Download citation
Download citation
link to html
The planar component of 2-{3-cyano-4-[3-(1-decyl-1,4-dihydro­quinolin-4-yl­idene)prop-1-enyl]-5,5-dimethyl-2,5-di­hydrofuran-2-yl­idene}malononitrile, C32H46N4O, (I), forms into layers parallel to the (\overline{1}01) plane. The larger of the two spaces between layers is filled by the alkyl chains, giving a `sandwich stack' appearance. The packing of 2-{3-cyano-4-[5-(1-decyl-1,4-dihydro­quinolin-4-yl­idene)penta-1,3-dienyl]-5,5-dimethyl-2,5-dihydro­furan-2-yl­idene}malononitrile, C34H38N4O, (II), which has partial disorder in the 1-decyl group, utilizes weak C—H...N, C—H...O and C—N...π inter­actions in a three-dimensional `herring-bone' array with mol­ecular segments parallel to the (111) and (\overline{1}1\overline{1}) planes. Different rotational isomers with respect to the polyene chain and the 5,5-dimethyl-2,5-dihydro­furan-2-yl­idene link are observed in the two structures. The significance of the study lies in the delocalization of charge along the polyene chain and the supra­molecular aggregation present, which highlight the difficulty in obtaining the noncentrosymmetric alignment required for high nonlinear optical (NLO) responses in zwitterionic chromophores.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270108033404/fg3060sup1.cif
Contains datablocks global, I, II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270108033404/fg3060Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270108033404/fg3060IIsup3.hkl
Contains datablock II

CCDC references: 710760; 710761

Comment top

The X-ray crystallographic and structural properties of zwitterionic dyes and their precursors have been a subject of some interest to us (Gainsford et al., 2007, Gainsford et al., 2008a,b; Gainsford et al., 2008) due to their potential application in a number of photonic and optoelectronic devices (Dalton, 2002; Kay et al., 2004). Basic structural parameters for a series of zwitterionic chromophores and their precursors were presented at a recent conference (Kay et al., 2008) and we report here the complete crystallographic data for two of these compounds, 2-{3-cyano-4-[3-(4-decyl-1,4-dihydroquinolin-1-ylidene)propenyl]-5,5-dimethyl-2,5-dihydrofuran-2-ylidene}malononitrile, (I), and 2-{3-cyano-4-[5-(4-decyl-1,4-dihydroquinolin-1-ylidene)penta-1,3-dienyl]-5,5-dimethyl-2,5-dihydrofuran-2-ylidene}malononitrile, (II), as part of our ongoing studies into how changes in bond order brought about by charge delocalization impact on the magnitude of the nonlinear optical (NLO) response. Given that such molecules are prone to aggregation, we were also very interested to know through structural study whether modifications to the polyene chain length or the substituent on the donor N atom could mitigate this potentially deleterious effect.

The asymmetric unit contents of compound (I) are shown in Fig. 1. Excluding the alkyl(1-decyl) chain atoms (C23–C32), the terminal cyano atoms N1 and C1, and the methyl groups C8 and C9 and their associated H atoms, the molecule is close to planar, with an r.m.s. deviation of 0.023 (2) Å for the 23 atoms. In the quinoline part, rings C17–C22 and C14–C16/N4/C17/C22 are each rigorously planar [r.m.s. deviations 0.003 (2) and 0.006 (2) Å, respectively], with a dihedral angle between them of 1.69 (12)° and a puckering amplitude of 0.045 (3) Å (PLATON; Spek, 2003) The five-membered ring plane of atoms C4/C5/O1/C6/C7 [the (3-cyano-5,5-dimethyl-2,5-dihydrofuran-2-ylidine)propanedinitrile part, hereinafter CDFP] can also be regarded as planar in this case [r.m.s. deviation 0.009 (2) Å]. The dicyano group (N1/C1–C3/N2) is planar but twisted by 5.69 (17)° with respect to the CDFP group.

The almost-planar components of the molecules in (I) (excluding the alkyl chain atoms C23–C32) are arranged into nearly planar layers parallel to the (101) plane, with only weak and possibly adventitious contacts C—H···N(cyano) between them (Table 1). The larger of the unequal spaces between the layers (~10.3 Å, compared with ~3.4 Å for the smaller) are filled by the alkyl chains, resulting in a `sandwich stack' appearance, with the alkyl chains providing the filling (Fig. 2).

Compound (II) crystallizes as the alternative (transoid) rotamer (by rotation about the C4—C7 bond), as shown in Figs. 1 and 3 and quantified by the C7—C4—C11—C12 torsion angles (Table 3). Gas-phase density functional theory calculations using the Amsterdam Density Functional program system, ADF (SCM, 2007), indicate that the cisoid rotamer of (II) is very similar in energy to its transoid isomer (differing by less than 0.6 kcal mol-1; 1 kcal mol-1 = 4.184 kJ mol-1). By contrast, the transoid rotamer for (I) is calculated to be some 4 kcal mol-1 more stable than its cisoid counterpart. This implies that the observed structure in (I) is possibly determined by crystal packing forces. Also unlike (I), the non-alkyl chain atoms in (II) are twisted from planarity; this is shown by the dihedral angles between the CDFP ring and the polyene and quinoline planes (Table 3, entries 1 and 2). The CDFP ring is planar [r.m.s. deviation 0.017 (2) Å] but has some bond distance deviations from those in (I), notably in the atoms bound to C7 (Table 3). The dicyano group (N1/C1–C3/N2) has a twist from the CDFP plane of 6.74 (16)°, similar to (I). Data for the parent CDFP structure, (III), 2-dicyanomethylene-4,5,5-trimethylene-4,5,5-trimethyl-2,5-dihydrofuran-3-carbonitrile [Cambridge Structural Database (Allen, 2002) refcode PANLUM (Li et al., 2005)] are also given in Table 3.

In (II), there are hydrogen-bond interactions (Fig. 4) between CDFP atom O1 and quinoline atom H21, between polyene atom H12 and cyano atom N1, and between quinoline atom H18 and cyano atom N2 [Please check rephrasing and added atom labels], as well as a weak interaction between the π orbitals of the adjacent quinoline ring and one set of CDFP cyano atoms (last entry, Table 2: Cg2 is the centroid of atoms C16–C18/N4/C19/C24). The packing has elements of the well known `herring-bone' structure, with the π and N2···H18 links (Table 2) binding adjacent molecules parallel to the (111) plane, and the H21···O1 and N1···H12 interactions providing crosslinks to the other herring-bone set which are parallel to the (111) plane.

Both (I) and (II) show considerable delocalization of charge along the polyene/CDFP chain, with bond length alternation (BLA) values (Marder et al., 1993) of -0.015 and -0.042 Å, respectively, compared with the free CDFP value of 0.108 Å in (III) (Li et al., 2005). It should be noted that the BLA values were calculated by considering the bonds C2—C6 to C12—C13 in (I) and C2—C6 to C14—C15 in (II), inclusive. The degrees of BLA in (I) and (II) are considerably different from the values found for analogous compounds with far weaker donors, such as those derived from acetanilide and piperidine (see scheme): 0.073 Å in (IV) (Gainsford et al., 2008a); 0.060 Å in (V) (Gainsford et al., 2007); 0.000 Å in (VI) (Gainsford et al., 2008a). This is to be expected because compounds (I) and (II) here, with their dihydroquinolinylidene aromatic donor systems, will allow additional charge delocalization to occur in concert with their aromaticity. We note that the first hyperpolarizabilities of two analogues of (I) and (II) (N-methyl rather than N-decyl) have been reported (Kay et al., 2004) as 440 and 560 × 10-30 esu, respectively. Thus, our findings for (I) and (II) are in line with the theory that the closer variances in BLA are to approximately -0.05 Å, the greater the NLO response (Marder et al., 1993).

Our final comment concerns the intramolecular parameters affected by the alternative cisoid/transoid conformations. In the crystal structures of 12 compounds containing the CDFP/polyene moiety which we have studied, the transoid conformation is found in seven. The average of the close methyl-H···polyene-H intramolecular interactions [e.g. H12···H9B in (II)] for well characterized models is 2.27 (5) Å for the transoid and 2.51 (4) Å for the cisoid [e.g. H11···H8B in (I)]. The interaction distances of the C11 polyene H atom with the cyano atom C10 average to 2.68 (4) and 2.54 (6) Å, respectively. We conclude that the shorter contact distances observed in the transoid molecules are not close enough to encourage the molecules into favouring the cisoid conformation.

Related literature top

For related literature, see: Allen (2002); Ashwell et al. (1990); Dalton (2002); Gainsford et al. (2007, 2008, 2008a, 2008b); Kay et al. (2004, 2008); Li et al. (2005); Marder et al. (1993); SCM (2007); Sheldrick (2008); Spek (2003).

Experimental top

Compounds (I) and (II) were prepared via condensation of 1-decyl-4-methylquinolinium bromide (Ashwell et al., 1990) with either [4-(2-acetanilidoethenyl)-3-cyano-5,5-dimethyl-2(5H)-furanylidene]propanedinitrile (compound 11a) or [4-(2-acetanilido-trans-1,3-butadienyl)-3-cyano-5,5-dimethyl-2(5H)-furanylidene]propanedinitrile (compound 11b) using the procedure previously described by Kay et al. (2004), method B, methanol as solvent. The resultant powders were washed with copious quantities of hot water, followed by small portions of cold methanol to afford the target molecules as coloured powders. Recrystallization for (I) was from methanol–dichloromethane [Solvent ratio?] and for (II) was from acetone.

Refinement top

On the basis of average I/σ(I) analysis, data were excluded for θ > 30° for (I) and θ > 25° for (II). For (I) and (II), respectively, 8 or 17 reflections affected by the backstop or clearly outlier data were omitted from the refinements using OMIT (SHELXL97; Sheldrick, 2008), and a further 5 or 7 reflections within θ 25° were either not measured or failed to meet processing requirements.

All methyl and tertiary H atoms were treated as riding, with C—H = 0.95–0.99 Å and with Uiso(H) = 1.5 or 1.2, respectively, times Ueq of their parent atom. [Please check added text]

All non-H atoms were refined with anisotropic displacement parameters in (I). In compound (II), the alkyl atom chain was disordered into two `strands', starting at C29 and ending at C34. Each strand, A or B, was refined with a common complementary occupancy to 0.683 (4):0.317 (4), with all B strand atoms and C33A and C34A refined with isotropic displacement parameters. Atom C31B was given a fixed U of 0.14 Å2 (the average U value of adjacent B strand atoms). Finally, the bond distances between identical atoms in the two strands (e.g. C33A—C34A and C33B—C34B) and the C—C—C angles (e.g. C31A—C32A—C33A and C31B—C32B—C33B) were restrained to the same common values with an s.u. of 0.02 using the SHELXL97 SADI command. In total, 24 restraints were used in (II).

Computing details top

For both compounds, data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008). Molecular graphics: ORTEP-3 in WinGX (Farrugia, 1997) for (I); ORTEP-3 in WinGX (Farrugia, 1997) and Mercury (Macrae et al., 2006) for (II). For both compounds, software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The molecular structure of the asymmetric unit of (I), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 2] Fig. 2. A `sandwich' packing diagram (see text) of the cell of (I), viewed approximately down the b axis. For clarity, stick bonding is used, with all H atoms excluded. N and O atoms are depicted as open and filled circles, respectively. Three asymmetric unit atom labels are given.
[Figure 3] Fig. 3. The molecular structure of the asymmetric unit of (II), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii. Only the major conformer atoms (set A) are shown.
[Figure 4] Fig. 4. A partial packing diagram of the cell of (II), viewed approximately down the a axis, showing key intermolecular interactions. For clarity, only H atoms involved in hydrogen bonds (dashed lines) and disordered atom set A are pictured. All labelled contact atoms and other atoms are shown in ball and stick forms, respectively (see Table 2). [Symmetry codes: (i) x - 1, y +1, z; (ii) 1/2 + x, 1/2 - y, 1/2 + z; (iii) 3/2 - x,1/2 + y, 1/2 - z.]
(I) 2-{3-cyano-4-[3-(1-decyl-1,4-dihydroquinolin-4-ylidene)prop-1-enyl]- 5,5-dimethyl-2,5-dihydrofuran-2-ylidene}malononitrile top
Crystal data top
C32H36N4OF(000) = 1056
Mr = 492.65Dx = 1.162 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 7435 reflections
a = 11.9830 (6) Åθ = 2.3–30.4°
b = 17.5374 (8) ŵ = 0.07 mm1
c = 14.0363 (7) ÅT = 106 K
β = 107.289 (3)°Plate, blue
V = 2816.5 (2) Å30.90 × 0.70 × 0.03 mm
Z = 4
Data collection top
Bruker Nonius APEXII CCD area-detector
diffractometer
3764 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.128
Graphite monochromatorθmax = 30.0°, θmin = 2.1°
Detector resolution: 8.333 pixels mm-1h = 1616
ϕ and ω scansk = 2422
53106 measured reflectionsl = 1919
8166 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.055Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.203H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0737P)2 + 1.2326P]
where P = (Fo2 + 2Fc2)/3
8166 reflections(Δ/σ)max < 0.001
337 parametersΔρmax = 0.48 e Å3
0 restraintsΔρmin = 0.31 e Å3
Crystal data top
C32H36N4OV = 2816.5 (2) Å3
Mr = 492.65Z = 4
Monoclinic, P21/nMo Kα radiation
a = 11.9830 (6) ŵ = 0.07 mm1
b = 17.5374 (8) ÅT = 106 K
c = 14.0363 (7) Å0.90 × 0.70 × 0.03 mm
β = 107.289 (3)°
Data collection top
Bruker Nonius APEXII CCD area-detector
diffractometer
3764 reflections with I > 2σ(I)
53106 measured reflectionsRint = 0.128
8166 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0550 restraints
wR(F2) = 0.203H-atom parameters constrained
S = 1.08Δρmax = 0.48 e Å3
8166 reflectionsΔρmin = 0.31 e Å3
337 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. An extinction parameter was refined. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.51764 (15)0.06884 (8)0.35108 (12)0.0208 (4)
N10.7848 (2)0.04454 (13)0.67766 (18)0.0362 (6)
N20.6042 (2)0.11393 (12)0.44304 (17)0.0308 (5)
N30.7504 (2)0.22987 (13)0.60442 (18)0.0401 (7)
N40.71664 (18)0.59951 (11)0.56341 (15)0.0204 (4)
C10.7240 (2)0.03682 (13)0.59757 (19)0.0242 (6)
C20.6482 (2)0.02529 (13)0.50002 (17)0.0194 (5)
C30.6226 (2)0.05131 (13)0.46737 (18)0.0202 (5)
C40.5335 (2)0.20254 (13)0.36900 (17)0.0192 (5)
C50.4692 (2)0.14007 (12)0.29882 (17)0.0192 (5)
C60.5957 (2)0.08578 (13)0.43892 (17)0.0175 (5)
C70.6085 (2)0.16549 (13)0.45255 (18)0.0192 (5)
C80.4962 (2)0.13947 (14)0.20002 (18)0.0267 (6)
H8A0.58100.13770.21220.040*
H8B0.46480.18580.16250.040*
H8C0.46020.09460.16140.040*
C90.3395 (2)0.14003 (13)0.28773 (18)0.0230 (5)
H9A0.30390.09350.25320.034*
H9B0.30280.18470.24890.034*
H9C0.32780.14190.35390.034*
C100.6869 (2)0.20035 (13)0.53710 (19)0.0249 (6)
C110.5110 (2)0.27850 (13)0.34497 (19)0.0213 (5)
H110.45450.29020.28320.026*
C120.5662 (2)0.34009 (13)0.40569 (18)0.0199 (5)
H120.62180.32860.46800.024*
C130.5445 (2)0.41560 (13)0.38046 (18)0.0187 (5)
H130.48780.42740.31890.022*
C140.6023 (2)0.47710 (12)0.44156 (18)0.0177 (5)
C150.6857 (2)0.46640 (13)0.53460 (17)0.0200 (5)
H150.70530.41600.55850.024*
C160.7392 (2)0.52632 (13)0.59169 (18)0.0215 (5)
H160.79490.51610.65430.026*
C170.6354 (2)0.61639 (13)0.47287 (18)0.0183 (5)
C180.6071 (2)0.69282 (13)0.44352 (19)0.0239 (6)
H180.64520.73330.48580.029*
C190.5259 (2)0.70876 (14)0.3550 (2)0.0255 (6)
H190.50760.76040.33610.031*
C200.4687 (2)0.64998 (14)0.2914 (2)0.0248 (6)
H200.41270.66160.22940.030*
C210.4943 (2)0.57559 (13)0.31923 (19)0.0225 (5)
H210.45490.53610.27590.027*
C220.5773 (2)0.55588 (12)0.41013 (18)0.0180 (5)
C230.7869 (2)0.66005 (14)0.62744 (19)0.0263 (6)
H23A0.82490.63920.69480.032*
H23B0.73470.70210.63420.032*
C240.8801 (2)0.69102 (15)0.5837 (2)0.0309 (6)
H24A0.84080.71170.51650.037*
H24B0.92030.73400.62580.037*
C250.9718 (2)0.63364 (16)0.5750 (2)0.0317 (6)
H25A0.93130.58810.53940.038*
H25B1.01730.65630.53370.038*
C261.0561 (2)0.60831 (17)0.6735 (2)0.0338 (7)
H26A1.01240.57940.71140.041*
H26B1.08970.65400.71310.041*
C271.1554 (3)0.55869 (17)0.6611 (2)0.0365 (7)
H27A1.12160.51130.62590.044*
H27B1.19440.58610.61810.044*
C281.2470 (3)0.53727 (16)0.7578 (2)0.0355 (7)
H28A1.30210.50040.74290.043*
H28B1.20800.51160.80200.043*
C291.3162 (3)0.60544 (16)0.8131 (2)0.0332 (6)
H29A1.34850.63410.76650.040*
H29B1.26200.63980.83360.040*
C311.4901 (3)0.65227 (17)0.9520 (2)0.0425 (8)
H31A1.53120.67130.90520.051*
H31B1.43780.69340.96140.051*
C301.4160 (3)0.58430 (16)0.9049 (2)0.0361 (7)
H30A1.38330.56060.95480.043*
H30B1.46630.54600.88600.043*
C321.5798 (3)0.63604 (19)1.0515 (2)0.0452 (8)
H32A1.53990.61951.09960.068*
H32B1.62480.68241.07600.068*
H32C1.63270.59571.04320.068*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0277 (10)0.0096 (8)0.0197 (9)0.0001 (6)0.0012 (7)0.0001 (6)
N10.0443 (15)0.0245 (12)0.0293 (13)0.0011 (10)0.0051 (11)0.0059 (10)
N20.0457 (15)0.0170 (11)0.0317 (13)0.0001 (9)0.0146 (11)0.0010 (9)
N30.0457 (16)0.0217 (12)0.0380 (15)0.0050 (10)0.0103 (12)0.0070 (10)
N40.0267 (11)0.0128 (10)0.0205 (11)0.0012 (8)0.0049 (9)0.0039 (8)
C10.0289 (14)0.0136 (12)0.0266 (14)0.0002 (9)0.0029 (11)0.0042 (10)
C20.0237 (13)0.0129 (11)0.0190 (12)0.0001 (9)0.0023 (10)0.0007 (9)
C30.0248 (13)0.0152 (12)0.0199 (13)0.0024 (9)0.0056 (10)0.0042 (9)
C40.0235 (13)0.0141 (11)0.0181 (12)0.0015 (9)0.0032 (10)0.0002 (9)
C50.0275 (13)0.0083 (10)0.0167 (12)0.0012 (9)0.0010 (10)0.0020 (8)
C60.0194 (12)0.0144 (11)0.0173 (12)0.0011 (9)0.0034 (9)0.0009 (9)
C70.0226 (13)0.0143 (11)0.0179 (12)0.0013 (9)0.0018 (10)0.0018 (9)
C80.0398 (16)0.0187 (12)0.0200 (13)0.0002 (11)0.0065 (12)0.0005 (10)
C90.0264 (13)0.0154 (11)0.0210 (13)0.0028 (9)0.0023 (10)0.0016 (9)
C100.0292 (14)0.0142 (12)0.0253 (14)0.0031 (10)0.0010 (11)0.0006 (10)
C110.0253 (13)0.0147 (12)0.0209 (13)0.0010 (9)0.0021 (10)0.0004 (9)
C120.0227 (13)0.0149 (11)0.0201 (12)0.0003 (9)0.0035 (10)0.0010 (9)
C130.0212 (13)0.0129 (11)0.0199 (12)0.0008 (9)0.0029 (10)0.0002 (9)
C140.0205 (12)0.0119 (11)0.0214 (12)0.0003 (8)0.0073 (10)0.0004 (9)
C150.0249 (13)0.0133 (11)0.0203 (13)0.0001 (9)0.0041 (10)0.0005 (9)
C160.0259 (14)0.0164 (12)0.0196 (13)0.0002 (9)0.0029 (10)0.0011 (9)
C170.0213 (13)0.0143 (11)0.0198 (12)0.0001 (9)0.0069 (10)0.0009 (9)
C180.0314 (14)0.0123 (12)0.0281 (14)0.0011 (9)0.0088 (12)0.0025 (10)
C190.0313 (15)0.0124 (12)0.0317 (15)0.0006 (10)0.0079 (12)0.0012 (10)
C200.0269 (14)0.0178 (12)0.0254 (14)0.0007 (10)0.0012 (11)0.0040 (10)
C210.0269 (14)0.0138 (11)0.0244 (14)0.0012 (9)0.0037 (11)0.0017 (9)
C220.0212 (13)0.0126 (11)0.0208 (12)0.0005 (9)0.0071 (10)0.0002 (9)
C230.0356 (15)0.0162 (12)0.0231 (14)0.0037 (10)0.0025 (12)0.0071 (9)
C240.0364 (16)0.0238 (14)0.0285 (15)0.0103 (11)0.0036 (12)0.0050 (11)
C250.0349 (16)0.0325 (15)0.0281 (15)0.0089 (12)0.0099 (12)0.0054 (11)
C260.0338 (16)0.0384 (16)0.0301 (16)0.0025 (12)0.0109 (13)0.0061 (12)
C270.0380 (17)0.0374 (17)0.0365 (17)0.0031 (13)0.0146 (14)0.0077 (13)
C280.0400 (17)0.0345 (16)0.0359 (17)0.0010 (13)0.0173 (14)0.0021 (13)
C290.0370 (17)0.0347 (16)0.0302 (15)0.0017 (12)0.0137 (13)0.0011 (12)
C310.047 (2)0.0341 (17)0.0436 (19)0.0057 (13)0.0088 (16)0.0045 (14)
C300.0364 (17)0.0313 (16)0.0420 (18)0.0040 (12)0.0139 (14)0.0012 (13)
C320.044 (2)0.049 (2)0.0425 (19)0.0006 (15)0.0113 (16)0.0039 (15)
Geometric parameters (Å, º) top
O1—C61.341 (3)C18—H180.9500
O1—C51.477 (3)C19—C201.402 (3)
N1—C11.151 (3)C19—H190.9500
N2—C31.152 (3)C20—C211.370 (3)
N3—C101.145 (3)C20—H200.9500
N4—C161.347 (3)C21—C221.408 (3)
N4—C171.384 (3)C21—H210.9500
N4—C231.481 (3)C23—C241.526 (4)
C1—C21.415 (3)C23—H23A0.9900
C2—C61.391 (3)C23—H23B0.9900
C2—C31.423 (3)C24—C251.521 (4)
C4—C111.381 (3)C24—H24A0.9900
C4—C71.406 (3)C24—H24B0.9900
C4—C51.521 (3)C25—C261.517 (4)
C5—C81.514 (3)C25—H25A0.9900
C5—C91.516 (3)C25—H25B0.9900
C6—C71.413 (3)C26—C271.526 (4)
C7—C101.415 (3)C26—H26A0.9900
C8—H8A0.9800C26—H26B0.9900
C8—H8B0.9800C27—C281.518 (4)
C8—H8C0.9800C27—H27A0.9900
C9—H9A0.9800C27—H27B0.9900
C9—H9B0.9800C28—C291.529 (4)
C9—H9C0.9800C28—H28A0.9900
C11—C121.412 (3)C28—H28B0.9900
C11—H110.9500C29—C301.521 (4)
C12—C131.375 (3)C29—H29A0.9900
C12—H120.9500C29—H29B0.9900
C13—C141.423 (3)C31—C321.514 (4)
C13—H130.9500C31—C301.516 (4)
C14—C151.401 (3)C31—H31A0.9900
C14—C221.454 (3)C31—H31B0.9900
C15—C161.361 (3)C30—H30A0.9900
C15—H150.9500C30—H30B0.9900
C16—H160.9500C32—H32A0.9800
C17—C181.413 (3)C32—H32B0.9800
C17—C221.422 (3)C32—H32C0.9800
C18—C191.360 (3)
C6—O1—C5109.45 (16)C20—C21—C22122.0 (2)
C16—N4—C17119.94 (19)C20—C21—H21119.0
C16—N4—C23118.4 (2)C22—C21—H21119.0
C17—N4—C23121.45 (19)C21—C22—C17117.5 (2)
N1—C1—C2178.3 (3)C21—C22—C14122.3 (2)
C6—C2—C1122.0 (2)C17—C22—C14120.2 (2)
C6—C2—C3120.4 (2)N4—C23—C24111.3 (2)
C1—C2—C3117.5 (2)N4—C23—H23A109.4
N2—C3—C2178.2 (3)C24—C23—H23A109.4
C11—C4—C7132.8 (2)N4—C23—H23B109.4
C11—C4—C5120.8 (2)C24—C23—H23B109.4
C7—C4—C5106.40 (19)H23A—C23—H23B108.0
O1—C5—C8106.84 (19)C25—C24—C23115.4 (2)
O1—C5—C9106.86 (18)C25—C24—H24A108.4
C8—C5—C9113.4 (2)C23—C24—H24A108.4
O1—C5—C4103.82 (17)C25—C24—H24B108.4
C8—C5—C4113.2 (2)C23—C24—H24B108.4
C9—C5—C4111.9 (2)H24A—C24—H24B107.5
O1—C6—C2117.5 (2)C26—C25—C24115.0 (2)
O1—C6—C7111.19 (19)C26—C25—H25A108.5
C2—C6—C7131.3 (2)C24—C25—H25A108.5
C4—C7—C6109.1 (2)C26—C25—H25B108.5
C4—C7—C10126.9 (2)C24—C25—H25B108.5
C6—C7—C10124.0 (2)H25A—C25—H25B107.5
C5—C8—H8A109.5C25—C26—C27113.2 (2)
C5—C8—H8B109.5C25—C26—H26A108.9
H8A—C8—H8B109.5C27—C26—H26A108.9
C5—C8—H8C109.5C25—C26—H26B108.9
H8A—C8—H8C109.5C27—C26—H26B108.9
H8B—C8—H8C109.5H26A—C26—H26B107.8
C5—C9—H9A109.5C28—C27—C26114.9 (2)
C5—C9—H9B109.5C28—C27—H27A108.6
H9A—C9—H9B109.5C26—C27—H27A108.6
C5—C9—H9C109.5C28—C27—H27B108.6
H9A—C9—H9C109.5C26—C27—H27B108.6
H9B—C9—H9C109.5H27A—C27—H27B107.5
N3—C10—C7178.6 (3)C27—C28—C29113.6 (2)
C4—C11—C12124.6 (2)C27—C28—H28A108.9
C4—C11—H11117.7C29—C28—H28A108.9
C12—C11—H11117.7C27—C28—H28B108.9
C13—C12—C11124.2 (2)C29—C28—H28B108.9
C13—C12—H12117.9H28A—C28—H28B107.7
C11—C12—H12117.9C30—C29—C28114.3 (2)
C12—C13—C14123.6 (2)C30—C29—H29A108.7
C12—C13—H13118.2C28—C29—H29A108.7
C14—C13—H13118.2C30—C29—H29B108.7
C15—C14—C13123.0 (2)C28—C29—H29B108.7
C15—C14—C22115.8 (2)H29A—C29—H29B107.6
C13—C14—C22121.2 (2)C32—C31—C30114.7 (3)
C16—C15—C14121.7 (2)C32—C31—H31A108.6
C16—C15—H15119.1C30—C31—H31A108.6
C14—C15—H15119.1C32—C31—H31B108.6
N4—C16—C15123.0 (2)C30—C31—H31B108.6
N4—C16—H16118.5H31A—C31—H31B107.6
C15—C16—H16118.5C31—C30—C29112.9 (2)
N4—C17—C18120.8 (2)C31—C30—H30A109.0
N4—C17—C22119.4 (2)C29—C30—H30A109.0
C18—C17—C22119.8 (2)C31—C30—H30B109.0
C19—C18—C17120.4 (2)C29—C30—H30B109.0
C19—C18—H18119.8H30A—C30—H30B107.8
C17—C18—H18119.8C31—C32—H32A109.5
C18—C19—C20120.8 (2)C31—C32—H32B109.5
C18—C19—H19119.6H32A—C32—H32B109.5
C20—C19—H19119.6C31—C32—H32C109.5
C21—C20—C19119.5 (2)H32A—C32—H32C109.5
C21—C20—H20120.2H32B—C32—H32C109.5
C19—C20—H20120.2
C6—O1—C5—C8121.1 (2)C23—N4—C16—C15175.0 (2)
C6—O1—C5—C9117.2 (2)C14—C15—C16—N40.2 (4)
C6—O1—C5—C41.3 (2)C16—N4—C17—C18177.6 (2)
C11—C4—C5—O1180.0 (2)C23—N4—C17—C187.2 (3)
C7—C4—C5—O10.9 (3)C16—N4—C17—C220.7 (3)
C11—C4—C5—C864.6 (3)C23—N4—C17—C22174.6 (2)
C7—C4—C5—C8116.4 (2)N4—C17—C18—C19179.0 (2)
C11—C4—C5—C965.1 (3)C22—C17—C18—C190.8 (4)
C7—C4—C5—C9114.0 (2)C17—C18—C19—C200.0 (4)
C5—O1—C6—C2178.2 (2)C18—C19—C20—C210.6 (4)
C5—O1—C6—C71.2 (3)C19—C20—C21—C220.4 (4)
C1—C2—C6—O1174.4 (2)C20—C21—C22—C170.5 (4)
C3—C2—C6—O12.6 (4)C20—C21—C22—C14178.1 (2)
C1—C2—C6—C74.8 (4)N4—C17—C22—C21179.3 (2)
C3—C2—C6—C7178.1 (3)C18—C17—C22—C211.1 (3)
C11—C4—C7—C6179.2 (3)N4—C17—C22—C140.7 (3)
C5—C4—C7—C60.3 (3)C18—C17—C22—C14177.5 (2)
C11—C4—C7—C102.0 (5)C15—C14—C22—C21179.0 (2)
C5—C4—C7—C10179.2 (3)C13—C14—C22—C210.9 (4)
O1—C6—C7—C40.5 (3)C15—C14—C22—C170.5 (3)
C2—C6—C7—C4178.8 (3)C13—C14—C22—C17179.4 (2)
O1—C6—C7—C10178.3 (2)C16—N4—C23—C24102.6 (3)
C2—C6—C7—C102.4 (4)C17—N4—C23—C2472.8 (3)
C7—C4—C11—C121.0 (5)N4—C23—C24—C2562.8 (3)
C5—C4—C11—C12179.8 (2)C23—C24—C25—C2669.8 (3)
C4—C11—C12—C13179.0 (3)C24—C25—C26—C27172.8 (2)
C11—C12—C13—C14178.8 (2)C25—C26—C27—C28175.4 (2)
C12—C13—C14—C151.3 (4)C26—C27—C28—C2965.2 (3)
C12—C13—C14—C22178.9 (2)C27—C28—C29—C30174.5 (2)
C13—C14—C15—C16179.7 (2)C32—C31—C30—C29171.9 (3)
C22—C14—C15—C160.2 (4)C28—C29—C30—C31174.3 (3)
C17—N4—C16—C150.4 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9B···N3i0.982.453.367 (3)156
C21—H21···N1i0.952.533.424 (3)158
Symmetry code: (i) x1/2, y+1/2, z1/2.
(II) 2-{3-cyano-4-[5-(1-decyl-1,4-dihydroquinolin-4-ylidene)penta-1,3-dienyl]-5,5- dimethyl-2,5-dihydrofuran-2-ylidene}malononitrile top
Crystal data top
C34H38N4OF(000) = 1112
Mr = 518.68Dx = 1.143 Mg m3
Dm = 0 Mg m3
Dm measured by not measured
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 3141 reflections
a = 12.5261 (7) Åθ = 3.3–27.9°
b = 9.8849 (5) ŵ = 0.07 mm1
c = 24.3711 (13) ÅT = 97 K
β = 92.211 (3)°Block, green
V = 3015.4 (3) Å30.26 × 0.24 × 0.10 mm
Z = 4
Data collection top
Bruker Nonius APEXII CCD area-detector
diffractometer
2887 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.083
Graphite monochromatorθmax = 25.0°, θmin = 3.2°
Detector resolution: 8.333 pixels mm-1h = 1413
ϕ and ω scansk = 1111
18727 measured reflectionsl = 2824
5267 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.148H-atom parameters constrained
S = 0.95 w = 1/[σ2(Fo2) + (0.0715P)2]
where P = (Fo2 + 2Fc2)/3
5267 reflections(Δ/σ)max = 0.009
370 parametersΔρmax = 0.39 e Å3
24 restraintsΔρmin = 0.34 e Å3
Crystal data top
C34H38N4OV = 3015.4 (3) Å3
Mr = 518.68Z = 4
Monoclinic, P21/nMo Kα radiation
a = 12.5261 (7) ŵ = 0.07 mm1
b = 9.8849 (5) ÅT = 97 K
c = 24.3711 (13) Å0.26 × 0.24 × 0.10 mm
β = 92.211 (3)°
Data collection top
Bruker Nonius APEXII CCD area-detector
diffractometer
2887 reflections with I > 2σ(I)
18727 measured reflectionsRint = 0.083
5267 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.05424 restraints
wR(F2) = 0.148H-atom parameters constrained
S = 0.95Δρmax = 0.39 e Å3
5267 reflectionsΔρmin = 0.34 e Å3
370 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.82801 (14)0.17716 (17)0.22223 (7)0.0266 (5)
N11.0270 (2)0.3194 (3)0.30598 (10)0.0412 (7)
N21.0646 (2)0.4810 (3)0.13747 (10)0.0547 (8)
N30.90150 (19)0.3019 (3)0.03842 (10)0.0371 (6)
N40.21965 (17)0.5556 (2)0.00711 (9)0.0289 (6)
C11.0008 (2)0.3233 (3)0.26051 (12)0.0295 (7)
C20.9669 (2)0.3276 (3)0.20428 (10)0.0260 (6)
C31.0215 (2)0.4117 (3)0.16790 (12)0.0357 (7)
C40.7560 (2)0.1253 (3)0.13410 (10)0.0237 (6)
C50.7432 (2)0.0938 (3)0.19433 (10)0.0248 (6)
C60.8820 (2)0.2474 (3)0.18462 (10)0.0232 (6)
C70.8397 (2)0.2223 (3)0.13184 (10)0.0227 (6)
C80.7697 (2)0.0513 (3)0.21009 (11)0.0314 (7)
H8A0.76990.06060.25010.047*
H8B0.71590.11200.19330.047*
H8C0.84030.07480.19700.047*
C90.6377 (2)0.1424 (3)0.21562 (11)0.0306 (7)
H9A0.62700.23770.20580.046*
H9B0.57930.08820.19920.046*
H9C0.63850.13270.25570.046*
C100.8776 (2)0.2704 (3)0.08150 (12)0.0266 (7)
C110.7026 (2)0.0691 (3)0.09009 (11)0.0265 (7)
H110.72100.10190.05500.032*
C120.6231 (2)0.0320 (3)0.09039 (11)0.0267 (7)
H120.59720.05910.12480.032*
C130.5811 (2)0.0932 (3)0.04440 (11)0.0265 (6)
H130.60410.06300.00980.032*
C140.5055 (2)0.1986 (3)0.04512 (11)0.0256 (6)
H140.47830.22410.07950.031*
C150.4693 (2)0.2659 (3)0.00037 (11)0.0244 (6)
H150.49940.24200.03420.029*
C160.3899 (2)0.3696 (3)0.00195 (10)0.0231 (6)
C170.3274 (2)0.3970 (3)0.04291 (11)0.0309 (7)
H170.34300.35290.07690.037*
C180.2441 (2)0.4862 (3)0.03878 (11)0.0317 (7)
H180.20170.49950.06980.038*
C190.2811 (2)0.5413 (3)0.05266 (10)0.0250 (6)
C200.2569 (2)0.6160 (3)0.10066 (10)0.0291 (7)
H200.19730.67540.10230.035*
C210.3196 (2)0.6026 (3)0.14486 (11)0.0323 (7)
H210.30350.65390.17710.039*
C220.4068 (2)0.5152 (3)0.14363 (11)0.0319 (7)
H220.45030.50830.17460.038*
C230.4297 (2)0.4397 (3)0.09792 (10)0.0269 (7)
H230.48890.37970.09770.032*
C240.3672 (2)0.4484 (3)0.05059 (10)0.0236 (6)
C250.1219 (2)0.6402 (3)0.00832 (12)0.0373 (8)
H25A0.07390.60730.02010.045*
H25B0.08400.62940.04450.045*
C260.1445 (2)0.7890 (3)0.00141 (12)0.0399 (8)
H26A0.07620.83940.00130.048*
H26B0.19000.82260.02800.048*
C270.1996 (3)0.8187 (3)0.05686 (12)0.0455 (9)
H27A0.27380.78410.05640.055*
H27B0.16240.76800.08550.055*
C280.2034 (3)0.9676 (4)0.07311 (14)0.0599 (10)
H28A0.22261.02360.04130.072*
H28B0.25800.98190.10300.072*
C29A0.0924 (4)1.0091 (5)0.0925 (2)0.0429 (13)0.683 (4)
H29A0.07310.95180.12390.051*0.683 (4)
H29B0.03820.99500.06240.051*0.683 (4)
C30A0.0929 (4)1.1605 (5)0.11014 (19)0.0516 (15)0.683 (4)
H30A0.11661.21540.07890.062*0.683 (4)
H30B0.01861.18740.11730.062*0.683 (4)
C31A0.1603 (4)1.1945 (5)0.15850 (18)0.0570 (16)0.683 (4)
H31A0.23231.15680.15310.068*0.683 (4)
H31B0.16761.29420.15990.068*0.683 (4)
C32A0.1279 (4)1.1517 (6)0.2090 (2)0.0574 (16)0.683 (4)
H32A0.12651.05160.20890.069*0.683 (4)
H32B0.05371.18320.21340.069*0.683 (4)
C33A0.1953 (6)1.1982 (10)0.2589 (2)0.107 (3)*0.683 (4)
H33A0.26891.16370.25510.128*0.683 (4)
H33B0.19911.29820.25810.128*0.683 (4)
C34A0.1589 (6)1.1571 (8)0.3131 (3)0.113 (3)*0.683 (4)
H34A0.08901.19770.31930.170*0.683 (4)
H34B0.21061.18780.34170.170*0.683 (4)
H34C0.15301.05830.31450.170*0.683 (4)
C29B0.1197 (12)1.0701 (17)0.0784 (5)0.071 (5)*0.317 (4)
H29C0.07011.06840.04580.085*0.317 (4)
H29D0.15191.16140.08150.085*0.317 (4)
C30B0.0607 (13)1.0375 (19)0.1292 (6)0.106 (6)*0.317 (4)
H30C0.00111.09970.13040.127*0.317 (4)
H30D0.03160.94490.12480.127*0.317 (4)
C31B0.1139 (14)1.043 (2)0.1795 (5)0.140*0.317 (4)
H31C0.13220.94730.18640.168*0.317 (4)
H31D0.18221.08670.17040.168*0.317 (4)
C32B0.0982 (12)1.0911 (18)0.2314 (6)0.130 (8)*0.317 (4)
H32C0.05611.02150.25020.156*0.317 (4)
H32D0.05161.17160.22720.156*0.317 (4)
C33B0.1879 (11)1.1300 (11)0.2704 (6)0.077 (5)*0.317 (4)
H33C0.25541.09740.25520.092*0.317 (4)
H33D0.17841.08130.30540.092*0.317 (4)
C34B0.2010 (9)1.2816 (10)0.2836 (5)0.057 (3)*0.317 (4)
H34D0.23111.32800.25220.085*0.317 (4)
H34E0.24921.29260.31590.085*0.317 (4)
H34F0.13111.32060.29110.085*0.317 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0307 (11)0.0274 (10)0.0216 (10)0.0093 (8)0.0007 (8)0.0011 (8)
N10.0349 (16)0.0584 (18)0.0301 (15)0.0052 (13)0.0001 (12)0.0082 (14)
N20.065 (2)0.065 (2)0.0349 (17)0.0321 (16)0.0123 (15)0.0118 (15)
N30.0299 (15)0.0519 (17)0.0293 (15)0.0082 (12)0.0009 (12)0.0009 (13)
N40.0262 (14)0.0329 (14)0.0275 (14)0.0092 (11)0.0014 (10)0.0044 (11)
C10.0215 (16)0.0386 (18)0.0287 (18)0.0046 (13)0.0029 (13)0.0105 (15)
C20.0229 (16)0.0331 (16)0.0219 (15)0.0050 (12)0.0009 (12)0.0050 (13)
C30.0371 (19)0.0445 (19)0.0257 (17)0.0131 (15)0.0035 (14)0.0111 (15)
C40.0267 (16)0.0222 (15)0.0221 (15)0.0008 (12)0.0004 (12)0.0007 (12)
C50.0256 (16)0.0255 (15)0.0229 (15)0.0081 (12)0.0041 (12)0.0007 (12)
C60.0243 (16)0.0225 (14)0.0230 (15)0.0006 (12)0.0039 (12)0.0007 (12)
C70.0238 (15)0.0245 (15)0.0199 (15)0.0031 (12)0.0000 (11)0.0012 (12)
C80.0392 (19)0.0250 (16)0.0292 (16)0.0042 (13)0.0066 (13)0.0018 (13)
C90.0315 (17)0.0327 (17)0.0276 (16)0.0042 (13)0.0003 (13)0.0001 (13)
C100.0231 (16)0.0320 (17)0.0244 (17)0.0035 (12)0.0034 (12)0.0018 (13)
C110.0273 (16)0.0261 (16)0.0258 (16)0.0024 (12)0.0021 (12)0.0028 (13)
C120.0289 (17)0.0282 (16)0.0226 (16)0.0011 (12)0.0024 (12)0.0015 (13)
C130.0285 (17)0.0284 (16)0.0222 (15)0.0033 (12)0.0055 (12)0.0020 (13)
C140.0266 (16)0.0276 (16)0.0224 (15)0.0022 (12)0.0012 (12)0.0027 (12)
C150.0249 (16)0.0288 (16)0.0192 (15)0.0017 (12)0.0018 (12)0.0025 (12)
C160.0248 (16)0.0251 (15)0.0191 (15)0.0001 (12)0.0025 (12)0.0002 (12)
C170.0336 (18)0.0363 (17)0.0226 (16)0.0073 (14)0.0009 (13)0.0056 (13)
C180.0352 (18)0.0356 (18)0.0248 (17)0.0068 (14)0.0069 (13)0.0020 (14)
C190.0253 (16)0.0267 (16)0.0229 (16)0.0023 (12)0.0019 (12)0.0013 (12)
C200.0312 (17)0.0306 (17)0.0249 (16)0.0066 (13)0.0072 (13)0.0019 (13)
C210.046 (2)0.0265 (16)0.0234 (16)0.0001 (14)0.0060 (14)0.0042 (13)
C220.0402 (19)0.0332 (17)0.0224 (16)0.0006 (14)0.0037 (13)0.0017 (14)
C230.0279 (17)0.0312 (16)0.0215 (16)0.0036 (12)0.0003 (12)0.0005 (13)
C240.0230 (16)0.0265 (15)0.0209 (15)0.0000 (12)0.0041 (12)0.0009 (12)
C250.0287 (18)0.0411 (19)0.0423 (19)0.0158 (14)0.0059 (14)0.0070 (15)
C260.0353 (19)0.043 (2)0.042 (2)0.0166 (14)0.0069 (15)0.0057 (15)
C270.053 (2)0.044 (2)0.040 (2)0.0109 (16)0.0091 (16)0.0024 (16)
C280.073 (3)0.057 (2)0.050 (2)0.019 (2)0.0030 (19)0.0057 (19)
C29A0.056 (4)0.037 (3)0.036 (3)0.007 (3)0.011 (3)0.000 (3)
C30A0.064 (4)0.041 (3)0.050 (3)0.016 (3)0.005 (3)0.016 (3)
C31A0.059 (4)0.056 (4)0.055 (4)0.018 (3)0.014 (3)0.023 (3)
C32A0.046 (3)0.075 (4)0.050 (4)0.002 (3)0.011 (3)0.011 (3)
Geometric parameters (Å, º) top
O1—C61.352 (3)C25—C261.515 (4)
O1—C51.488 (3)C25—H25A0.9900
N1—C11.144 (3)C25—H25B0.9900
N2—C31.158 (3)C26—C271.522 (4)
N3—C101.146 (3)C26—H26A0.9900
N4—C181.337 (3)C26—H26B0.9900
N4—C191.382 (3)C27—C281.524 (4)
N4—C251.482 (3)C27—H27A0.9900
C1—C21.420 (4)C27—H27B0.9900
C2—C61.396 (3)C28—C29B1.467 (15)
C2—C31.412 (4)C28—C29A1.541 (6)
C4—C111.360 (3)C28—H28A0.9900
C4—C71.423 (3)C28—H28B0.9900
C4—C51.515 (3)C29A—C30A1.556 (7)
C5—C91.516 (4)C29A—H29A0.9900
C5—C81.518 (3)C29A—H29B0.9900
C6—C71.394 (3)C30A—C31A1.462 (5)
C7—C101.415 (4)C30A—H30A0.9900
C8—H8A0.9800C30A—H30B0.9900
C8—H8B0.9800C31A—C32A1.377 (6)
C8—H8C0.9800C31A—H31A0.9900
C9—H9A0.9800C31A—H31B0.9900
C9—H9B0.9800C32A—C33A1.525 (7)
C9—H9C0.9800C32A—H32A0.9900
C11—C121.412 (4)C32A—H32B0.9900
C11—H110.9500C33A—C34A1.472 (7)
C12—C131.361 (3)C33A—H33A0.9900
C12—H120.9500C33A—H33B0.9900
C13—C141.409 (3)C34A—H34A0.9800
C13—H130.9500C34A—H34B0.9800
C14—C151.356 (3)C34A—H34C0.9800
C14—H140.9500C29B—C30B1.501 (18)
C15—C161.427 (3)C29B—H29C0.9900
C15—H150.9500C29B—H29D0.9900
C16—C171.396 (4)C30B—C31B1.373 (8)
C16—C241.438 (3)C30B—H30C0.9900
C17—C181.367 (4)C30B—H30D0.9900
C17—H170.9500C31B—C32B1.371 (9)
C18—H180.9500C31B—H31C0.9900
C19—C201.407 (3)C31B—H31D0.9900
C19—C241.415 (4)C32B—C33B1.494 (8)
C20—C211.364 (4)C32B—H32C0.9900
C20—H200.9500C32B—H32D0.9900
C21—C221.392 (4)C33B—C34B1.539 (8)
C21—H210.9500C33B—H33C0.9900
C22—C231.362 (3)C33B—H33D0.9900
C22—H220.9500C34B—H34D0.9800
C23—C241.421 (3)C34B—H34E0.9800
C23—H230.9500C34B—H34F0.9800
C6—O1—C5109.97 (18)C25—C26—H26A108.8
C18—N4—C19120.2 (2)C27—C26—H26A108.8
C18—N4—C25117.9 (2)C25—C26—H26B108.8
C19—N4—C25121.8 (2)C27—C26—H26B108.8
N1—C1—C2179.2 (3)H26A—C26—H26B107.7
C6—C2—C3120.0 (2)C26—C27—C28115.2 (3)
C6—C2—C1120.7 (2)C26—C27—H27A108.5
C3—C2—C1119.3 (2)C28—C27—H27A108.5
N2—C3—C2178.7 (3)C26—C27—H27B108.5
C11—C4—C7125.8 (2)C28—C27—H27B108.5
C11—C4—C5127.8 (2)H27A—C27—H27B107.5
C7—C4—C5106.4 (2)C29B—C28—C27132.4 (7)
O1—C5—C4103.20 (19)C27—C28—C29A108.5 (3)
O1—C5—C9106.5 (2)C29B—C28—H28A83.1
C4—C5—C9113.2 (2)C27—C28—H28A110.0
O1—C5—C8105.2 (2)C29A—C28—H28A110.0
C4—C5—C8114.1 (2)C29B—C28—H28B108.2
C9—C5—C8113.4 (2)C27—C28—H28B110.0
O1—C6—C7110.6 (2)C29A—C28—H28B110.0
O1—C6—C2116.9 (2)H28A—C28—H28B108.4
C7—C6—C2132.4 (2)C28—C29A—C30A110.3 (4)
C6—C7—C10127.7 (2)C28—C29A—H29A109.6
C6—C7—C4109.8 (2)C30A—C29A—H29A109.6
C10—C7—C4122.2 (2)C28—C29A—H29B109.6
C5—C8—H8A109.5C30A—C29A—H29B109.6
C5—C8—H8B109.5H29A—C29A—H29B108.1
H8A—C8—H8B109.5C31A—C30A—C29A116.1 (4)
C5—C8—H8C109.5C31A—C30A—H30A108.3
H8A—C8—H8C109.5C29A—C30A—H30A108.3
H8B—C8—H8C109.5C31A—C30A—H30B108.3
C5—C9—H9A109.5C29A—C30A—H30B108.3
C5—C9—H9B109.5H30A—C30A—H30B107.4
H9A—C9—H9B109.5C32A—C31A—C30A118.0 (5)
C5—C9—H9C109.5C32A—C31A—H31A107.8
H9A—C9—H9C109.5C30A—C31A—H31A107.8
H9B—C9—H9C109.5C32A—C31A—H31B107.8
N3—C10—C7173.8 (3)C30A—C31A—H31B107.8
C4—C11—C12127.6 (3)H31A—C31A—H31B107.1
C4—C11—H11116.2C31A—C32A—C33A116.6 (5)
C12—C11—H11116.2C31A—C32A—H32A108.2
C13—C12—C11124.1 (3)C33A—C32A—H32A108.2
C13—C12—H12117.9C31A—C32A—H32B108.2
C11—C12—H12117.9C33A—C32A—H32B108.2
C12—C13—C14123.9 (3)H32A—C32A—H32B107.3
C12—C13—H13118.1C34A—C33A—C32A116.9 (6)
C14—C13—H13118.1C34A—C33A—H33A108.1
C15—C14—C13123.8 (3)C32A—C33A—H33A108.1
C15—C14—H14118.1C34A—C33A—H33B108.1
C13—C14—H14118.1C32A—C33A—H33B108.1
C14—C15—C16125.8 (3)H33A—C33A—H33B107.3
C14—C15—H15117.1C28—C29B—C30B107.5 (12)
C16—C15—H15117.1C28—C29B—H29C110.2
C17—C16—C15122.0 (2)C30B—C29B—H29C110.2
C17—C16—C24116.2 (2)C28—C29B—H29D110.2
C15—C16—C24121.8 (2)C30B—C29B—H29D110.2
C18—C17—C16121.2 (3)H29C—C29B—H29D108.5
C18—C17—H17119.4C31B—C30B—C29B119.4 (14)
C16—C17—H17119.4C31B—C30B—H30C107.5
N4—C18—C17122.8 (3)C29B—C30B—H30C107.5
N4—C18—H18118.6C31B—C30B—H30D107.5
C17—C18—H18118.6C29B—C30B—H30D107.5
N4—C19—C20120.3 (2)H30C—C30B—H30D107.0
N4—C19—C24119.0 (2)C32B—C31B—C30B139.2 (16)
C20—C19—C24120.7 (2)C32B—C31B—H31C102.3
C21—C20—C19119.6 (3)C30B—C31B—H31C102.3
C21—C20—H20120.2C32B—C31B—H31D102.3
C19—C20—H20120.2C30B—C31B—H31D102.3
C20—C21—C22121.3 (3)H31C—C31B—H31D104.9
C20—C21—H21119.4C31B—C32B—C33B123.0 (13)
C22—C21—H21119.4C31B—C32B—H32C106.6
C23—C22—C21119.8 (3)C33B—C32B—H32C106.6
C23—C22—H22120.1C31B—C32B—H32D106.6
C21—C22—H22120.1C33B—C32B—H32D106.6
C22—C23—C24121.7 (3)H32C—C32B—H32D106.5
C22—C23—H23119.1C32B—C33B—C34B117.1 (10)
C24—C23—H23119.1C32B—C33B—H33C108.0
C19—C24—C23116.9 (2)C34B—C33B—H33C108.0
C19—C24—C16120.5 (2)C32B—C33B—H33D108.0
C23—C24—C16122.6 (2)C34B—C33B—H33D108.0
N4—C25—C26113.3 (2)H33C—C33B—H33D107.3
N4—C25—H25A108.9C33B—C34B—H34D109.5
C26—C25—H25A108.9C33B—C34B—H34E109.5
N4—C25—H25B108.9H34D—C34B—H34E109.5
C26—C25—H25B108.9C33B—C34B—H34F109.5
H25A—C25—H25B107.7H34D—C34B—H34F109.5
C25—C26—C27113.7 (2)H34E—C34B—H34F109.5
C6—O1—C5—C40.4 (3)C25—N4—C19—C205.1 (4)
C6—O1—C5—C9119.0 (2)C18—N4—C19—C242.5 (4)
C6—O1—C5—C8120.3 (2)C25—N4—C19—C24173.6 (2)
C11—C4—C5—O1175.5 (2)N4—C19—C20—C21178.7 (3)
C7—C4—C5—O11.9 (3)C24—C19—C20—C212.6 (4)
C11—C4—C5—C969.8 (3)C19—C20—C21—C220.6 (4)
C7—C4—C5—C9112.8 (2)C20—C21—C22—C231.0 (4)
C11—C4—C5—C861.9 (4)C21—C22—C23—C240.7 (4)
C7—C4—C5—C8115.5 (2)N4—C19—C24—C23178.5 (2)
C5—O1—C6—C71.4 (3)C20—C19—C24—C232.8 (4)
C5—O1—C6—C2178.0 (2)N4—C19—C24—C160.4 (4)
C3—C2—C6—O1175.1 (2)C20—C19—C24—C16178.3 (2)
C1—C2—C6—O16.4 (4)C22—C23—C24—C191.2 (4)
C3—C2—C6—C75.7 (5)C22—C23—C24—C16180.0 (2)
C1—C2—C6—C7172.8 (3)C17—C16—C24—C194.0 (4)
O1—C6—C7—C10176.2 (2)C15—C16—C24—C19173.8 (2)
C2—C6—C7—C103.1 (5)C17—C16—C24—C23174.8 (2)
O1—C6—C7—C42.7 (3)C15—C16—C24—C237.4 (4)
C2—C6—C7—C4176.5 (3)C18—N4—C25—C26100.4 (3)
C11—C4—C7—C6174.6 (3)C19—N4—C25—C2683.4 (3)
C5—C4—C7—C62.8 (3)N4—C25—C26—C2760.5 (3)
C11—C4—C7—C100.7 (4)C25—C26—C27—C28168.1 (3)
C5—C4—C7—C10176.7 (2)C26—C27—C28—C29B55.7 (9)
C7—C4—C11—C12176.6 (3)C26—C27—C28—C29A76.9 (4)
C5—C4—C11—C120.4 (5)C29B—C28—C29A—C30A33.0 (12)
C4—C11—C12—C13172.8 (3)C27—C28—C29A—C30A179.4 (3)
C11—C12—C13—C14176.8 (3)C28—C29A—C30A—C31A66.0 (6)
C12—C13—C14—C15175.2 (3)C29A—C30A—C31A—C32A71.4 (7)
C13—C14—C15—C16177.4 (3)C30A—C31A—C32A—C33A175.4 (6)
C14—C15—C16—C1711.2 (4)C31A—C32A—C33A—C34A177.8 (7)
C14—C15—C16—C24171.1 (3)C27—C28—C29B—C30B72.9 (12)
C15—C16—C17—C18172.8 (3)C29A—C28—C29B—C30B29.4 (9)
C24—C16—C17—C185.0 (4)C28—C29B—C30B—C31B64 (2)
C19—N4—C18—C171.6 (4)C29B—C30B—C31B—C32B136 (3)
C25—N4—C18—C17174.7 (3)C30B—C31B—C32B—C33B154 (2)
C16—C17—C18—N42.4 (4)C31B—C32B—C33B—C34B111 (2)
C18—N4—C19—C20178.8 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C18—H18···N2i0.952.433.371 (4)169
C21—H21···O1ii0.952.493.328 (3)146
C12—H12···N1iii0.952.633.527 (4)158
C10—N3···Cg2iv1.15 (1)3.13 (1)3.481 (3)98 (2)
Symmetry codes: (i) x1, y+1, z; (ii) x1/2, y+1/2, z1/2; (iii) x+3/2, y+1/2, z+1/2; (iv) x+1, y, z.

Experimental details

(I)(II)
Crystal data
Chemical formulaC32H36N4OC34H38N4O
Mr492.65518.68
Crystal system, space groupMonoclinic, P21/nMonoclinic, P21/n
Temperature (K)10697
a, b, c (Å)11.9830 (6), 17.5374 (8), 14.0363 (7)12.5261 (7), 9.8849 (5), 24.3711 (13)
β (°) 107.289 (3) 92.211 (3)
V3)2816.5 (2)3015.4 (3)
Z44
Radiation typeMo KαMo Kα
µ (mm1)0.070.07
Crystal size (mm)0.90 × 0.70 × 0.030.26 × 0.24 × 0.10
Data collection
DiffractometerBruker Nonius APEXII CCD area-detector
diffractometer
Bruker Nonius APEXII CCD area-detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
53106, 8166, 3764 18727, 5267, 2887
Rint0.1280.083
(sin θ/λ)max1)0.7030.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.055, 0.203, 1.08 0.054, 0.148, 0.95
No. of reflections81665267
No. of parameters337370
No. of restraints024
H-atom treatmentH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.48, 0.310.39, 0.34

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), ORTEP-3 in WinGX (Farrugia, 1997) and Mercury (Macrae et al., 2006), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
C9—H9B···N3i0.982.453.367 (3)156
C21—H21···N1i0.952.533.424 (3)158
Symmetry code: (i) x1/2, y+1/2, z1/2.
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
C18—H18···N2i0.952.433.371 (4)169
C21—H21···O1ii0.952.493.328 (3)146
C12—H12···N1iii0.952.633.527 (4)158
C10—N3···Cg2iv1.146 (4)3.134 (3)3.481 (3)98 (2)
Symmetry codes: (i) x1, y+1, z; (ii) x1/2, y+1/2, z1/2; (iii) x+3/2, y+1/2, z+1/2; (iv) x+1, y, z.
Selected bond lengths and angles (Å,°) in (I), (II) and (III) (Li et al., 2005) Dihedral angles: Dih1 polyene chain [e.g. C11–C15 in (II)] and CDFP ring. Dih2 quinoline [e.g. C16–C24 in (II)] and CDFP ring (see text) top
Bonds/Angles(I)(II)(III) (relabelled)
Dih10.7 (3)12.3 (3)
Dih20.9 (2)24.44 (12)
C2-C61.391 (3)1.396 (4)1.359 (4)
C6-C71.413 (3)1.394 (3)1.445 (4)
C4-C71.406 (3)1.423 (4)1.343 (4)
C4-C111.381 (3)1.361 (4)1.472 (4)
C11-C121.412 (3)1.411 (4)
C12-C131.375 (3)1.361 (4)
C13-C141.423 (3)1.409 (4)
C14-C151.401 (3)1.356 (3)
C15-C161.361 (3)1.428 (4)
C6-O11.341 (3)1.352 (3)1.333 (3)
C5-O11.477 (3)1.488 (3)1.481 (3)
C4-C7-C6109.1 (2)109.8 (2)109.4 (3)
C7-C6-C2131.3 (2)132.4 (2)131.0 (3)
C11-C4-C7132.8 (2)125.8 (2)128.6 (3)
C4-C11-C12-C13179.0 (3)172.9 (2)
C7-C4-C11-C121.0 (5)-176.6 (2)
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds