9C25'—C24'—H24'119.7
C23—C24—H24119.9C23'—C24'—H24'119.7
C24—C25—C26120.2 (2)C24'—C25'—C26'120.1 (2)
C24—C25—H25119.9C24'—C25'—H25'120.0
C26—C25—H25119.9C26'—C25'—H25'120.0
C21—C26—C25120.1 (2)C25'—C26'—C21'121.0 (2)
C21—C26—H26120.0C25'—C26'—H26'119.5
C25—C26—H26120.0C21'—C26'—H26'119.5
C32—C31—C36118.76 (19)C36'—C31'—C32'118.63 (18)
C32—C31—C2120.50 (18)C36'—C31'—C2'120.22 (18)
C36—C31—C2120.74 (18)C32'—C31'—C2'121.12 (17)
C33—C32—C31120.5 (2)C33'—C32'—C31'120.6 (2)
C33—C32—H32119.7C33'—C32'—H32'119.7
C31—C32—H32119.7C31'—C32'—H32'119.7
C32—C33—C34119.3 (2)C34'—C33'—C32'119.1 (2)
C32—C33—H33120.3C34'—C33'—H33'120.5
C34—C33—H33120.3C32'—C33'—H33'120.5
C35—C34—C33121.2 (2)C35'—C34'—C33'121.65 (18)
C35—C34—Cl1119.63 (17)C35'—C34'—Cl1'120.08 (16)
C33—C34—Cl1119.21 (17)C33'—C34'—Cl1'118.27 (16)
C36—C35—C34119.2 (2)C34'—C35'—C36'118.69 (19)
C36—C35—H35120.4C34'—C35'—H35'120.7
C34—C35—H35120.4C36'—C35'—H35'120.7
C35—C36—C31121.0 (2)C35'—C36'—C31'121.4 (2)
C35—C36—H36119.5C35'—C36'—H36'119.3
C31—C36—H36119.5C31'—C36'—H36'119.3
C1—N1—N2—C2175.88 (16)C1'—N1'—N2'—C2'178.78 (17)
N2—N1—C1—O16.2 (3)N2'—N1'—C1'—O1'0.3 (3)
N2—N1—C1—C11175.27 (16)N2'—N1'—C1'—C11'179.78 (15)
N1—N2—C2—C31177.15 (16)N1'—N2'—C2'—C21'0.3 (3)
N1—N2—C2—C211.2 (3)N1'—N2'—C2'—C31'179.27 (16)
O1—C1—C11—C12158.76 (19)O1'—C1'—C11'—C16'33.1 (3)
N1—C1—C11—C1222.7 (3)N1'—C1'—C11'—C16'147.07 (17)
O1—C1—C11—C1619.9 (3)O1'—C1'—C11'—C12'143.27 (19)
N1—C1—C11—C16158.67 (17)N1'—C1'—C11'—C12'36.6 (3)
C16—C11—C12—C130.5 (3)C16'—C11'—C12'—C13'0.8 (3)
C1—C11—C12—C13179.14 (19)C1'—C11'—C12'—C13'175.49 (18)
C11—C12—C13—C140.2 (3)C11'—C12'—C13'—C14'1.2 (3)
C12—C13—C14—C150.1 (3)C12'—C13'—C14'—C15'0.7 (3)
C13—C14—C15—C160.1 (4)C13'—C14'—C15'—C16'0.4 (3)
C14—C15—C16—C110.2 (3)C14'—C15'—C16'—C11'0.8 (3)
C12—C11—C16—C150.5 (3)C12'—C11'—C16'—C15'0.3 (3)
C1—C11—C16—C15179.2 (2)C1'—C11'—C16'—C15'176.74 (19)
N2—C2—C21—C2666.8 (3)N2'—C2'—C21'—C22'111.6 (2)
C31—C2—C21—C26114.9 (2)C31'—C2'—C21'—C22'68.8 (2)
N2—C2—C21—C22112.4 (2)N2'—C2'—C21'—C26'65.9 (3)
C31—C2—C21—C2265.9 (3)C31'—C2'—C21'—C26'113.7 (2)
C26—C21—C22—C230.7 (3)C26'—C21'—C22'—C23'0.6 (3)
C2—C21—C22—C23178.52 (19)C2'—C21'—C22'—C23'176.94 (18)
C21—C22—C23—C241.2 (3)C21'—C22'—C23'—C24'1.2 (3)
C22—C23—C24—C250.7 (3)C22'—C23'—C24'—C25'0.8 (4)
C23—C24—C25—C260.2 (3)C23'—C24'—C25'—C26'0.2 (4)
C22—C21—C26—C250.2 (3)C24'—C25'—C26'—C21'0.8 (3)
C2—C21—C26—C25179.45 (19)C22'—C21'—C26'—C25'0.4 (3)
C24—C25—C26—C210.7 (3)C2'—C21'—C26'—C25'177.95 (19)
N2—C2—C31—C3214.5 (3)N2'—C2'—C31'—C36'154.13 (18)
C21—C2—C31—C32163.90 (18)C21'—C2'—C31'—C36'25.5 (3)
N2—C2—C31—C36165.07 (18)N2'—C2'—C31'—C32'23.9 (3)
C21—C2—C31—C3616.5 (3)C21'—C2'—C31'—C32'156.48 (18)
C36—C31—C32—C330.1 (3)C36'—C31'—C32'—C33'0.1 (3)
C2—C31—C32—C33179.51 (19)C2'—C31'—C32'—C33'178.13 (18)
C31—C32—C33—C340.2 (3)C31'—C32'—C33'—C34'0.3 (3)
C32—C33—C34—C350.6 (3)C32'—C33'—C34'—C35'0.1 (3)
C32—C33—C34—Cl1178.74 (17)C32'—C33'—C34'—Cl1'179.58 (15)
C33—C34—C35—C360.8 (3)C33'—C34'—C35'—C36'0.8 (3)
Cl1—C34—C35—C36178.51 (17)Cl1'—C34'—C35'—C36'178.93 (16)
C34—C35—C36—C310.7 (3)C34'—C35'—C36'—C31'1.0 (3)
C32—C31—C36—C350.3 (3)C32'—C31'—C36'—C35'0.6 (3)
C2—C31—C36—C35179.28 (19)C2'—C31'—C36'—C35'177.48 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C26—H26···O1i0.952.453.344 (3)156
C36—H36···O1ii0.952.483.085 (2)122
C26—H26···O1iii0.952.403.261 (2)151
C23—H23···O1iv0.952.443.320 (3)155
Symmetry codes: (i) x+1, y+1, z; (ii) x1/2, y+1/2, z1/2; (iii) x+1, y, z+1; (iv) x, y1, z.
(VII) 1-Benzoyl-2-(4-hydroxybenzylidene)hydrazone methanol monosolvate top
Crystal data top
C15H16N2O3F(000) = 1152
Mr = 272.30Dx = 1.317 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
a = 13.382 (1) ŵ = 0.09 mm1
b = 8.8183 (8) ÅT = 173 K
c = 23.275 (2) ÅBlock, colourless
V = 2746.6 (4) Å30.53 × 0.32 × 0.24 mm
Z = 8
Data collection top
Stoe IPDS II two-circle
diffractometer
1723 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.083
Graphite monochromatorθmax = 26.2°, θmin = 2.9°
φ scansh = 1616
33745 measured reflectionsk = 1010
2745 independent reflectionsl = 2828
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.073H atoms treated by a mixture of independent and constrained refinement
S = 0.80 w = 1/[σ2(Fo2) + (0.040P)2]
where P = (Fo2 + 2Fc2)/3
2745 reflections(Δ/σ)max = 0.001
194 parametersΔρmax = 0.11 e Å3
0 restraintsΔρmin = 0.14 e Å3
Crystal data top
C15H16N2O3V = 2746.6 (4) Å3
Mr = 272.30Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 13.382 (1) ŵ = 0.09 mm1
b = 8.8183 (8) ÅT = 173 K
c = 23.275 (2) Å0.53 × 0.32 × 0.24 mm
Data collection top
Stoe IPDS II two-circle
diffractometer
1723 reflections with I > 2σ(I)
33745 measured reflectionsRint = 0.083
2745 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0320 restraints
wR(F2) = 0.073H atoms treated by a mixture of independent and constrained refinement
S = 0.80Δρmax = 0.11 e Å3
2745 reflectionsΔρmin = 0.14 e Å3
194 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.10051 (6)0.08546 (11)0.59724 (5)0.0421 (3)
O1M0.05577 (7)0.38329 (14)0.62681 (6)0.0554 (3)
H1M0.0570 (14)0.295 (3)0.6132 (9)0.080 (7)*
O240.05235 (8)0.58837 (11)0.86095 (4)0.0404 (3)
H240.0080 (15)0.560 (2)0.8666 (8)0.076 (6)*
N10.24168 (8)0.02072 (13)0.63224 (5)0.0341 (3)
H10.3087 (12)0.0398 (18)0.6281 (7)0.049 (4)*
N20.18584 (8)0.10638 (13)0.67050 (5)0.0348 (3)
C10.19293 (9)0.07050 (15)0.59559 (6)0.0350 (3)
C1M0.04218 (11)0.44398 (19)0.62818 (8)0.0540 (4)
H1M10.08650.37390.64860.081*
H1M20.06640.45800.58880.081*
H1M30.04140.54200.64800.081*
C20.23587 (10)0.18945 (16)0.70517 (6)0.0354 (3)
H20.30680.18500.70460.042*
C110.25400 (10)0.15414 (15)0.55282 (6)0.0354 (3)
C120.35464 (10)0.18663 (18)0.56073 (7)0.0435 (4)
H120.38840.15160.59410.052*
C130.40573 (12)0.2704 (2)0.51974 (8)0.0522 (4)
H130.47430.29350.52550.063*
C140.35858 (13)0.32052 (19)0.47102 (8)0.0546 (4)
H140.39420.37790.44320.066*
C150.25931 (14)0.2871 (2)0.46273 (8)0.0623 (5)
H150.22630.32000.42880.075*
C160.20742 (12)0.2057 (2)0.50377 (8)0.0528 (4)
H160.13850.18490.49810.063*
C210.18612 (10)0.29064 (15)0.74545 (6)0.0335 (3)
C220.08210 (9)0.31096 (16)0.74536 (6)0.0369 (3)
H220.04220.25610.71880.044*
C230.03710 (10)0.40919 (16)0.78322 (6)0.0377 (3)
H230.03340.42180.78250.045*
C240.09420 (9)0.49014 (15)0.82253 (6)0.0330 (3)
C250.19744 (9)0.47251 (16)0.82312 (7)0.0369 (3)
H250.23710.52810.84960.044*
C260.24187 (10)0.37353 (17)0.78486 (6)0.0369 (3)
H260.31240.36180.78550.044*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0279 (5)0.0437 (6)0.0545 (7)0.0035 (4)0.0056 (4)0.0030 (5)
O1M0.0283 (5)0.0447 (7)0.0930 (10)0.0016 (5)0.0000 (5)0.0093 (7)
O240.0340 (5)0.0423 (6)0.0448 (6)0.0015 (5)0.0049 (5)0.0062 (5)
N10.0274 (6)0.0358 (6)0.0391 (7)0.0000 (5)0.0046 (5)0.0011 (6)
N20.0330 (5)0.0344 (6)0.0369 (6)0.0010 (5)0.0064 (5)0.0004 (6)
C10.0309 (7)0.0332 (7)0.0409 (8)0.0007 (6)0.0032 (6)0.0052 (6)
C1M0.0345 (7)0.0499 (9)0.0776 (12)0.0069 (7)0.0013 (8)0.0076 (9)
C20.0299 (7)0.0382 (8)0.0381 (8)0.0007 (6)0.0024 (6)0.0043 (6)
C110.0325 (7)0.0324 (7)0.0412 (8)0.0019 (5)0.0052 (6)0.0023 (7)
C120.0342 (7)0.0476 (9)0.0488 (9)0.0002 (7)0.0052 (7)0.0011 (7)
C130.0412 (8)0.0545 (10)0.0609 (11)0.0071 (7)0.0154 (8)0.0018 (9)
C140.0619 (10)0.0483 (9)0.0536 (11)0.0012 (8)0.0200 (9)0.0084 (9)
C150.0618 (11)0.0690 (12)0.0559 (11)0.0021 (10)0.0019 (9)0.0216 (10)
C160.0406 (8)0.0610 (11)0.0569 (11)0.0009 (8)0.0006 (7)0.0140 (9)
C210.0317 (6)0.0335 (7)0.0352 (8)0.0014 (5)0.0025 (6)0.0045 (6)
C220.0319 (7)0.0393 (8)0.0395 (8)0.0016 (6)0.0036 (6)0.0011 (7)
C230.0272 (6)0.0434 (8)0.0426 (8)0.0019 (6)0.0012 (6)0.0002 (7)
C240.0330 (6)0.0325 (7)0.0335 (7)0.0010 (6)0.0038 (6)0.0022 (6)
C250.0302 (7)0.0424 (8)0.0380 (8)0.0058 (6)0.0010 (6)0.0005 (7)
C260.0253 (6)0.0448 (8)0.0405 (8)0.0012 (6)0.0019 (6)0.0027 (7)
Geometric parameters (Å, º) top
O1—C11.2443 (15)C12—H120.9500
O1M—C1M1.4162 (17)C13—C141.371 (2)
O1M—H1M0.84 (2)C13—H130.9500
O24—C241.3651 (17)C14—C151.374 (2)
O24—H240.85 (2)C14—H140.9500
N1—C11.3418 (18)C15—C161.382 (2)
N1—N21.3863 (16)C15—H150.9500
N1—H10.917 (16)C16—H160.9500
N2—C21.2792 (18)C21—C261.390 (2)
C1—C111.484 (2)C21—C221.4035 (18)
C1M—H1M10.9800C22—C231.374 (2)
C1M—H1M20.9800C22—H220.9500
C1M—H1M30.9800C23—C241.3895 (19)
C2—C211.455 (2)C23—H230.9500
C2—H20.9500C24—C251.3904 (18)
C11—C161.378 (2)C25—C261.382 (2)
C11—C121.389 (2)C25—H250.9500
C12—C131.387 (2)C26—H260.9500
C1M—O1M—H1M112.1 (14)C13—C14—C15119.47 (15)
C24—O24—H24107.8 (14)C13—C14—H14120.3
C1—N1—N2118.22 (11)C15—C14—H14120.3
C1—N1—H1121.3 (10)C14—C15—C16119.99 (17)
N2—N1—H1119.6 (10)C14—C15—H15120.0
C2—N2—N1115.79 (11)C16—C15—H15120.0
O1—C1—N1121.82 (13)C11—C16—C15121.12 (15)
O1—C1—C11121.01 (13)C11—C16—H16119.4
N1—C1—C11117.17 (11)C15—C16—H16119.4
O1M—C1M—H1M1109.5C26—C21—C22117.79 (13)
O1M—C1M—H1M2109.5C26—C21—C2120.12 (12)
H1M1—C1M—H1M2109.5C22—C21—C2122.07 (13)
O1M—C1M—H1M3109.5C23—C22—C21120.93 (13)
H1M1—C1M—H1M3109.5C23—C22—H22119.5
H1M2—C1M—H1M3109.5C21—C22—H22119.5
N2—C2—C21121.20 (12)C22—C23—C24120.34 (12)
N2—C2—H2119.4C22—C23—H23119.8
C21—C2—H2119.4C24—C23—H23119.8
C16—C11—C12118.72 (14)O24—C24—C23122.13 (11)
C16—C11—C1118.07 (13)O24—C24—C25118.17 (13)
C12—C11—C1123.19 (13)C23—C24—C25119.70 (13)
C13—C12—C11119.77 (15)C26—C25—C24119.47 (13)
C13—C12—H12120.1C26—C25—H25120.3
C11—C12—H12120.1C24—C25—H25120.3
C14—C13—C12120.92 (15)C25—C26—C21121.78 (12)
C14—C13—H13119.5C25—C26—H26119.1
C12—C13—H13119.5C21—C26—H26119.1
C1—N1—N2—C2178.83 (13)C1—C11—C16—C15178.63 (16)
N2—N1—C1—O13.8 (2)C14—C15—C16—C111.3 (3)
N2—N1—C1—C11176.51 (12)N2—C2—C21—C26176.44 (13)
N1—N2—C2—C21176.79 (12)N2—C2—C21—C225.0 (2)
O1—C1—C11—C1621.9 (2)C26—C21—C22—C230.3 (2)
N1—C1—C11—C16158.36 (14)C2—C21—C22—C23178.88 (13)
O1—C1—C11—C12156.07 (14)C21—C22—C23—C240.2 (2)
N1—C1—C11—C1223.7 (2)C22—C23—C24—O24179.78 (13)
C16—C11—C12—C130.5 (2)C22—C23—C24—C250.6 (2)
C1—C11—C12—C13177.52 (14)O24—C24—C25—C26179.80 (13)
C11—C12—C13—C140.7 (2)C23—C24—C25—C260.6 (2)
C12—C13—C14—C150.0 (3)C24—C25—C26—C210.1 (2)
C13—C14—C15—C161.0 (3)C22—C21—C26—C250.3 (2)
C12—C11—C16—C150.6 (3)C2—C21—C26—C25178.94 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1Mi0.917 (16)1.937 (16)2.8424 (16)168.9 (15)
O24—H24···O1ii0.85 (2)1.97 (2)2.7352 (14)147.8 (19)
O24—H24···N2ii0.85 (2)2.56 (2)3.2742 (15)141.2 (17)
O1M—H1M···O10.84 (2)1.97 (2)2.7803 (16)160.8 (19)
C12—H12···O1Mi0.952.603.310 (2)132
C2—H2···O1Mi0.952.653.3930 (18)135
C22—H22···O24iii0.952.693.6348 (18)174
Symmetry codes: (i) x+1/2, y1/2, z; (ii) x, y1/2, z+3/2; (iii) x, y+1/2, z+3/2.
(VIII) 1-Benzoyl-2-(1,1-diphenylpropan-2-ylidene)hydrazone top
Crystal data top
C22H20N2OZ = 4
Mr = 328.40F(000) = 696
Monoclinic, P21/nDx = 1.219 Mg m3
a = 11.1869 (8) ÅMo Kα radiation, λ = 0.71073 Å
b = 7.9143 (6) ŵ = 0.08 mm1
c = 20.233 (2) ÅT = 173 K
β = 92.967 (6)°Block, colourless
V = 1789.0 (3) Å30.59 × 0.56 × 0.55 mm
Data collection top
Stoe IPDS II two-circle
diffractometer
2918 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.051
Graphite monochromatorθmax = 26.8°, θmin = 2.0°
φ scansh = 1414
24782 measured reflectionsk = 910
3783 independent reflectionsl = 2525
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.030H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.083 w = 1/[σ2(Fo2) + (0.045P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.10(Δ/σ)max < 0.001
3783 reflectionsΔρmax = 0.16 e Å3
232 parametersΔρmin = 0.13 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0221 (18)
Crystal data top
C22H20N2OV = 1789.0 (3) Å3
Mr = 328.40Z = 4
Monoclinic, P21/nMo Kα radiation
a = 11.1869 (8) ŵ = 0.08 mm1
b = 7.9143 (6) ÅT = 173 K
c = 20.233 (2) Å0.59 × 0.56 × 0.55 mm
β = 92.967 (6)°
Data collection top
Stoe IPDS II two-circle
diffractometer
2918 reflections with I > 2σ(I)
24782 measured reflectionsRint = 0.051
3783 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0300 restraints
wR(F2) = 0.083H atoms treated by a mixture of independent and constrained refinement
S = 1.10Δρmax = 0.16 e Å3
3783 reflectionsΔρmin = 0.13 e Å3
232 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.54851 (7)0.93717 (9)0.07609 (3)0.0504 (2)
N10.59060 (8)0.79043 (10)0.01401 (4)0.0407 (2)
H10.5443 (11)0.8645 (16)0.0366 (6)0.051 (3)*
N20.66765 (7)0.68251 (9)0.04488 (4)0.03911 (19)
C10.60350 (9)0.81931 (12)0.05174 (5)0.0397 (2)
C20.65429 (8)0.66912 (11)0.10781 (4)0.0379 (2)
C30.74267 (9)0.55742 (12)0.14169 (4)0.0393 (2)
H30.69560.49530.17740.047*
C40.56275 (10)0.75872 (14)0.15138 (5)0.0499 (3)
H4A0.48250.72320.14000.075*
H4B0.57480.73070.19780.075*
H4C0.57100.88100.14500.075*
C110.68224 (9)0.71025 (12)0.09540 (5)0.0413 (2)
C120.69355 (11)0.53672 (14)0.08684 (5)0.0522 (3)
H120.65440.48230.04990.063*
C130.76257 (12)0.44399 (17)0.13273 (6)0.0643 (3)
H130.76980.32520.12730.077*
C140.82061 (11)0.52181 (19)0.18582 (6)0.0675 (4)
H140.86810.45700.21670.081*
C150.81011 (11)0.69401 (19)0.19444 (6)0.0648 (3)
H150.85090.74800.23100.078*
C160.74000 (10)0.78783 (15)0.14964 (5)0.0515 (3)
H160.73140.90600.15610.062*
C210.79889 (9)0.42325 (12)0.09582 (5)0.0413 (2)
C220.91982 (10)0.41360 (14)0.07920 (5)0.0500 (3)
H220.97290.49320.09710.060*
C230.96469 (11)0.28859 (15)0.03658 (6)0.0605 (3)
H231.04820.28310.02570.073*
C240.88924 (12)0.17280 (14)0.01003 (6)0.0606 (3)
H240.92010.08860.01970.073*
C250.76854 (12)0.17993 (13)0.02683 (6)0.0594 (3)
H250.71580.09990.00890.071*
C260.72412 (11)0.30297 (13)0.06959 (6)0.0511 (3)
H260.64080.30570.08140.061*
C310.83143 (9)0.66808 (12)0.17633 (5)0.0396 (2)
C320.88371 (10)0.80801 (13)0.14544 (5)0.0485 (3)
H320.86260.83760.10210.058*
C330.96645 (10)0.90526 (14)0.17718 (6)0.0550 (3)
H331.00111.00160.15570.066*
C340.99843 (10)0.86216 (15)0.23999 (6)0.0534 (3)
H341.05630.92730.26140.064*
C350.94627 (10)0.72460 (14)0.27141 (5)0.0515 (3)
H350.96780.69510.31470.062*
C360.86241 (9)0.62911 (13)0.24003 (5)0.0450 (2)
H360.82560.53570.26240.054*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0591 (5)0.0525 (4)0.0404 (4)0.0204 (3)0.0095 (3)0.0044 (3)
N10.0419 (4)0.0424 (4)0.0382 (4)0.0098 (4)0.0061 (3)0.0044 (3)
N20.0383 (4)0.0394 (4)0.0401 (4)0.0038 (3)0.0062 (3)0.0003 (3)
C10.0390 (5)0.0418 (5)0.0391 (5)0.0035 (4)0.0090 (4)0.0056 (4)
C20.0379 (5)0.0362 (5)0.0398 (5)0.0032 (4)0.0034 (4)0.0011 (4)
C30.0401 (5)0.0385 (5)0.0394 (5)0.0026 (4)0.0028 (4)0.0053 (4)
C40.0523 (6)0.0550 (6)0.0423 (5)0.0086 (5)0.0004 (4)0.0019 (4)
C110.0385 (5)0.0468 (5)0.0394 (5)0.0067 (4)0.0091 (4)0.0079 (4)
C120.0621 (7)0.0481 (6)0.0470 (5)0.0101 (5)0.0103 (5)0.0081 (4)
C130.0726 (8)0.0588 (7)0.0629 (7)0.0250 (6)0.0183 (6)0.0196 (6)
C140.0512 (7)0.0897 (10)0.0620 (7)0.0239 (6)0.0064 (6)0.0284 (7)
C150.0498 (7)0.0878 (9)0.0559 (7)0.0036 (6)0.0057 (5)0.0111 (6)
C160.0474 (6)0.0582 (6)0.0489 (6)0.0031 (5)0.0015 (5)0.0052 (5)
C210.0463 (5)0.0361 (5)0.0419 (5)0.0015 (4)0.0061 (4)0.0064 (4)
C220.0449 (6)0.0482 (6)0.0576 (6)0.0041 (5)0.0083 (5)0.0015 (5)
C230.0534 (7)0.0581 (7)0.0699 (7)0.0152 (5)0.0028 (6)0.0045 (6)
C240.0774 (8)0.0423 (6)0.0621 (7)0.0152 (6)0.0048 (6)0.0040 (5)
C250.0740 (8)0.0380 (5)0.0668 (7)0.0041 (5)0.0090 (6)0.0044 (5)
C260.0524 (6)0.0417 (5)0.0592 (6)0.0058 (4)0.0016 (5)0.0006 (4)
C310.0389 (5)0.0412 (5)0.0387 (5)0.0037 (4)0.0029 (4)0.0006 (4)
C320.0516 (6)0.0503 (6)0.0442 (5)0.0069 (5)0.0078 (4)0.0040 (4)
C330.0526 (6)0.0502 (6)0.0624 (7)0.0078 (5)0.0053 (5)0.0031 (5)
C340.0450 (6)0.0566 (6)0.0597 (6)0.0069 (5)0.0124 (5)0.0199 (5)
C350.0517 (6)0.0619 (6)0.0417 (5)0.0153 (5)0.0104 (5)0.0103 (5)
C360.0471 (5)0.0484 (5)0.0395 (5)0.0083 (4)0.0033 (4)0.0002 (4)
Geometric parameters (Å, º) top
O1—C11.2340 (11)C16—H160.9500
N1—C11.3502 (12)C21—C221.3791 (15)
N1—N21.3850 (11)C21—C261.3904 (14)
N1—H10.893 (13)C22—C231.3892 (16)
N2—C21.2788 (12)C22—H220.9500
C1—C111.4903 (13)C23—C241.3739 (18)
C2—C41.4951 (14)C23—H230.9500
C2—C31.5162 (13)C24—C251.3763 (19)
C3—C311.5220 (13)C24—H240.9500
C3—C211.5245 (13)C25—C261.3782 (16)
C3—H31.0000C25—H250.9500
C4—H4A0.9800C26—H260.9500
C4—H4B0.9800C31—C321.3861 (14)
C4—H4C0.9800C31—C361.3866 (13)
C11—C161.3876 (15)C32—C331.3867 (15)
C11—C121.3908 (15)C32—H320.9500
C12—C131.3866 (16)C33—C341.3808 (16)
C12—H120.9500C33—H330.9500
C13—C141.372 (2)C34—C351.3753 (17)
C13—H130.9500C34—H340.9500
C14—C151.380 (2)C35—C361.3842 (15)
C14—H140.9500C35—H350.9500
C15—C161.3836 (16)C36—H360.9500
C15—H150.9500
C1—N1—N2120.76 (8)C15—C16—H16119.8
C1—N1—H1115.1 (7)C11—C16—H16119.8
N2—N1—H1122.1 (7)C22—C21—C26118.09 (10)
C2—N2—N1117.18 (8)C22—C21—C3123.75 (9)
O1—C1—N1119.43 (9)C26—C21—C3118.16 (9)
O1—C1—C11119.51 (8)C21—C22—C23120.61 (10)
N1—C1—C11121.05 (8)C21—C22—H22119.7
N2—C2—C4126.09 (9)C23—C22—H22119.7
N2—C2—C3116.94 (8)C24—C23—C22120.54 (12)
C4—C2—C3116.92 (8)C24—C23—H23119.7
C2—C3—C31109.21 (7)C22—C23—H23119.7
C2—C3—C21112.89 (7)C23—C24—C25119.39 (11)
C31—C3—C21115.01 (8)C23—C24—H24120.3
C2—C3—H3106.4C25—C24—H24120.3
C31—C3—H3106.4C24—C25—C26120.08 (11)
C21—C3—H3106.4C24—C25—H25120.0
C2—C4—H4A109.5C26—C25—H25120.0
C2—C4—H4B109.5C25—C26—C21121.26 (11)
H4A—C4—H4B109.5C25—C26—H26119.4
C2—C4—H4C109.5C21—C26—H26119.4
H4A—C4—H4C109.5C32—C31—C36118.49 (9)
H4B—C4—H4C109.5C32—C31—C3121.48 (8)
C16—C11—C12119.60 (10)C36—C31—C3120.04 (9)
C16—C11—C1116.70 (9)C31—C32—C33120.71 (10)
C12—C11—C1123.56 (10)C31—C32—H32119.6
C13—C12—C11119.36 (11)C33—C32—H32119.6
C13—C12—H12120.3C34—C33—C32120.01 (11)
C11—C12—H12120.3C34—C33—H33120.0
C14—C13—C12120.74 (12)C32—C33—H33120.0
C14—C13—H13119.6C35—C34—C33119.81 (10)
C12—C13—H13119.6C35—C34—H34120.1
C13—C14—C15120.16 (11)C33—C34—H34120.1
C13—C14—H14119.9C34—C35—C36120.10 (10)
C15—C14—H14119.9C34—C35—H35119.9
C14—C15—C16119.76 (13)C36—C35—H35119.9
C14—C15—H15120.1C35—C36—C31120.85 (10)
C16—C15—H15120.1C35—C36—H36119.6
C15—C16—C11120.37 (11)C31—C36—H36119.6
C1—N1—N2—C2175.98 (9)C2—C3—C21—C2662.41 (11)
N2—N1—C1—O1167.14 (8)C31—C3—C21—C26171.36 (9)
N2—N1—C1—C1113.38 (14)C26—C21—C22—C231.05 (15)
N1—N2—C2—C40.24 (14)C3—C21—C22—C23179.43 (9)
N1—N2—C2—C3177.12 (8)C21—C22—C23—C240.26 (17)
N2—C2—C3—C31104.90 (9)C22—C23—C24—C251.00 (18)
C4—C2—C3—C3172.72 (11)C23—C24—C25—C260.39 (18)
N2—C2—C3—C2124.38 (11)C24—C25—C26—C210.95 (17)
C4—C2—C3—C21158.01 (8)C22—C21—C26—C251.66 (15)
O1—C1—C11—C1633.23 (13)C3—C21—C26—C25178.79 (9)
N1—C1—C11—C16147.30 (9)C2—C3—C31—C3244.79 (12)
O1—C1—C11—C12142.37 (10)C21—C3—C31—C3283.32 (11)
N1—C1—C11—C1237.11 (14)C2—C3—C31—C36135.73 (9)
C16—C11—C12—C130.04 (16)C21—C3—C31—C3696.16 (11)
C1—C11—C12—C13175.51 (9)C36—C31—C32—C330.94 (16)
C11—C12—C13—C140.74 (17)C3—C31—C32—C33178.54 (10)
C12—C13—C14—C150.49 (19)C31—C32—C33—C340.63 (17)
C13—C14—C15—C160.55 (19)C32—C33—C34—C351.28 (17)
C14—C15—C16—C111.33 (18)C33—C34—C35—C360.34 (16)
C12—C11—C16—C151.08 (16)C34—C35—C36—C311.27 (15)
C1—C11—C16—C15176.85 (10)C32—C31—C36—C351.89 (15)
C2—C3—C21—C22118.06 (10)C3—C31—C36—C35177.60 (9)
C31—C3—C21—C228.17 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.893 (13)2.023 (13)2.9061 (11)169.8 (11)
C4—H4C···O1i0.982.453.1399 (13)127
C12—H12···N20.952.502.9048 (13)106
C35—H35···O1ii0.952.653.5822 (13)169
Symmetry codes: (i) x+1, y+2, z; (ii) x+1/2, y+3/2, z1/2.

Experimental details

(I)(II)(III)(IV)
Crystal data
Chemical formulaC10H12N2OC15H20N2OC19H16N2OC20H22N2O
Mr176.22244.33288.34306.40
Crystal system, space groupMonoclinic, P21/cMonoclinic, P21/cMonoclinic, P21/nMonoclinic, C2/c
Temperature (K)173173173173
a, b, c (Å)7.6950 (8), 17.129 (1), 7.8316 (8)9.3086 (9), 18.283 (2), 8.1543 (7)5.5789 (5), 7.6868 (9), 33.128 (3)16.0939 (15), 13.8666 (8), 16.8556 (16)
α, β, γ (°)90, 115.525 (8), 9090, 103.328 (7), 9090, 90.356 (7), 9090, 116.661 (7), 90
V3)931.51 (15)1350.4 (2)1420.6 (2)3361.7 (5)
Z4448
Radiation typeMo KαMo KαMo KαMo Kα
µ (mm1)0.080.080.090.08
Crystal size (mm)0.47 × 0.21 × 0.200.54 × 0.36 × 0.240.53 × 0.26 × 0.210.54 × 0.52 × 0.50
Data collection
DiffractometerStoe IPDS II two-circle
diffractometer
Stoe IPDS II two-circle
diffractometer
Stoe IPDS II two-circle
diffractometer
Stoe IPDS II two-circle
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
18245, 1929, 1443 18518, 2589, 1909 19261, 2754, 1715 27068, 3956, 3004
Rint0.0560.1050.0610.069
(sin θ/λ)max1)0.6290.6140.6140.657
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.089, 0.94 0.040, 0.109, 0.97 0.033, 0.080, 0.85 0.036, 0.098, 1.06
No. of reflections1929258927543956
No. of parameters124168204213
H-atom treatmentH atoms treated by a mixture of independent and constrained refinementH atoms treated by a mixture of independent and constrained refinementH atoms treated by a mixture of independent and constrained refinementH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.15, 0.260.30, 0.190.11, 0.140.27, 0.16


(V)(VI)(VII)(VIII)
Crystal data
Chemical formulaC20H16N2OC20H15ClN2OC15H16N2O3C22H20N2O
Mr300.35334.79272.30328.40
Crystal system, space groupMonoclinic, P21/nMonoclinic, P21/nOrthorhombic, PbcaMonoclinic, P21/n
Temperature (K)173173173173
a, b, c (Å)16.863 (1), 10.1678 (8), 18.694 (2)19.432 (4), 8.9330 (18), 19.496 (4)13.382 (1), 8.8183 (8), 23.275 (2)11.1869 (8), 7.9143 (6), 20.233 (2)
α, β, γ (°)90, 102.079 (6), 9090, 102.18 (3), 9090, 90, 9090, 92.967 (6), 90
V3)3134.3 (5)3308.1 (12)2746.6 (4)1789.0 (3)
Z8884
Radiation typeMo KαMo KαMo KαMo Kα
µ (mm1)0.080.240.090.08
Crystal size (mm)0.40 × 0.40 × 0.300.56 × 0.48 × 0.310.53 × 0.32 × 0.240.59 × 0.56 × 0.55
Data collection
DiffractometerStoe IPDS II two-circle
diffractometer
Stoe IPDS II two-circle
diffractometer
Stoe IPDS II two-circle
diffractometer
Stoe IPDS II two-circle
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
42459, 6006, 3934 46062, 6453, 4590 33745, 2745, 1723 24782, 3783, 2918
Rint0.1040.0740.0830.051
(sin θ/λ)max1)0.6140.6170.6220.633
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.072, 0.81 0.031, 0.064, 0.81 0.032, 0.073, 0.80 0.030, 0.083, 1.10
No. of reflections6006645327453783
No. of parameters423441194232
H-atom treatmentH atoms treated by a mixture of independent and constrained refinementH atoms treated by a mixture of independent and constrained refinementH atoms treated by a mixture of independent and constrained refinementH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.14, 0.150.30, 0.270.11, 0.140.16, 0.13

Computer programs: X-AREA (Stoe & Cie, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), Mercury (Macrae et al., 2008) and XP in SHELXTL-Plus (Sheldrick, 2008), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.868 (16)2.235 (16)3.0912 (14)169.0 (12)
N1—H1···N2i0.868 (16)2.611 (15)3.1826 (14)124.4 (11)
C3—H3C···O1i0.982.373.1238 (17)132.9
Symmetry code: (i) x, y+3/2, z+1/2.
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.847 (17)2.191 (18)3.0213 (16)166.6 (14)
C3—H3C···O1i0.982.603.0589 (18)108.8
Symmetry code: (i) x, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) for (III) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.885 (17)2.643 (18)3.5134 (18)168.1 (15)
C3—H3C···O1i0.982.613.2256 (18)121.0
C25—H25···O1ii0.952.603.378 (2)139.3
Symmetry codes: (i) x+1, y, z; (ii) x+1, y+1, z.
Hydrogen-bond geometry (Å, º) for (IV) top
D—H···AD—HH···AD···AD—H···A
C14—H14···O1i0.952.603.1911 (14)120.5
C15—H15···O1i0.952.543.1644 (13)123.0
C26—H26···O1ii0.952.453.2940 (14)147.3
C23—H23···O1iii0.952.603.3266 (15)133.1
Symmetry codes: (i) x+1/2, y1/2, z+1/2; (ii) x+1/2, y+3/2, z; (iii) x+1, y, z+1/2.
Hydrogen-bond geometry (Å, º) for (V) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1'0.930 (17)2.168 (17)3.0846 (15)168.5 (14)
C12—H12···O1'0.952.522.9884 (17)110.7
C34—H34···O1i0.952.583.5238 (18)170.8
Symmetry code: (i) x+1, y+2, z.
Hydrogen-bond geometry (Å, º) for (VI) top
D—H···AD—HH···AD···AD—H···A
C26—H26···O1i0.952.453.344 (3)156.4
C36—H36···O1'ii0.952.483.085 (2)121.7
C26'—H26'···O1'iii0.952.403.261 (2)151.2
C23'—H23'···O1iv0.952.443.320 (3)154.7
Symmetry codes: (i) x+1, y+1, z; (ii) x1/2, y+1/2, z1/2; (iii) x+1, y, z+1; (iv) x, y1, z.
Hydrogen-bond geometry (Å, º) for (VII) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1Mi0.917 (16)1.937 (16)2.8424 (16)168.9 (15)
O24—H24···O1ii0.85 (2)1.97 (2)2.7352 (14)147.8 (19)
O24—H24···N2ii0.85 (2)2.56 (2)3.2742 (15)141.2 (17)
O1M—H1M···O10.84 (2)1.97 (2)2.7803 (16)160.8 (19)
C12—H12···O1Mi0.952.603.310 (2)132.3
C2—H2···O1Mi0.952.653.3930 (18)135.4
C22—H22···O24iii0.952.693.6348 (18)173.9
Symmetry codes: (i) x+1/2, y1/2, z; (ii) x, y1/2, z+3/2; (iii) x, y+1/2, z+3/2.
Hydrogen-bond geometry (Å, º) for (VIII) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.893 (13)2.023 (13)2.9061 (11)169.8 (11)
C4—H4C···O1i0.982.453.1399 (13)127.3
C12—H12···N20.952.502.9048 (13)105.8
C35—H35···O1ii0.952.653.5822 (13)169.0
Symmetry codes: (i) x+1, y+2, z; (ii) x+1/2, y+3/2, z1/2.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds