In dirubidium copper bis[vanadyl(V)] bis(phosphate), Rb2Cu(VO2)2(PO4)2, three different oxo complexes form an anionic framework. VO5 polyhedra in a trigonal bipyramidal configuration and PO4 tetrahedra share vertices to form eight-membered rings, which lie in layers perpendicular to the a axis of the monoclinic unit cell. Cu atoms at centres of symmetry have square-planar coordination and link these layers along [100] to form a three-dimensional anionic framework, viz. [Cu(VO2)2(PO4)2]∞2−. Intersecting channels in the [100], [001] and [011] directions contain Rb+ cations. Topological relations between this new structure type and the crystal structures of A(VO2)(PO4) (A = Ba, Sr or Pb) and BaCrF2LiF4 are discussed.
Supporting information
Light-blue plate crystals of Rb2Cu(VO2)2(PO4)2 up to 0.5 mm long were
formed by hydrothermal synthesis in the CuCl2–Rb3PO4–V2O5–H2O
system (ratio 1:6:3:30) in a PTFE-lined stainless steel autoclave at a
temperature of 553 K and a pressure of 7 × 103 kPa, over a period of
20 d. The presence of Rb, Cu, V and P in the samples was confirmed by
qualitative X-ray spectroscopic analysis
Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2008).
dirubidium copper bis[vanadylV)] bis(phosphate)
top
Crystal data top
Rb2Cu(VO2)2(PO4)2 | F(000) = 550 |
Mr = 590.31 | Dx = 3.664 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 1024 reflections |
a = 4.9292 (9) Å | θ = 2.8–28.3° |
b = 11.471 (2) Å | µ = 13.08 mm−1 |
c = 9.4810 (17) Å | T = 100 K |
β = 93.535 (3)° | Plate, light blue |
V = 535.04 (17) Å3 | 0.20 × 0.08 × 0.04 mm |
Z = 2 | |
Data collection top
Bruker SMART CCD diffractometer | 1290 independent reflections |
Radiation source: fine-focus sealed tube | 1221 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.028 |
Detector resolution: 8.33 pixels mm-1 | θmax = 28.3°, θmin = 2.8° |
ω scans | h = −6→6 |
Absorption correction: multi-scan (SADABS; Bruker, 2000) | k = −15→15 |
Tmin = 0.285, Tmax = 0.600 | l = −12→12 |
6107 measured reflections | |
Refinement top
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.019 | w = 1/[σ2(Fo2) + (0.025P)2] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.048 | (Δ/σ)max < 0.001 |
S = 1.14 | Δρmax = 0.52 e Å−3 |
1290 reflections | Δρmin = −0.51 e Å−3 |
89 parameters | Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
0 restraints | Extinction coefficient: 0.0131 (7) |
Crystal data top
Rb2Cu(VO2)2(PO4)2 | V = 535.04 (17) Å3 |
Mr = 590.31 | Z = 2 |
Monoclinic, P21/c | Mo Kα radiation |
a = 4.9292 (9) Å | µ = 13.08 mm−1 |
b = 11.471 (2) Å | T = 100 K |
c = 9.4810 (17) Å | 0.20 × 0.08 × 0.04 mm |
β = 93.535 (3)° | |
Data collection top
Bruker SMART CCD diffractometer | 1290 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2000) | 1221 reflections with I > 2σ(I) |
Tmin = 0.285, Tmax = 0.600 | Rint = 0.028 |
6107 measured reflections | |
Refinement top
R[F2 > 2σ(F2)] = 0.019 | 89 parameters |
wR(F2) = 0.048 | 0 restraints |
S = 1.14 | Δρmax = 0.52 e Å−3 |
1290 reflections | Δρmin = −0.51 e Å−3 |
Special details top
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes)
are estimated using the full covariance matrix. The cell e.s.d.'s are taken
into account individually in the estimation of e.s.d.'s in distances, angles
and torsion angles; correlations between e.s.d.'s in cell parameters are only
used when they are defined by crystal symmetry. An approximate (isotropic)
treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s.
planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor
wR and goodness of fit S are based on F2, conventional
R-factors R are based on F, with F set to zero for
negative F2. The threshold expression of F2 >
σ(F2) is used only for calculating R-factors(gt) etc.
and is not relevant to the choice of reflections for refinement.
R-factors based on F2 are statistically about twice as large
as those based on F, and R- factors based on ALL data will be
even larger. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top | x | y | z | Uiso*/Ueq | |
Rb1 | 0.44273 (5) | 0.36203 (2) | 0.10575 (3) | 0.00953 (10) | |
V1 | 0.05514 (8) | 0.61258 (4) | 0.25006 (4) | 0.00535 (11) | |
P1 | −0.00751 (13) | 0.36132 (5) | 0.41537 (7) | 0.00511 (15) | |
Cu1 | 0.5000 | 0.5000 | 0.5000 | 0.00542 (12) | |
O5 | 0.0766 (3) | 0.32860 (15) | 0.56944 (18) | 0.0080 (4) | |
O1 | 0.3710 (4) | 0.62618 (15) | 0.2144 (2) | 0.0118 (4) | |
O4 | −0.3098 (3) | 0.38822 (15) | 0.39457 (19) | 0.0075 (4) | |
O3 | −0.0963 (3) | 0.52780 (16) | 0.13335 (19) | 0.0102 (4) | |
O6 | 0.0735 (3) | 0.26407 (15) | 0.31708 (18) | 0.0073 (4) | |
O2 | 0.1658 (3) | 0.47068 (15) | 0.37944 (18) | 0.0057 (3) | |
Atomic displacement parameters (Å2) top | U11 | U22 | U33 | U12 | U13 | U23 |
Rb1 | 0.01080 (14) | 0.00900 (15) | 0.00870 (15) | −0.00279 (9) | −0.00024 (9) | 0.00037 (9) |
V1 | 0.0063 (2) | 0.0049 (2) | 0.0049 (2) | 0.00019 (15) | 0.00096 (15) | 0.00022 (15) |
P1 | 0.0059 (3) | 0.0042 (3) | 0.0053 (3) | 0.0004 (2) | 0.0007 (2) | −0.0006 (2) |
Cu1 | 0.0053 (2) | 0.0054 (2) | 0.0056 (2) | 0.00051 (15) | 0.00021 (15) | −0.00141 (16) |
O5 | 0.0106 (9) | 0.0081 (9) | 0.0053 (9) | 0.0022 (7) | 0.0012 (7) | 0.0006 (7) |
O1 | 0.0096 (9) | 0.0095 (9) | 0.0165 (10) | 0.0011 (7) | 0.0034 (8) | 0.0043 (8) |
O4 | 0.0060 (8) | 0.0083 (8) | 0.0083 (9) | 0.0006 (7) | 0.0012 (7) | −0.0022 (7) |
O3 | 0.0144 (9) | 0.0091 (9) | 0.0071 (9) | −0.0003 (7) | −0.0001 (7) | −0.0001 (7) |
O6 | 0.0091 (8) | 0.0062 (9) | 0.0069 (9) | −0.0006 (7) | 0.0015 (6) | −0.0027 (7) |
O2 | 0.0057 (8) | 0.0043 (8) | 0.0070 (9) | −0.0006 (7) | −0.0011 (6) | 0.0004 (7) |
Geometric parameters (Å, º) top
Rb1—O5i | 2.8427 (18) | P1—O6 | 1.5225 (17) |
Rb1—O4ii | 2.9436 (18) | P1—O5 | 1.5401 (18) |
Rb1—O3ii | 2.9619 (18) | P1—O2 | 1.5670 (18) |
Rb1—O6 | 3.0066 (17) | Cu1—O4vii | 1.9072 (17) |
Rb1—O3iii | 3.0288 (18) | Cu1—O4ii | 1.9072 (17) |
Rb1—O1 | 3.2266 (19) | Cu1—O2viii | 1.9752 (16) |
Rb1—O1iv | 3.228 (2) | Cu1—O2 | 1.9752 (16) |
Rb1—O2 | 3.2537 (17) | O5—V1vii | 1.9855 (18) |
Rb1—O3 | 3.2910 (18) | O5—Rb1ix | 2.8427 (17) |
Rb1—O1v | 3.2981 (19) | O1—Rb1iv | 3.228 (2) |
Rb1—O6i | 3.5044 (17) | O1—Rb1x | 3.2981 (19) |
V1—O3 | 1.6204 (18) | O4—Cu1xi | 1.9072 (17) |
V1—O1 | 1.6209 (19) | O4—Rb1xi | 2.9436 (18) |
V1—O6vi | 1.9435 (17) | O3—Rb1xi | 2.9619 (18) |
V1—O5vii | 1.9855 (18) | O3—Rb1iii | 3.0288 (18) |
V1—O2 | 2.0901 (17) | O6—V1xii | 1.9435 (17) |
P1—O4 | 1.5225 (18) | O6—Rb1ix | 3.5044 (17) |
| | | |
O5i—Rb1—O4ii | 114.50 (5) | O3—Rb1—O6i | 85.27 (4) |
O5i—Rb1—O3ii | 169.22 (5) | O1v—Rb1—O6i | 100.36 (4) |
O4ii—Rb1—O3ii | 65.21 (5) | O3—V1—O1 | 108.86 (10) |
O5i—Rb1—O6 | 52.21 (5) | O3—V1—O6vi | 100.69 (8) |
O4ii—Rb1—O6 | 69.60 (5) | O1—V1—O6vi | 98.27 (8) |
O3ii—Rb1—O6 | 132.35 (5) | O3—V1—O5vii | 129.13 (8) |
O5i—Rb1—O3iii | 84.60 (5) | O1—V1—O5vii | 121.09 (9) |
O4ii—Rb1—O3iii | 146.70 (5) | O6vi—V1—O5vii | 82.01 (7) |
O3ii—Rb1—O3iii | 101.08 (4) | O3—V1—O2 | 91.49 (8) |
O6—Rb1—O3iii | 108.56 (5) | O1—V1—O2 | 88.75 (8) |
O5i—Rb1—O1 | 132.82 (5) | O6vi—V1—O2 | 163.05 (7) |
O4ii—Rb1—O1 | 69.79 (5) | O5vii—V1—O2 | 81.15 (7) |
O3ii—Rb1—O1 | 57.83 (5) | O4—P1—O6 | 111.15 (10) |
O6—Rb1—O1 | 93.18 (5) | O4—P1—O5 | 112.10 (10) |
O3iii—Rb1—O1 | 77.25 (5) | O6—P1—O5 | 109.67 (10) |
O5i—Rb1—O1iv | 97.68 (5) | O4—P1—O2 | 110.60 (9) |
O4ii—Rb1—O1iv | 138.15 (5) | O6—P1—O2 | 106.64 (10) |
O3ii—Rb1—O1iv | 78.17 (5) | O5—P1—O2 | 106.43 (10) |
O6—Rb1—O1iv | 149.47 (5) | O4vii—Cu1—O2viii | 90.10 (7) |
O3iii—Rb1—O1iv | 57.22 (5) | O4ii—Cu1—O2viii | 89.90 (7) |
O1—Rb1—O1iv | 107.70 (4) | O4vii—Cu1—O2 | 89.90 (7) |
O5i—Rb1—O2 | 95.55 (5) | O4ii—Cu1—O2 | 90.10 (7) |
O4ii—Rb1—O2 | 52.35 (4) | P1—O5—V1vii | 130.65 (10) |
O3ii—Rb1—O2 | 92.35 (5) | P1—O5—Rb1ix | 115.72 (9) |
O6—Rb1—O2 | 46.43 (5) | V1vii—O5—Rb1ix | 113.33 (7) |
O3iii—Rb1—O2 | 101.08 (5) | V1—O1—Rb1 | 95.84 (7) |
O1—Rb1—O2 | 47.63 (4) | V1—O1—Rb1iv | 122.20 (9) |
O1iv—Rb1—O2 | 153.07 (4) | Rb1—O1—Rb1iv | 72.30 (4) |
O5i—Rb1—O3 | 86.81 (5) | V1—O1—Rb1x | 102.21 (8) |
O4ii—Rb1—O3 | 99.06 (5) | Rb1—O1—Rb1x | 154.53 (6) |
O3ii—Rb1—O3 | 103.93 (6) | Rb1iv—O1—Rb1x | 111.44 (5) |
O6—Rb1—O3 | 68.78 (5) | P1—O4—Cu1xi | 125.25 (10) |
O3iii—Rb1—O3 | 52.97 (6) | P1—O4—Rb1xi | 116.48 (9) |
O1—Rb1—O3 | 47.71 (5) | Cu1xi—O4—Rb1xi | 111.54 (7) |
O1iv—Rb1—O3 | 109.18 (5) | V1—O3—Rb1xi | 139.84 (9) |
O2—Rb1—O3 | 48.30 (4) | V1—O3—Rb1iii | 118.39 (9) |
O5i—Rb1—O1v | 65.55 (5) | Rb1xi—O3—Rb1iii | 78.92 (4) |
O4ii—Rb1—O1v | 61.09 (5) | V1—O3—Rb1 | 93.48 (7) |
O3ii—Rb1—O1v | 107.06 (5) | Rb1xi—O3—Rb1 | 103.93 (6) |
O6—Rb1—O1v | 60.63 (5) | Rb1iii—O3—Rb1 | 127.03 (6) |
O3iii—Rb1—O1v | 148.80 (5) | P1—O6—V1xii | 139.73 (11) |
O1—Rb1—O1v | 129.623 (17) | P1—O6—Rb1 | 109.05 (9) |
O1iv—Rb1—O1v | 115.74 (4) | V1xii—O6—Rb1 | 108.34 (7) |
O2—Rb1—O1v | 91.09 (4) | P1—O6—Rb1ix | 88.14 (7) |
O3—Rb1—O1v | 129.29 (5) | V1xii—O6—Rb1ix | 91.72 (6) |
O5i—Rb1—O6i | 44.98 (4) | Rb1—O6—Rb1ix | 111.60 (5) |
O4ii—Rb1—O6i | 159.09 (4) | P1—O2—Cu1 | 117.19 (10) |
O3ii—Rb1—O6i | 133.84 (4) | P1—O2—V1 | 128.68 (10) |
O6—Rb1—O6i | 93.42 (4) | Cu1—O2—V1 | 112.65 (8) |
O3iii—Rb1—O6i | 49.16 (5) | P1—O2—Rb1 | 97.35 (8) |
O1—Rb1—O6i | 125.10 (4) | Cu1—O2—Rb1 | 98.67 (6) |
O1iv—Rb1—O6i | 56.43 (4) | V1—O2—Rb1 | 86.41 (6) |
O2—Rb1—O6i | 123.90 (4) | | |
Symmetry codes: (i) x, −y+1/2, z−1/2; (ii) x+1, y, z; (iii) −x, −y+1, −z; (iv) −x+1, −y+1, −z; (v) −x+1, y−1/2, −z+1/2; (vi) −x, y+1/2, −z+1/2; (vii) −x, −y+1, −z+1; (viii) −x+1, −y+1, −z+1; (ix) x, −y+1/2, z+1/2; (x) −x+1, y+1/2, −z+1/2; (xi) x−1, y, z; (xii) −x, y−1/2, −z+1/2. |
Experimental details
Crystal data |
Chemical formula | Rb2Cu(VO2)2(PO4)2 |
Mr | 590.31 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 100 |
a, b, c (Å) | 4.9292 (9), 11.471 (2), 9.4810 (17) |
β (°) | 93.535 (3) |
V (Å3) | 535.04 (17) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 13.08 |
Crystal size (mm) | 0.20 × 0.08 × 0.04 |
|
Data collection |
Diffractometer | Bruker SMART CCD diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2000) |
Tmin, Tmax | 0.285, 0.600 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 6107, 1290, 1221 |
Rint | 0.028 |
(sin θ/λ)max (Å−1) | 0.667 |
|
Refinement |
R[F2 > 2σ(F2)], wR(F2), S | 0.019, 0.048, 1.14 |
No. of reflections | 1290 |
No. of parameters | 89 |
Δρmax, Δρmin (e Å−3) | 0.52, −0.51 |
Selected geometric parameters (Å, º) topRb1—O5i | 2.8427 (18) | V1—O1 | 1.6209 (19) |
Rb1—O4ii | 2.9436 (18) | V1—O6vi | 1.9435 (17) |
Rb1—O3ii | 2.9619 (18) | V1—O5vii | 1.9855 (18) |
Rb1—O6 | 3.0066 (17) | V1—O2 | 2.0901 (17) |
Rb1—O3iii | 3.0288 (18) | P1—O4 | 1.5225 (18) |
Rb1—O1 | 3.2266 (19) | P1—O6 | 1.5225 (17) |
Rb1—O1iv | 3.228 (2) | P1—O5 | 1.5401 (18) |
Rb1—O2 | 3.2537 (17) | P1—O2 | 1.5670 (18) |
Rb1—O3 | 3.2910 (18) | Cu1—O4ii | 1.9072 (17) |
Rb1—O1v | 3.2981 (19) | Cu1—O2 | 1.9752 (16) |
V1—O3 | 1.6204 (18) | | |
| | | |
O3—V1—O1 | 108.86 (10) | O6—P1—O5 | 109.67 (10) |
O3—V1—O6vi | 100.69 (8) | O4—P1—O2 | 110.60 (9) |
O1—V1—O6vi | 98.27 (8) | O6—P1—O2 | 106.64 (10) |
O3—V1—O5vii | 129.13 (8) | O5—P1—O2 | 106.43 (10) |
O1—V1—O5vii | 121.09 (9) | O4vii—Cu1—O2 | 89.90 (7) |
O6vi—V1—O5vii | 82.01 (7) | O4ii—Cu1—O2 | 90.10 (7) |
O3—V1—O2 | 91.49 (8) | P1—O5—V1vii | 130.65 (10) |
O1—V1—O2 | 88.75 (8) | P1—O4—Cu1viii | 125.25 (10) |
O6vi—V1—O2 | 163.05 (7) | P1—O6—V1ix | 139.73 (11) |
O5vii—V1—O2 | 81.15 (7) | P1—O2—Cu1 | 117.19 (10) |
O4—P1—O6 | 111.15 (10) | P1—O2—V1 | 128.68 (10) |
O4—P1—O5 | 112.10 (10) | | |
Symmetry codes: (i) x, −y+1/2, z−1/2; (ii) x+1, y, z; (iii) −x, −y+1, −z; (iv) −x+1, −y+1, −z; (v) −x+1, y−1/2, −z+1/2; (vi) −x, y+1/2, −z+1/2; (vii) −x, −y+1, −z+1; (viii) x−1, y, z; (ix) −x, y−1/2, −z+1/2. |
Bond-valence data (Pyatenko, 1972) top | V1 | Cu1 | P1 | Rb1 | Σ |
O1 | 1.636 | | | 0.089; 0.089; 0.086 | 1.900 |
O2 | 0.460 | 0.447 | 1.086 | 0.088 | 2.081 |
O3 | 1.654 | | | 0.111; 0.106; 0.086 | 1.957 |
O4 | | 0.553 | 1.338 | 0.113 | 2.004 |
O5 | 0.588 | | 1.237 | 0.123 | 1.948 |
O6 | 0.662 | | 1.338 | 0.108 | 2.108 |
Σ | 5.000 | 2.000 | 4.999 | 0.999 | |
Crystal data for Rb0.5Cu(VO2)(PO4), Ba(VO2)(PO4) and
Ba(CrF2)(LiF4), space group P21/c, Z = 4 topCompound | Unit-cell parameters a, b, c (Å) and β (°) | Unit-cell volume (Å3) | rcalc (g cm-3) | Tetrahedron composition | Pentahedron/octahedron composition | Reference | |
Rb0.5Cu(VO2)(PO4) | 4.9292 (9) 11.471 (2) 9.4810 (17) 93.535 (3) | 535.04 | 3.67 | PO4 | VO5 | Present work | |
Ba(VO2)(PO4) | 5.616 (2) 10.062 (1) 8.727 (1) 90.90 (2) | 493.09 | 4.25 | PO4 | VO6 | Kang et al. (1992) | |
Ba(CrF2)(LiF4) | 5.397 (3) 10.355 (5) 8.638 (5) 90.72 (5) | 482.7 | 4.27 | LiF4 | CrF6 | Babel (1974) | |
The rich chemistry of vanadium includes a range of coordination geometries with oxygen in crystal structures which include tetrahedral, pentahedral, trigonal pyramidal, tetragonal–pyramidal and octahedral. Combined with its variable oxidation states of 2, 3, 4 and 5, this leads to a large diversity of vanadium-containing structures. The amphoteric character of vanadium oxo complexes explains the peculiarities of its crystal chemistry: these oxo complexes can have both cation- and anion-forming functions in mineral and biological processes (Baran, 2003). As a cation (V3+, VO2+, VO2+), vanadium acts like a typical transition metal, while its anionic form (VO43-) resembles phosphorous in phosphates. In spite of the fact that phosphate and vanadate minerals often have isotypic crystal structures, there are no cases of isomorphous substitution between VO4 and PO4 tetrahedra, most certainly due to the large difference in the sizes of V5+ and P5+ ions. However, a solid solution between VO4 and AsO4 is known, as found in the crystal structure of the volcanic mineral coparsite, Cu4ClO2[(As0.5V0.5)O4] (Starova et al., 1998).
Mineral and synthetic phases with complex anions and open framework structures have been intensively studied over the last two decades. Among them, vanadyl phosphates seem to be promising due to their potential applications as catalytic materials, sorbents, molecular sieves or ion-exchange materials similar to zeolites (Centi et al., 1988). As part of our investigation of these types of compounds (Massa et al., 2002; Yakubovich et al., 2006), we present here the title compound, which has a microporous structure with an open mixed framework formed by Cu, V and P oxo complexes.
The V5+ ions in the structure (Fig. 1) occupy strongly distorted five-vertex VO5 polyhedra. The two shortest V1—O bonds (Table 1) are typical of vanadyl groups, while the three longer V1—O distances correspond to V1—O bonds where the O atoms belong to PO4 tetrahedra. The Cu1—O distances around the square-planar Cu2+ cation at the centre of symmetry are 1.9072 (17) and 1.9752 (16) Å. The largest cation–oxygen distances around V1, Cu1 and P1 involve atom O2, which is shared by three polyhedra (the so-called `loop configuration'). The VO5 polyhedra approach a trigonal-bipyramidal configuration and, together with the PO4 tetrahedra, form mixed anionic layers parallel to the bc plane at x = 0 (Fig. 2). Alternating vertex-sharing VO5 bipyramids and PO4 tetrahedra form both four-membered and eight-membered rings within these layers. The vanadyl groups, V═O, are terminal. V1═O1 is parallel to the a axis, with atom O1 pointing into the inter-layer space; V1═O3 is parallel to the c axis, with atom O3 pointing into the eight-membered ring. Along the [100] direction, V/P layers alternate with layers of Rb and Cu atoms at x = 0.5 (Fig. 3), and quadrilaterals CuO4 link the V/P layers by sharing two vertices (O4) with P1 tetrahedra and two others (O2) with P1 and V1 polyhedra. Thus, a three-dimensional anionic framework with the formula [Cu(VO2)2(PO4)2]2- is formed. It contains channels with eight polyhedra at the circumference, as viewed along the [100] direction. Crossing channels are present in the [001] and [011] directions. The Rb atoms reside in these channels and are surrounded by ten O atoms, with Rb1—O distances ranging from 2.8427 (18) to 3.2981 (19) Å (average 3.108 Å) (Table 1); an additional atom O6i [symmetry code (i) as shown in Table 1] is 3.5044 (17) Å from atom Rb1. Including this eleventh O atom in the first coordination sphere around Rb1 gives the wrong bond-valence sum for atom O6. Bond-valence sum data, shown in Table 2, are consistent with the assumed oxidation states of V and Cu.
In crystals of vanadyl phosphates, [VO2]+ cations in combination with PO43- tetrahedra usually form one-dimensional (ribbons), two-dimensional (layers) or three-dimensional (framework) anions. Six different structure types based on mixed anionic one-dimensional ribbons formed by VO5 (or VO6) and PO4 polyhedra have been described: A(VO2)(HPO4), with A = K, Rb, NH4 or Tl (Amoros et al., 1988; Huan et al., 1991); the α-modification of (NH4)(VO2)(HPO4) (Amoros & Le Bail, 1992); A2(VO2)(PO4), with A = K or Na (Korthuis et al., 1993a); K3(VO2)2(PO4)(HPO4)(H2O) (Leclaire et al., 2002); Ba2(VO2)(PO4)(HPO4)(H2O) (Bircsak & Harrison, 1998a) and Cd(VO2)(PO4)(H2O) (Leclaire et al., 2000). Among the two-dimensional layered structures, four different types can be distinguished: K(VO2)2(PO4) (Berrah et al., 1999); A(VO2)(PO4), with A = Ba, Sr or Pb (Kang et al., 1992; Borel et al., 2000); Ag2(VO2)(PO4) (Kang et al., 1993) and (CN3H6)2(VO2)3(PO4)(HPO4) (Bircsak & Harrison, 1998b). Three-dimensional mixed anionic frameworks are represented by the crystal structures of (NH4)(VO2)2(PO4)(H2O)3 (Wilde et al., 2000), Pb(VO2)2(PO4) (Borel et al., 2000) and Pb(VO2)(PO4)(H2O) (Leclaire et al., 2001).
Sometimes, additional cations along with [VO2]+ may form three-dimensional mixed anionic frameworks in combination with PO4 tetrahedra. Two compounds of this kind include Cs2[(UO2)(VO2)2(PO4)2](H2O)0.59 (Shvareva et al., 2005) and Cs2[Ti(VO2)3(PO4)3] (Yakubovich et al., 2006). The novel crystal structure of Rb2Cu(VO2)2(PO4)2 described here belongs to this same group of vanadyl(V) phosphates having three different oxo complexes in the anionic part of their structures.
To our knowledge, only one crystal structure among the vanadyl phosphates published so far contains [VO2]+ ions participating in the formation of the cationic framework. There is a close-packed framework formed by edge-sharing LiO6 and VO6 octahedra in [Li2(VO2)](PO4) (Korthuis et al., 1993b). This crystal structure is based on hexagonal close-packing of O atoms, in which Li and V atoms occupy octahedral voids and a fraction of the tetrahedral voids contain P atoms.
The novel crystal structure of rubidium copper vanadyl phosphate is closely related to the structures of A(VO2)(PO4), with A = Ba, Sr or Pb (Kang et al., 1992; Borel et al., 2000), and BaCrF2LiF4 (Babel, 1974), by having similar unit-cell parameters and the same space group, P21/c (Table 3). In bc projections of the Ba(VO2)(PO4) and Ba(CrF2)(LiF4) crystal structures (Figs. 4 and 5), one can see eight-membered windows formed by alternating octahedra (VO6 and CrF6) and tetrahedra (PO4 and LiF4) sharing vertices. These windows are topologically very similar to the windows walled in by VO5 bipyramids and PO4 tetrahedra in the title structure (Fig. 2). In all three structures, the eight-membered windows enclose large channels parallel to the [100] direction which contain Rb, Ba, Sr or Pb atoms. The main topological difference between these structures occurs along the a axis of their monoclinic unit cells. In the V/P layers of rubidium copper vanadyl phosphate, V bipyramids have no O atoms shared between them. Cu atoms with square-planar coordination link these V/P layers along the a axis to form the three-dimensional mixed anionic framework (Fig. 3). Sharing one vertex between two neighbouring V octahedra in barium vanadyl phosphate leads to the formation of double V/P layers alternating with Ba ions along [100] (Fig. 6). In the Ba(CrF2)(LiF4) structure, eight-membered ring layers are linked along the a axis through common vertices of Cr octahedra and Li tetrahedra, resulting in the three-dimensional structure (Fig. 7).