Download citation
Download citation
link to html
The crystal structures and hydrogen-bonding patterns of 3-phenyl­propyl­ammonium benzoate, C9H14N+·C7H5O2, (I), and 3-phenyl­propyl­ammonium 3-iodo­benzoate, C9H14N+·C7H4IO2, (II), are reported and compared. The addition of the I atom on the anion in (II) produces a different hydrogen-bonding pattern to that of (I). In addition, the supra­molecular heterosynthon of (II) produces a chiral crystal packing not observed in (I). Compound (I) packs in a centrosymmetric fashion and forms achiral one-dimensional hydrogen-bonded columns through charge-assisted N—H...O hydrogen bonds. Compound (II) packs in a chiral space group and forms helical one-dimensional hydrogen-bonded columns with 21 symmetry, consisting of repeating R43(10) hydrogen-bonded rings that are commonly observed in ammonium carboxyl­ate salts con­tain­ing chiral mol­ecules. This hydrogen-bond pattern, which has been observed repeatedly in ammonium carboxyl­ate salts, thus provides a means of producing chiral crystal structures from achiral mol­ecules.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270108036500/fg3065sup1.cif
Contains datablocks global, I, II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270108036500/fg3065Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270108036500/fg3065IIsup3.hkl
Contains datablock II

CCDC references: 718137; 718138

Comment top

Supramolecular heterosynthons are defined as intermolecular interactions that exist between different but compatible functional groups (Walsh et al., 2003; Bis & Zaworotko, 2005; Bis et al., 2006). If one wishes to combine two or more molecules in the solid state, heterosynthons increase the number of possible combinations when compared to homosynthons, which only occur between the same functional group. Examples of neutral heterosynthons are the carboxylic acid–pyridine and carboxylic acid–amide dimers (Aakerōy & Schultheiss, 2007).

One of the aims of supramolecular chemistry is to identify and exploit those heterosynthons that behave predictably in the solid state. Desiraju and others have called the phenomenon of predictability `synthon robustness', with respect to those synthons that occur repeatedly in crystal structures (Banerjee, Mondal et al., 2006). If the intermolecular interaction is between charged species, the electrostatic attractive force strengthens the heterosynthon and a greater robustness is expected (Banerjee, Saha et al., 2006). Robustness of a heterosynthon refers to how a desired synthon changes under the influence of steric or electronic effects of functional groups on the molecules interacting in the crystal structures. To this end, we have investigated the heterosynthon formed between carboxylic acids and amines. More specifically, the compounds we have used all transfer the carboxylic acid proton to the amine to form ammonium carboxylate salts (Lemmerer et al., 2008a,b,c).

A data analysis of (R—NH3+).(R'—CO2-) ammonium carboxylate salt structures in the Cambridge Structural Database (CSD, Ver. 5.29, November 2007 release; Allen, 2002) revealed the three most frequently occurring heterosynthons described using graph set notation (Bernstein et al., 1995): one-dimensional columns of R34(10) hydrogen-bonded rings (75/126), one-dimensional columns of alternating R24(8) and R44(12) hydrogen-bonded rings (26/126) and two-dimensional layers built up with R56(16) hydrogen-bonded rings (19/126) (Lemmerer et al., 2008b). The one-dimensional columns of R34(10) rings are also called type-II columns by Kinbara et al. (1996) and are shown schematically in Fig. 1. In fact, this motif occurs even more frequently with increasing robustness if the cation containing the ammonium group is chiral, such as 1-phenylethylammonium. In those ammonium carboxylate salts, the type-II heterosynthon is formed in 69 out of 83 structures located in the CSD. This paper describes an attempt to determine if the type-II motif occurs in a related salt using achiral 3-phenylpropylammonium as the cation and benzoate and 3-iodobenzoate as the anion.

The molecular structure and atomic numbering scheme of (I) are shown in Fig. 2(a). The asymmetric unit consists of one 3-phenylpropylammonium cation and one benzoate anion. The propylammonium chain is parallel to the aromatic ring, with the mean deviation of a least-squares plane less than 0.209 (1) Å. The ammonium group forms three charge-assisted N—H···O hydrogen bonds to the benzoate group. H atoms H1A and H1B form a 12-membered hydrogen-bonded ring, R44(12), connecting two cations and two anions. This ring is parallel to the ab plane. Adjacent R44(12) rings are joined through a hydrogen bond from H1C to O2 in the direction of the crystallographic c axis (Fig. 3). This means that O2 functions as a bifurcated hydrogen-bond acceptor. Ultimately, this results in one-dimensional hydrogen-bonded columns made up of four cations and four anions. Compound (I) does not form the type-II column. Adjacent columns are connected via a C—H···π interaction from the cation of adjacent columns (C14—H14A···Cg; d = 2.64 Å, D = 3.563 (2) Å, θ = 155°) [Cg is the centroid of the benzoate ring C1–C6 at (1-x,1-y,1-z)].

The molecular structure and atomic numbering scheme of the asymmetric unit of (II) are shown in Fig. 2(b). The molecular geometries of the propylammonium cation and 3-iodobenzoate anion are similar to (I). The ammonium group forms three charge-asisted hydrogen bonds to form a ring, graph set notation R34(10), consisting of two ammonium cations and two carboxylate anions, one involving both O atoms, O1 and O2, and the second involving only the O1 atom (see Fig. 1). This hydrogen-bonded pattern has translational symmetry via a twofold screw axis inherent in the space group and is repeated along the a axis [6.9616 (2) Å]. All three ammonium H atoms are used to form the ring and O2 acts as a bifurcated hydrogen-bond acceptor. Compound (II) thus forms the type-II hydrogen-bonded column with two cations and two anions (Fig. 4). The columns are connected by a pair of C—H···π interactions through both H atoms on the benzylic position to the aromatic ring of adjacent cations [C14A—H14A···Cgi: d = 2.73 Å, D = 3.550 (3) Å, θ = 141°; C14B—H14B···Cgii: d = 2.70 Å, D =3.522 (3) Å, θ = 141°] (Fig. 5) [Cgi and Cgii are the centroids of the m-iodobenzoate ring C1–C6 at (1/2+x,1/2-y,1-z) and at (-1/2+x,1/2-y,1-z), respectively]. Adjacent columns are further stabilized by a C3—I1···O1iii [iii is equivalent position (1-x,1/2+y,3/2-z)] halogen bond (Ramasubbu et al., 1986; Corradi et al., 2000; Aakerōy et al., 2007) with d(I1···O1) = 3.050 (2) Å, θ (C3—I1···O1) = 165.04 (8)° along the [011] and [01-1] directions to create a chicken-wire shaped mesh of columns (Fig. 5).

Both compounds (I) and (II) do not contain a cation or anion that is chiral and the type-II synthon is not formed in (I). However, the I atom attached to the anion in (II) causes the type-II column to be formed and crystallizes in the chiral spacegroup P212121. In supramolecular chemistry, the creation of chiral crystals from constituents that do not possess a chirality centre is a much studied phenomenon (Mateos-Timoneda et al., 2004). Chiral helices are created when the molecules interact to create an arrangement with 21 symmetry (Tanaka et al., 2007). The type-II supramolecular heterosynthon of (II) is such a `helical' generating interaction (Koshima, 2000).

Related literature top

For related literature, see: Aakerōy & Schultheiss (2007); Aakerōy et al., 2007; Allen (2002); Banerjee et al. (2006a, 2006b); Bernstein et al. (1995); Bis & Zaworotko (2005); Bis et al. (2006); Corradi et al., 2000; Kinbara et al. (1996); Koshima (2000); Lemmerer et al. (2008a, 2008b); Mateos-Timoneda, Crego-Calama & Reinhoudt (2004); Ramasubbu et al., 1986; Tanaka et al. (2007); Walsh et al. (2003).

Experimental top

All chemicals were purchased from commercial sources and used as received. (I) was prepared by slowly evaporating a solution of 3-phenylpropylamine (0.100 g, 0.704 mmol) and benzoic acid (0.0904 g, 0.704 mmol) dissolved in 5 ml methanol. (II) was prepared by slowly evaporating a solution of 3-phenylpropylamine (0.100 g, 0.704 mmol) and m-iodobenzoic acid (0.183 g, 0.704 mmol) in 10 ml methanol.

Refinement top

For all compounds, all C—H atoms were refined using a riding model, with a distance of 0.95 Å (Ar—H) and 0.99 Å (CH2), and Uiso(H) = 1.2Ueq(C). N—H atoms on the ammonium group were located in the difference Fourier map and their coordinates refined freely with Uiso(H) =1.5Ueq(N).

Computing details top

For both compounds, data collection: COLLECT (Nonius, 2000); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997); data reduction: DENZO-SMN (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and DIAMOND (Brandenburg, 1999); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The type-II supramolecular heterosynthon that is commonly observed in ammonium carboxylate salts.
[Figure 2] Fig. 2. The asymmetric units of (a) (I) and (b) (II). Displacement ellipsoids are shown at the 50% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 3] Fig. 3. The hydrogen-bonding pattern of (I). H atoms not involved in hydrogen bonding are omitted for clarity. Atoms marked with superscript i and ii are at the symmetry positions (-x+3/2, -y+1/2, z) and (-x+3/2, y, z+1/2) respectively.
[Figure 4] Fig. 4. The type II hydrogen bonding pattern of (II), generating a 21 helical pattern. H atoms not involved in hydrogen bonding are omitted for clarity. Atoms marked with the superscripts i and ii are at the symmetry positions (x-1/2, -y+3/2, -z+1) and (x+1/2, -y+3/2, -z+1), respectively.
[Figure 5] Fig. 5. The packing diagram of (I), showing the two C—H···π interactions and C—I···O halogen bonds that connect adjacent helical columns. H atoms not involved in hydrogen bonding are omitted for clarity. Atoms marked with the superscripts i, ii, iii and iv are at the symmetry positions (x+1/2, -y+1/2, -z+1), (x+1/2, -y+1/2, -z+1), (-x+1, y-1/2, -z+3/2) and (x, y-1, z), respectively.
(I) 3-phenylpropylammonium benzoate top
Crystal data top
C9H14N+·C7H5O2F(000) = 1104
Mr = 257.32Dx = 1.214 Mg m3
Dm = 0 Mg m3
Dm measured by not measured
Orthorhombic, PccnMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ab 2acCell parameters from 2678 reflections
a = 16.2963 (2) Åθ = 2.5–27.2°
b = 23.3235 (5) ŵ = 0.08 mm1
c = 7.4094 (7) ÅT = 173 K
V = 2816.2 (3) Å3Block, colourless
Z = 80.5 × 0.13 × 0.10 mm
Data collection top
Nonius KappaCCD area-detector
diffractometer
3401 independent reflections
Radiation source: fine-focus sealed tube2087 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.107
0.8° ϕ and ω scansθmax = 28°, θmin = 1.5°
Absorption correction: integration
Bruker XPREP (Bruker, 1999)
h = 2121
Tmin = 0.966, Tmax = 0.992k = 3027
16169 measured reflectionsl = 99
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.133H atoms treated by a mixture of independent and constrained refinement
S = 0.92 w = 1/[σ2(Fo2) + (0.0693P)2]
where P = (Fo2 + 2Fc2)/3
3401 reflections(Δ/σ)max < 0.001
181 parametersΔρmax = 0.20 e Å3
0 restraintsΔρmin = 0.23 e Å3
Crystal data top
C9H14N+·C7H5O2V = 2816.2 (3) Å3
Mr = 257.32Z = 8
Orthorhombic, PccnMo Kα radiation
a = 16.2963 (2) ŵ = 0.08 mm1
b = 23.3235 (5) ÅT = 173 K
c = 7.4094 (7) Å0.5 × 0.13 × 0.10 mm
Data collection top
Nonius KappaCCD area-detector
diffractometer
3401 independent reflections
Absorption correction: integration
Bruker XPREP (Bruker, 1999)
2087 reflections with I > 2σ(I)
Tmin = 0.966, Tmax = 0.992Rint = 0.107
16169 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0490 restraints
wR(F2) = 0.133H atoms treated by a mixture of independent and constrained refinement
S = 0.92Δρmax = 0.20 e Å3
3401 reflectionsΔρmin = 0.23 e Å3
181 parameters
Special details top

Experimental. Numerical integration absorption corrections based on indexed crystal faces were applied using the XPREP routine (Bruker, 2004)

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.99456 (8)0.31588 (6)0.3237 (2)0.0301 (3)
C21.03846 (11)0.28071 (7)0.2094 (2)0.0442 (4)
H21.01060.25330.13710.053*
C31.12350 (11)0.28525 (9)0.1996 (3)0.0553 (5)
H31.15350.26080.12110.066*
C41.16402 (10)0.32493 (8)0.3033 (3)0.0519 (5)
H41.2220.32810.29590.062*
C51.12083 (9)0.35996 (8)0.4174 (3)0.0432 (4)
H51.1490.38730.48950.052*
C61.03601 (8)0.35556 (6)0.4280 (2)0.0327 (4)
H61.00630.37990.50730.039*
C70.90259 (9)0.31122 (7)0.3358 (2)0.0364 (4)
O10.86679 (7)0.27816 (5)0.22473 (17)0.0495 (4)
O20.86628 (6)0.33945 (6)0.45306 (19)0.0537 (4)
C80.46545 (8)0.45621 (6)0.3142 (2)0.0291 (3)
C90.40954 (9)0.42320 (7)0.4095 (2)0.0368 (4)
H90.42780.39020.4730.044*
C100.32695 (9)0.43799 (7)0.4129 (3)0.0452 (5)
H100.28940.41550.48070.054*
C110.29918 (10)0.48494 (8)0.3189 (2)0.0473 (5)
H110.24250.49440.31960.057*
C120.35409 (10)0.51819 (8)0.2236 (2)0.0469 (5)
H120.33540.55090.15910.056*
C130.43689 (9)0.50383 (7)0.2221 (2)0.0379 (4)
H130.47450.52710.15690.046*
C140.55635 (8)0.44305 (6)0.3100 (2)0.0298 (3)
H14A0.58520.4720.38430.036*
H14B0.5760.44740.18430.036*
C150.58070 (8)0.38398 (6)0.3765 (2)0.0298 (3)
H15A0.56310.37910.50350.036*
H15B0.5530.35430.30290.036*
C160.67285 (8)0.37657 (6)0.3632 (2)0.0296 (3)
H16A0.69090.38630.23940.036*
H16B0.70.40340.44770.036*
N10.69841 (8)0.31729 (5)0.4060 (2)0.0330 (3)
H1A0.7596 (11)0.3168 (7)0.410 (2)0.05*
H1B0.6783 (10)0.2894 (8)0.313 (2)0.05*
H1C0.6771 (10)0.3059 (8)0.518 (3)0.05*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0300 (7)0.0292 (7)0.0310 (9)0.0031 (6)0.0039 (6)0.0047 (7)
C20.0531 (10)0.0387 (9)0.0409 (10)0.0002 (8)0.0039 (8)0.0074 (8)
C30.0520 (11)0.0578 (11)0.0560 (12)0.0174 (9)0.0140 (9)0.0075 (10)
C40.0303 (8)0.0628 (12)0.0625 (13)0.0045 (8)0.0067 (8)0.0016 (11)
C50.0302 (8)0.0478 (9)0.0517 (11)0.0079 (7)0.0009 (7)0.0037 (9)
C60.0273 (7)0.0338 (8)0.0371 (9)0.0024 (6)0.0020 (6)0.0021 (7)
C70.0305 (8)0.0394 (9)0.0392 (10)0.0077 (7)0.0079 (7)0.0109 (8)
O10.0485 (7)0.0482 (7)0.0519 (8)0.0211 (5)0.0226 (6)0.0121 (6)
O20.0244 (6)0.0705 (9)0.0663 (9)0.0034 (5)0.0005 (6)0.0071 (8)
C80.0236 (7)0.0322 (7)0.0315 (8)0.0017 (5)0.0028 (6)0.0064 (7)
C90.0247 (7)0.0344 (8)0.0512 (11)0.0007 (6)0.0002 (7)0.0010 (8)
C100.0239 (7)0.0476 (10)0.0642 (13)0.0027 (7)0.0005 (7)0.0068 (9)
C110.0274 (8)0.0572 (11)0.0572 (12)0.0105 (7)0.0083 (8)0.0127 (10)
C120.0450 (10)0.0502 (10)0.0457 (11)0.0215 (8)0.0083 (8)0.0012 (9)
C130.0378 (8)0.0402 (9)0.0357 (9)0.0072 (7)0.0001 (7)0.0009 (8)
C140.0217 (6)0.0341 (8)0.0336 (9)0.0010 (5)0.0000 (6)0.0013 (7)
C150.0206 (6)0.0339 (7)0.0348 (9)0.0004 (6)0.0014 (6)0.0025 (7)
C160.0204 (6)0.0308 (7)0.0376 (9)0.0008 (6)0.0021 (6)0.0008 (7)
N10.0243 (6)0.0322 (7)0.0425 (8)0.0019 (5)0.0077 (6)0.0005 (7)
Geometric parameters (Å, º) top
C1—C21.379 (2)C10—C111.375 (2)
C1—C61.382 (2)C10—H100.95
C1—C71.5054 (19)C11—C121.378 (2)
C2—C31.392 (2)C11—H110.95
C2—H20.95C12—C131.390 (2)
C3—C41.372 (3)C12—H120.95
C3—H30.95C13—H130.95
C4—C51.370 (2)C14—C151.516 (2)
C4—H40.95C14—H14A0.99
C5—C61.3884 (19)C14—H14B0.99
C5—H50.95C15—C161.5148 (17)
C6—H60.95C15—H15A0.99
C7—O21.241 (2)C15—H15B0.99
C7—O11.2695 (19)C16—N11.4786 (18)
C8—C131.384 (2)C16—H16A0.99
C8—C91.386 (2)C16—H16B0.99
C8—C141.5131 (18)N1—H1A0.997 (18)
C9—C101.390 (2)N1—H1B1.005 (18)
C9—H90.95N1—H1C0.939 (19)
C2—C1—C6119.22 (14)C12—C11—H11120.2
C2—C1—C7120.65 (14)C11—C12—C13119.91 (16)
C6—C1—C7120.12 (14)C11—C12—H12120
C1—C2—C3120.20 (16)C13—C12—H12120
C1—C2—H2119.9C8—C13—C12121.04 (15)
C3—C2—H2119.9C8—C13—H13119.5
C4—C3—C2120.10 (16)C12—C13—H13119.5
C4—C3—H3119.9C8—C14—C15115.71 (12)
C2—C3—H3119.9C8—C14—H14A108.4
C5—C4—C3120.03 (16)C15—C14—H14A108.4
C5—C4—H4120C8—C14—H14B108.4
C3—C4—H4120C15—C14—H14B108.4
C4—C5—C6120.12 (16)H14A—C14—H14B107.4
C4—C5—H5119.9C16—C15—C14110.00 (11)
C6—C5—H5119.9C16—C15—H15A109.7
C1—C6—C5120.32 (14)C14—C15—H15A109.7
C1—C6—H6119.8C16—C15—H15B109.7
C5—C6—H6119.8C14—C15—H15B109.7
O2—C7—O1123.86 (15)H15A—C15—H15B108.2
O2—C7—C1118.56 (14)N1—C16—C15111.84 (12)
O1—C7—C1117.58 (15)N1—C16—H16A109.2
C13—C8—C9118.41 (13)C15—C16—H16A109.2
C13—C8—C14118.80 (13)N1—C16—H16B109.2
C9—C8—C14122.78 (13)C15—C16—H16B109.2
C8—C9—C10120.54 (15)H16A—C16—H16B107.9
C8—C9—H9119.7C16—N1—H1A107.5 (10)
C10—C9—H9119.7C16—N1—H1B111.4 (10)
C11—C10—C9120.49 (16)H1A—N1—H1B109.9 (13)
C11—C10—H10119.8C16—N1—H1C110.5 (11)
C9—C10—H10119.8H1A—N1—H1C109.8 (14)
C10—C11—C12119.60 (15)H1B—N1—H1C107.7 (14)
C10—C11—H11120.2
C6—C1—C2—C30.0 (2)C13—C8—C9—C100.4 (2)
C7—C1—C2—C3179.81 (15)C14—C8—C9—C10178.30 (15)
C1—C2—C3—C40.3 (3)C8—C9—C10—C111.3 (3)
C2—C3—C4—C50.4 (3)C9—C10—C11—C121.3 (3)
C3—C4—C5—C60.3 (3)C10—C11—C12—C130.5 (3)
C2—C1—C6—C50.1 (2)C9—C8—C13—C120.4 (2)
C7—C1—C6—C5179.93 (14)C14—C8—C13—C12179.20 (14)
C4—C5—C6—C10.0 (3)C11—C12—C13—C80.4 (3)
C2—C1—C7—O2172.78 (15)C13—C8—C14—C15166.73 (14)
C6—C1—C7—O27.1 (2)C9—C8—C14—C1514.6 (2)
C2—C1—C7—O16.9 (2)C8—C14—C15—C16179.49 (12)
C6—C1—C7—O1173.23 (14)C14—C15—C16—N1173.21 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O21.00 (2)1.85 (2)2.806 (2)161 (2)
N1—H1B···O1i1.01 (2)1.86 (2)2.809 (2)157 (2)
N1—H1C···O1ii0.94 (2)1.81 (2)2.746 (2)175 (2)
Symmetry codes: (i) x+3/2, y+1/2, z; (ii) x+3/2, y, z+1/2.
(II) 3-phenylpropylammonium 3-iodobenzoate top
Crystal data top
C9H14N+·C7H4IO2F(000) = 760
Mr = 383.21Dx = 1.603 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 23461 reflections
a = 6.9616 (2) Åθ = 0.4–28.3°
b = 12.8517 (3) ŵ = 2.02 mm1
c = 17.7512 (3) ÅT = 173 K
V = 1588.17 (6) Å3Block, colourless
Z = 40.38 × 0.11 × 0.1 mm
Data collection top
Nonius KappaCCD area-detector
diffractometer
3826 independent reflections
Radiation source: fine-focus sealed tube3554 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.044
0.8° ϕ and ω scansθmax = 28°, θmin = 2.8°
Absorption correction: integration
Bruker XPREP (Bruker, 1999)
h = 99
Tmin = 0.594, Tmax = 0.845k = 1616
22976 measured reflectionsl = 2321
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.023H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.051 w = 1/[σ2(Fo2) + (0.0219P)2 + 0.5355P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max = 0.001
3826 reflectionsΔρmax = 0.59 e Å3
190 parametersΔρmin = 0.74 e Å3
0 restraintsAbsolute structure: Flack (1983); 1625 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.023 (18)
Crystal data top
C9H14N+·C7H4IO2V = 1588.17 (6) Å3
Mr = 383.21Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 6.9616 (2) ŵ = 2.02 mm1
b = 12.8517 (3) ÅT = 173 K
c = 17.7512 (3) Å0.38 × 0.11 × 0.1 mm
Data collection top
Nonius KappaCCD area-detector
diffractometer
3826 independent reflections
Absorption correction: integration
Bruker XPREP (Bruker, 1999)
3554 reflections with I > 2σ(I)
Tmin = 0.594, Tmax = 0.845Rint = 0.044
22976 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.023H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.051Δρmax = 0.59 e Å3
S = 1.08Δρmin = 0.74 e Å3
3826 reflectionsAbsolute structure: Flack (1983); 1625 Friedel pairs
190 parametersAbsolute structure parameter: 0.023 (18)
0 restraints
Special details top

Experimental. Numerical integration absorption corrections based on indexed crystal faces were applied using the XPREP routine (Bruker, 2004)

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.1344 (3)0.94392 (19)0.67079 (13)0.0207 (5)
C20.2661 (3)1.01649 (18)0.69766 (14)0.0222 (5)
H20.39681.01330.68250.027*
C30.2048 (4)1.09372 (19)0.74692 (14)0.0236 (5)
C40.0139 (4)1.0998 (2)0.76971 (15)0.0293 (6)
H40.02751.15390.80230.035*
C50.1143 (4)1.0259 (2)0.74415 (15)0.0312 (6)
H50.24411.02790.76060.037*
C60.0554 (3)0.9485 (2)0.69468 (14)0.0257 (5)
H60.14540.89850.67710.031*
C70.2006 (4)0.86126 (18)0.61550 (14)0.0221 (5)
O10.3768 (3)0.84991 (14)0.60588 (10)0.0286 (4)
O20.0719 (2)0.80881 (14)0.58230 (10)0.0300 (4)
I10.40354 (2)1.200055 (13)0.792448 (10)0.03146 (6)
C80.2291 (4)0.26298 (19)0.48336 (14)0.0221 (5)
C90.2343 (4)0.2586 (2)0.40536 (15)0.0303 (6)
H90.23830.32140.37720.036*
C100.2336 (4)0.1634 (2)0.36767 (16)0.0344 (6)
H100.23630.16180.31420.041*
C110.2289 (4)0.0719 (2)0.40755 (17)0.0322 (6)
H110.22880.00710.38180.039*
C120.2242 (4)0.0746 (2)0.48556 (16)0.0305 (6)
H120.22110.01160.51350.037*
C130.2243 (4)0.1693 (2)0.52254 (15)0.0268 (6)
H130.22090.17040.5760.032*
C140.2270 (4)0.36355 (19)0.52730 (15)0.0242 (5)
H14A0.34160.36490.56030.029*
H14B0.11240.36360.56030.029*
C150.2251 (4)0.46302 (18)0.48080 (14)0.0236 (5)
H15A0.3430.46640.44970.028*
H15B0.11320.46220.44640.028*
C160.2143 (4)0.55823 (19)0.53091 (15)0.0262 (5)
H16A0.09870.55350.56320.031*
H16B0.32840.56010.56420.031*
N10.2059 (4)0.65606 (17)0.48579 (13)0.0228 (4)
H1A0.185 (5)0.712 (2)0.5114 (18)0.034*
H1B0.109 (5)0.655 (2)0.4555 (18)0.034*
H1C0.307 (5)0.667 (2)0.4616 (19)0.034*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0230 (13)0.0194 (11)0.0197 (11)0.0049 (9)0.0013 (9)0.0013 (9)
C20.0210 (11)0.0225 (12)0.0233 (13)0.0020 (9)0.0015 (10)0.0025 (10)
C30.0282 (13)0.0177 (12)0.0249 (13)0.0019 (11)0.0018 (11)0.0019 (10)
C40.0321 (14)0.0289 (14)0.0269 (14)0.0050 (12)0.0024 (11)0.0046 (11)
C50.0221 (13)0.0397 (16)0.0319 (13)0.0017 (13)0.0007 (13)0.0047 (11)
C60.0235 (13)0.0276 (13)0.0260 (13)0.0009 (10)0.0018 (10)0.0014 (10)
C70.0266 (13)0.0171 (12)0.0227 (12)0.0045 (10)0.0000 (11)0.0022 (9)
O10.0227 (9)0.0284 (9)0.0348 (10)0.0065 (8)0.0045 (8)0.0023 (8)
O20.0270 (9)0.0271 (9)0.0358 (9)0.0038 (9)0.0034 (8)0.0107 (8)
I10.03126 (8)0.02426 (8)0.03885 (9)0.00373 (8)0.00276 (8)0.00771 (7)
C80.0188 (12)0.0220 (12)0.0254 (13)0.0009 (10)0.0012 (10)0.0001 (10)
C90.0382 (16)0.0252 (13)0.0275 (14)0.0056 (12)0.0003 (12)0.0013 (11)
C100.0427 (16)0.0321 (15)0.0284 (14)0.0071 (13)0.0014 (13)0.0052 (11)
C110.0307 (14)0.0234 (14)0.0425 (16)0.0004 (11)0.0019 (13)0.0069 (12)
C120.0275 (14)0.0228 (13)0.0413 (16)0.0011 (11)0.0009 (12)0.0062 (11)
C130.0255 (13)0.0263 (13)0.0287 (13)0.0021 (10)0.0011 (11)0.0025 (10)
C140.0250 (13)0.0240 (13)0.0234 (12)0.0004 (10)0.0007 (10)0.0010 (10)
C150.0235 (12)0.0200 (12)0.0272 (13)0.0006 (10)0.0008 (11)0.0013 (10)
C160.0282 (13)0.0228 (13)0.0274 (13)0.0001 (11)0.0008 (11)0.0022 (10)
N10.0210 (11)0.0190 (10)0.0283 (12)0.0009 (9)0.0014 (10)0.0052 (9)
Geometric parameters (Å, º) top
C1—C61.389 (4)C10—C111.372 (4)
C1—C21.392 (3)C10—H100.95
C1—C71.518 (3)C11—C121.386 (4)
C2—C31.390 (4)C11—H110.95
C2—H20.95C12—C131.382 (4)
C3—C41.391 (4)C12—H120.95
C3—I12.106 (3)C13—H130.95
C4—C51.380 (4)C14—C151.522 (3)
C4—H40.95C14—H14A0.99
C5—C61.388 (4)C14—H14B0.99
C5—H50.95C15—C161.515 (3)
C6—H60.95C15—H15A0.99
C7—O11.247 (3)C15—H15B0.99
C7—O21.267 (3)C16—N11.492 (3)
C8—C91.386 (4)C16—H16A0.99
C8—C131.391 (4)C16—H16B0.99
C8—C141.510 (3)N1—H1A0.86 (3)
C9—C101.395 (4)N1—H1B0.87 (4)
C9—H90.95N1—H1C0.84 (4)
C6—C1—C2119.6 (2)C12—C11—H11120.2
C6—C1—C7121.1 (2)C13—C12—C11119.8 (3)
C2—C1—C7119.4 (2)C13—C12—H12120.1
C3—C2—C1119.5 (2)C11—C12—H12120.1
C3—C2—H2120.3C12—C13—C8121.6 (2)
C1—C2—H2120.3C12—C13—H13119.2
C2—C3—C4121.1 (2)C8—C13—H13119.2
C2—C3—I1120.22 (19)C8—C14—C15116.0 (2)
C4—C3—I1118.66 (19)C8—C14—H14A108.3
C5—C4—C3118.9 (3)C15—C14—H14A108.3
C5—C4—H4120.5C8—C14—H14B108.3
C3—C4—H4120.5C15—C14—H14B108.3
C4—C5—C6120.6 (3)H14A—C14—H14B107.4
C4—C5—H5119.7C16—C15—C14111.1 (2)
C6—C5—H5119.7C16—C15—H15A109.4
C5—C6—C1120.3 (3)C14—C15—H15A109.4
C5—C6—H6119.9C16—C15—H15B109.4
C1—C6—H6119.8C14—C15—H15B109.4
O1—C7—O2124.7 (2)H15A—C15—H15B108
O1—C7—C1118.0 (2)N1—C16—C15111.6 (2)
O2—C7—C1117.3 (2)N1—C16—H16A109.3
C9—C8—C13117.7 (2)C15—C16—H16A109.3
C9—C8—C14123.4 (2)N1—C16—H16B109.3
C13—C8—C14118.9 (2)C15—C16—H16B109.3
C8—C9—C10120.9 (3)H16A—C16—H16B108
C8—C9—H9119.5C16—N1—H1A115 (2)
C10—C9—H9119.5C16—N1—H1B111 (2)
C11—C10—C9120.3 (3)H1A—N1—H1B102 (3)
C11—C10—H10119.9C16—N1—H1C112 (2)
C9—C10—H10119.9H1A—N1—H1C106 (3)
C10—C11—C12119.6 (3)H1B—N1—H1C110 (3)
C10—C11—H11120.2
C6—C1—C2—C31.2 (4)C2—C1—C7—O2167.8 (2)
C7—C1—C2—C3178.5 (2)C13—C8—C9—C100.3 (4)
C1—C2—C3—C40.1 (4)C14—C8—C9—C10179.2 (3)
C1—C2—C3—I1177.07 (18)C8—C9—C10—C110.4 (5)
C2—C3—C4—C51.7 (4)C9—C10—C11—C120.2 (5)
I1—C3—C4—C5175.5 (2)C10—C11—C12—C130.0 (4)
C3—C4—C5—C61.9 (4)C11—C12—C13—C80.1 (4)
C4—C5—C6—C10.6 (4)C9—C8—C13—C120.1 (4)
C2—C1—C6—C51.0 (4)C14—C8—C13—C12179.5 (2)
C7—C1—C6—C5178.8 (2)C9—C8—C14—C151.7 (4)
C6—C1—C7—O1168.2 (2)C13—C8—C14—C15177.8 (2)
C2—C1—C7—O112.1 (3)C8—C14—C15—C16177.5 (2)
C6—C1—C7—O211.9 (3)C14—C15—C16—N1178.2 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O20.86 (3)1.94 (3)2.767 (3)161 (3)
N1—H1B···O1i0.87 (4)1.95 (4)2.811 (3)175 (3)
N1—H1C···O2ii0.84 (4)2.03 (4)2.856 (3)172 (3)
Symmetry codes: (i) x1/2, y+3/2, z+1; (ii) x+1/2, y+3/2, z+1.

Experimental details

(I)(II)
Crystal data
Chemical formulaC9H14N+·C7H5O2C9H14N+·C7H4IO2
Mr257.32383.21
Crystal system, space groupOrthorhombic, PccnOrthorhombic, P212121
Temperature (K)173173
a, b, c (Å)16.2963 (2), 23.3235 (5), 7.4094 (7)6.9616 (2), 12.8517 (3), 17.7512 (3)
V3)2816.2 (3)1588.17 (6)
Z84
Radiation typeMo KαMo Kα
µ (mm1)0.082.02
Crystal size (mm)0.5 × 0.13 × 0.100.38 × 0.11 × 0.1
Data collection
DiffractometerNonius KappaCCD area-detector
diffractometer
Nonius KappaCCD area-detector
diffractometer
Absorption correctionIntegration
Bruker XPREP (Bruker, 1999)
Integration
Bruker XPREP (Bruker, 1999)
Tmin, Tmax0.966, 0.9920.594, 0.845
No. of measured, independent and
observed [I > 2σ(I)] reflections
16169, 3401, 2087 22976, 3826, 3554
Rint0.1070.044
(sin θ/λ)max1)0.6610.661
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.133, 0.92 0.023, 0.051, 1.08
No. of reflections34013826
No. of parameters181190
H-atom treatmentH atoms treated by a mixture of independent and constrained refinementH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.20, 0.230.59, 0.74
Absolute structure?Flack (1983); 1625 Friedel pairs
Absolute structure parameter?0.023 (18)

Computer programs: COLLECT (Nonius, 2000), DENZO-SMN (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and DIAMOND (Brandenburg, 1999), WinGX (Farrugia, 1999) and PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O21.00 (2)1.85 (2)2.806 (2)161 (2)
N1—H1B···O1i1.01 (2)1.86 (2)2.809 (2)157 (2)
N1—H1C···O1ii0.94 (2)1.81 (2)2.746 (2)175 (2)
Symmetry codes: (i) x+3/2, y+1/2, z; (ii) x+3/2, y, z+1/2.
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O20.86 (3)1.94 (3)2.767 (3)161 (3)
N1—H1B···O1i0.87 (4)1.95 (4)2.811 (3)175 (3)
N1—H1C···O2ii0.84 (4)2.03 (4)2.856 (3)172 (3)
Symmetry codes: (i) x1/2, y+3/2, z+1; (ii) x+1/2, y+3/2, z+1.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds