Supporting information
Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270108036500/fg3065sup1.cif | |
Structure factor file (CIF format) https://doi.org/10.1107/S0108270108036500/fg3065Isup2.hkl | |
Structure factor file (CIF format) https://doi.org/10.1107/S0108270108036500/fg3065IIsup3.hkl |
CCDC references: 718137; 718138
All chemicals were purchased from commercial sources and used as received. (I) was prepared by slowly evaporating a solution of 3-phenylpropylamine (0.100 g, 0.704 mmol) and benzoic acid (0.0904 g, 0.704 mmol) dissolved in 5 ml methanol. (II) was prepared by slowly evaporating a solution of 3-phenylpropylamine (0.100 g, 0.704 mmol) and m-iodobenzoic acid (0.183 g, 0.704 mmol) in 10 ml methanol.
For all compounds, all C—H atoms were refined using a riding model, with a distance of 0.95 Å (Ar—H) and 0.99 Å (CH2), and Uiso(H) = 1.2Ueq(C). N—H atoms on the ammonium group were located in the difference Fourier map and their coordinates refined freely with Uiso(H) =1.5Ueq(N).
For both compounds, data collection: COLLECT (Nonius, 2000); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997); data reduction: DENZO-SMN (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and DIAMOND (Brandenburg, 1999); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2003).
C9H14N+·C7H5O2− | F(000) = 1104 |
Mr = 257.32 | Dx = 1.214 Mg m−3 Dm = 0 Mg m−3 Dm measured by not measured |
Orthorhombic, Pccn | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ab 2ac | Cell parameters from 2678 reflections |
a = 16.2963 (2) Å | θ = 2.5–27.2° |
b = 23.3235 (5) Å | µ = 0.08 mm−1 |
c = 7.4094 (7) Å | T = 173 K |
V = 2816.2 (3) Å3 | Block, colourless |
Z = 8 | 0.5 × 0.13 × 0.10 mm |
Nonius KappaCCD area-detector diffractometer | 3401 independent reflections |
Radiation source: fine-focus sealed tube | 2087 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.107 |
0.8° ϕ and ω scans | θmax = 28°, θmin = 1.5° |
Absorption correction: integration Bruker XPREP (Bruker, 1999) | h = −21→21 |
Tmin = 0.966, Tmax = 0.992 | k = −30→27 |
16169 measured reflections | l = −9→9 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.049 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.133 | H atoms treated by a mixture of independent and constrained refinement |
S = 0.92 | w = 1/[σ2(Fo2) + (0.0693P)2] where P = (Fo2 + 2Fc2)/3 |
3401 reflections | (Δ/σ)max < 0.001 |
181 parameters | Δρmax = 0.20 e Å−3 |
0 restraints | Δρmin = −0.23 e Å−3 |
C9H14N+·C7H5O2− | V = 2816.2 (3) Å3 |
Mr = 257.32 | Z = 8 |
Orthorhombic, Pccn | Mo Kα radiation |
a = 16.2963 (2) Å | µ = 0.08 mm−1 |
b = 23.3235 (5) Å | T = 173 K |
c = 7.4094 (7) Å | 0.5 × 0.13 × 0.10 mm |
Nonius KappaCCD area-detector diffractometer | 3401 independent reflections |
Absorption correction: integration Bruker XPREP (Bruker, 1999) | 2087 reflections with I > 2σ(I) |
Tmin = 0.966, Tmax = 0.992 | Rint = 0.107 |
16169 measured reflections |
R[F2 > 2σ(F2)] = 0.049 | 0 restraints |
wR(F2) = 0.133 | H atoms treated by a mixture of independent and constrained refinement |
S = 0.92 | Δρmax = 0.20 e Å−3 |
3401 reflections | Δρmin = −0.23 e Å−3 |
181 parameters |
Experimental. Numerical integration absorption corrections based on indexed crystal faces were applied using the XPREP routine (Bruker, 2004) |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.99456 (8) | 0.31588 (6) | 0.3237 (2) | 0.0301 (3) | |
C2 | 1.03846 (11) | 0.28071 (7) | 0.2094 (2) | 0.0442 (4) | |
H2 | 1.0106 | 0.2533 | 0.1371 | 0.053* | |
C3 | 1.12350 (11) | 0.28525 (9) | 0.1996 (3) | 0.0553 (5) | |
H3 | 1.1535 | 0.2608 | 0.1211 | 0.066* | |
C4 | 1.16402 (10) | 0.32493 (8) | 0.3033 (3) | 0.0519 (5) | |
H4 | 1.222 | 0.3281 | 0.2959 | 0.062* | |
C5 | 1.12083 (9) | 0.35996 (8) | 0.4174 (3) | 0.0432 (4) | |
H5 | 1.149 | 0.3873 | 0.4895 | 0.052* | |
C6 | 1.03601 (8) | 0.35556 (6) | 0.4280 (2) | 0.0327 (4) | |
H6 | 1.0063 | 0.3799 | 0.5073 | 0.039* | |
C7 | 0.90259 (9) | 0.31122 (7) | 0.3358 (2) | 0.0364 (4) | |
O1 | 0.86679 (7) | 0.27816 (5) | 0.22473 (17) | 0.0495 (4) | |
O2 | 0.86628 (6) | 0.33945 (6) | 0.45306 (19) | 0.0537 (4) | |
C8 | 0.46545 (8) | 0.45621 (6) | 0.3142 (2) | 0.0291 (3) | |
C9 | 0.40954 (9) | 0.42320 (7) | 0.4095 (2) | 0.0368 (4) | |
H9 | 0.4278 | 0.3902 | 0.473 | 0.044* | |
C10 | 0.32695 (9) | 0.43799 (7) | 0.4129 (3) | 0.0452 (5) | |
H10 | 0.2894 | 0.4155 | 0.4807 | 0.054* | |
C11 | 0.29918 (10) | 0.48494 (8) | 0.3189 (2) | 0.0473 (5) | |
H11 | 0.2425 | 0.4944 | 0.3196 | 0.057* | |
C12 | 0.35409 (10) | 0.51819 (8) | 0.2236 (2) | 0.0469 (5) | |
H12 | 0.3354 | 0.5509 | 0.1591 | 0.056* | |
C13 | 0.43689 (9) | 0.50383 (7) | 0.2221 (2) | 0.0379 (4) | |
H13 | 0.4745 | 0.5271 | 0.1569 | 0.046* | |
C14 | 0.55635 (8) | 0.44305 (6) | 0.3100 (2) | 0.0298 (3) | |
H14A | 0.5852 | 0.472 | 0.3843 | 0.036* | |
H14B | 0.576 | 0.4474 | 0.1843 | 0.036* | |
C15 | 0.58070 (8) | 0.38398 (6) | 0.3765 (2) | 0.0298 (3) | |
H15A | 0.5631 | 0.3791 | 0.5035 | 0.036* | |
H15B | 0.553 | 0.3543 | 0.3029 | 0.036* | |
C16 | 0.67285 (8) | 0.37657 (6) | 0.3632 (2) | 0.0296 (3) | |
H16A | 0.6909 | 0.3863 | 0.2394 | 0.036* | |
H16B | 0.7 | 0.4034 | 0.4477 | 0.036* | |
N1 | 0.69841 (8) | 0.31729 (5) | 0.4060 (2) | 0.0330 (3) | |
H1A | 0.7596 (11) | 0.3168 (7) | 0.410 (2) | 0.05* | |
H1B | 0.6783 (10) | 0.2894 (8) | 0.313 (2) | 0.05* | |
H1C | 0.6771 (10) | 0.3059 (8) | 0.518 (3) | 0.05* |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0300 (7) | 0.0292 (7) | 0.0310 (9) | −0.0031 (6) | −0.0039 (6) | 0.0047 (7) |
C2 | 0.0531 (10) | 0.0387 (9) | 0.0409 (10) | 0.0002 (8) | −0.0039 (8) | −0.0074 (8) |
C3 | 0.0520 (11) | 0.0578 (11) | 0.0560 (12) | 0.0174 (9) | 0.0140 (9) | −0.0075 (10) |
C4 | 0.0303 (8) | 0.0628 (12) | 0.0625 (13) | 0.0045 (8) | 0.0067 (8) | 0.0016 (11) |
C5 | 0.0302 (8) | 0.0478 (9) | 0.0517 (11) | −0.0079 (7) | 0.0009 (7) | −0.0037 (9) |
C6 | 0.0273 (7) | 0.0338 (8) | 0.0371 (9) | −0.0024 (6) | 0.0020 (6) | −0.0021 (7) |
C7 | 0.0305 (8) | 0.0394 (9) | 0.0392 (10) | −0.0077 (7) | −0.0079 (7) | 0.0109 (8) |
O1 | 0.0485 (7) | 0.0482 (7) | 0.0519 (8) | −0.0211 (5) | −0.0226 (6) | 0.0121 (6) |
O2 | 0.0244 (6) | 0.0705 (9) | 0.0663 (9) | −0.0034 (5) | 0.0005 (6) | −0.0071 (8) |
C8 | 0.0236 (7) | 0.0322 (7) | 0.0315 (8) | 0.0017 (5) | −0.0028 (6) | −0.0064 (7) |
C9 | 0.0247 (7) | 0.0344 (8) | 0.0512 (11) | −0.0007 (6) | −0.0002 (7) | 0.0010 (8) |
C10 | 0.0239 (7) | 0.0476 (10) | 0.0642 (13) | −0.0027 (7) | −0.0005 (7) | −0.0068 (9) |
C11 | 0.0274 (8) | 0.0572 (11) | 0.0572 (12) | 0.0105 (7) | −0.0083 (8) | −0.0127 (10) |
C12 | 0.0450 (10) | 0.0502 (10) | 0.0457 (11) | 0.0215 (8) | −0.0083 (8) | −0.0012 (9) |
C13 | 0.0378 (8) | 0.0402 (9) | 0.0357 (9) | 0.0072 (7) | −0.0001 (7) | 0.0009 (8) |
C14 | 0.0217 (6) | 0.0341 (8) | 0.0336 (9) | −0.0010 (5) | 0.0000 (6) | −0.0013 (7) |
C15 | 0.0206 (6) | 0.0339 (7) | 0.0348 (9) | −0.0004 (6) | 0.0014 (6) | 0.0025 (7) |
C16 | 0.0204 (6) | 0.0308 (7) | 0.0376 (9) | −0.0008 (6) | 0.0021 (6) | 0.0008 (7) |
N1 | 0.0243 (6) | 0.0322 (7) | 0.0425 (8) | 0.0019 (5) | 0.0077 (6) | −0.0005 (7) |
C1—C2 | 1.379 (2) | C10—C11 | 1.375 (2) |
C1—C6 | 1.382 (2) | C10—H10 | 0.95 |
C1—C7 | 1.5054 (19) | C11—C12 | 1.378 (2) |
C2—C3 | 1.392 (2) | C11—H11 | 0.95 |
C2—H2 | 0.95 | C12—C13 | 1.390 (2) |
C3—C4 | 1.372 (3) | C12—H12 | 0.95 |
C3—H3 | 0.95 | C13—H13 | 0.95 |
C4—C5 | 1.370 (2) | C14—C15 | 1.516 (2) |
C4—H4 | 0.95 | C14—H14A | 0.99 |
C5—C6 | 1.3884 (19) | C14—H14B | 0.99 |
C5—H5 | 0.95 | C15—C16 | 1.5148 (17) |
C6—H6 | 0.95 | C15—H15A | 0.99 |
C7—O2 | 1.241 (2) | C15—H15B | 0.99 |
C7—O1 | 1.2695 (19) | C16—N1 | 1.4786 (18) |
C8—C13 | 1.384 (2) | C16—H16A | 0.99 |
C8—C9 | 1.386 (2) | C16—H16B | 0.99 |
C8—C14 | 1.5131 (18) | N1—H1A | 0.997 (18) |
C9—C10 | 1.390 (2) | N1—H1B | 1.005 (18) |
C9—H9 | 0.95 | N1—H1C | 0.939 (19) |
C2—C1—C6 | 119.22 (14) | C12—C11—H11 | 120.2 |
C2—C1—C7 | 120.65 (14) | C11—C12—C13 | 119.91 (16) |
C6—C1—C7 | 120.12 (14) | C11—C12—H12 | 120 |
C1—C2—C3 | 120.20 (16) | C13—C12—H12 | 120 |
C1—C2—H2 | 119.9 | C8—C13—C12 | 121.04 (15) |
C3—C2—H2 | 119.9 | C8—C13—H13 | 119.5 |
C4—C3—C2 | 120.10 (16) | C12—C13—H13 | 119.5 |
C4—C3—H3 | 119.9 | C8—C14—C15 | 115.71 (12) |
C2—C3—H3 | 119.9 | C8—C14—H14A | 108.4 |
C5—C4—C3 | 120.03 (16) | C15—C14—H14A | 108.4 |
C5—C4—H4 | 120 | C8—C14—H14B | 108.4 |
C3—C4—H4 | 120 | C15—C14—H14B | 108.4 |
C4—C5—C6 | 120.12 (16) | H14A—C14—H14B | 107.4 |
C4—C5—H5 | 119.9 | C16—C15—C14 | 110.00 (11) |
C6—C5—H5 | 119.9 | C16—C15—H15A | 109.7 |
C1—C6—C5 | 120.32 (14) | C14—C15—H15A | 109.7 |
C1—C6—H6 | 119.8 | C16—C15—H15B | 109.7 |
C5—C6—H6 | 119.8 | C14—C15—H15B | 109.7 |
O2—C7—O1 | 123.86 (15) | H15A—C15—H15B | 108.2 |
O2—C7—C1 | 118.56 (14) | N1—C16—C15 | 111.84 (12) |
O1—C7—C1 | 117.58 (15) | N1—C16—H16A | 109.2 |
C13—C8—C9 | 118.41 (13) | C15—C16—H16A | 109.2 |
C13—C8—C14 | 118.80 (13) | N1—C16—H16B | 109.2 |
C9—C8—C14 | 122.78 (13) | C15—C16—H16B | 109.2 |
C8—C9—C10 | 120.54 (15) | H16A—C16—H16B | 107.9 |
C8—C9—H9 | 119.7 | C16—N1—H1A | 107.5 (10) |
C10—C9—H9 | 119.7 | C16—N1—H1B | 111.4 (10) |
C11—C10—C9 | 120.49 (16) | H1A—N1—H1B | 109.9 (13) |
C11—C10—H10 | 119.8 | C16—N1—H1C | 110.5 (11) |
C9—C10—H10 | 119.8 | H1A—N1—H1C | 109.8 (14) |
C10—C11—C12 | 119.60 (15) | H1B—N1—H1C | 107.7 (14) |
C10—C11—H11 | 120.2 | ||
C6—C1—C2—C3 | 0.0 (2) | C13—C8—C9—C10 | −0.4 (2) |
C7—C1—C2—C3 | −179.81 (15) | C14—C8—C9—C10 | 178.30 (15) |
C1—C2—C3—C4 | −0.3 (3) | C8—C9—C10—C11 | 1.3 (3) |
C2—C3—C4—C5 | 0.4 (3) | C9—C10—C11—C12 | −1.3 (3) |
C3—C4—C5—C6 | −0.3 (3) | C10—C11—C12—C13 | 0.5 (3) |
C2—C1—C6—C5 | 0.1 (2) | C9—C8—C13—C12 | −0.4 (2) |
C7—C1—C6—C5 | 179.93 (14) | C14—C8—C13—C12 | −179.20 (14) |
C4—C5—C6—C1 | 0.0 (3) | C11—C12—C13—C8 | 0.4 (3) |
C2—C1—C7—O2 | 172.78 (15) | C13—C8—C14—C15 | −166.73 (14) |
C6—C1—C7—O2 | −7.1 (2) | C9—C8—C14—C15 | 14.6 (2) |
C2—C1—C7—O1 | −6.9 (2) | C8—C14—C15—C16 | 179.49 (12) |
C6—C1—C7—O1 | 173.23 (14) | C14—C15—C16—N1 | −173.21 (13) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1A···O2 | 1.00 (2) | 1.85 (2) | 2.806 (2) | 161 (2) |
N1—H1B···O1i | 1.01 (2) | 1.86 (2) | 2.809 (2) | 157 (2) |
N1—H1C···O1ii | 0.94 (2) | 1.81 (2) | 2.746 (2) | 175 (2) |
Symmetry codes: (i) −x+3/2, −y+1/2, z; (ii) −x+3/2, y, z+1/2. |
C9H14N+·C7H4IO2− | F(000) = 760 |
Mr = 383.21 | Dx = 1.603 Mg m−3 |
Orthorhombic, P212121 | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: P 2ac 2ab | Cell parameters from 23461 reflections |
a = 6.9616 (2) Å | θ = 0.4–28.3° |
b = 12.8517 (3) Å | µ = 2.02 mm−1 |
c = 17.7512 (3) Å | T = 173 K |
V = 1588.17 (6) Å3 | Block, colourless |
Z = 4 | 0.38 × 0.11 × 0.1 mm |
Nonius KappaCCD area-detector diffractometer | 3826 independent reflections |
Radiation source: fine-focus sealed tube | 3554 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.044 |
0.8° ϕ and ω scans | θmax = 28°, θmin = 2.8° |
Absorption correction: integration Bruker XPREP (Bruker, 1999) | h = −9→9 |
Tmin = 0.594, Tmax = 0.845 | k = −16→16 |
22976 measured reflections | l = −23→21 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.023 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.051 | w = 1/[σ2(Fo2) + (0.0219P)2 + 0.5355P] where P = (Fo2 + 2Fc2)/3 |
S = 1.08 | (Δ/σ)max = 0.001 |
3826 reflections | Δρmax = 0.59 e Å−3 |
190 parameters | Δρmin = −0.74 e Å−3 |
0 restraints | Absolute structure: Flack (1983); 1625 Friedel pairs |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: −0.023 (18) |
C9H14N+·C7H4IO2− | V = 1588.17 (6) Å3 |
Mr = 383.21 | Z = 4 |
Orthorhombic, P212121 | Mo Kα radiation |
a = 6.9616 (2) Å | µ = 2.02 mm−1 |
b = 12.8517 (3) Å | T = 173 K |
c = 17.7512 (3) Å | 0.38 × 0.11 × 0.1 mm |
Nonius KappaCCD area-detector diffractometer | 3826 independent reflections |
Absorption correction: integration Bruker XPREP (Bruker, 1999) | 3554 reflections with I > 2σ(I) |
Tmin = 0.594, Tmax = 0.845 | Rint = 0.044 |
22976 measured reflections |
R[F2 > 2σ(F2)] = 0.023 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.051 | Δρmax = 0.59 e Å−3 |
S = 1.08 | Δρmin = −0.74 e Å−3 |
3826 reflections | Absolute structure: Flack (1983); 1625 Friedel pairs |
190 parameters | Absolute structure parameter: −0.023 (18) |
0 restraints |
Experimental. Numerical integration absorption corrections based on indexed crystal faces were applied using the XPREP routine (Bruker, 2004) |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.1344 (3) | 0.94392 (19) | 0.67079 (13) | 0.0207 (5) | |
C2 | 0.2661 (3) | 1.01649 (18) | 0.69766 (14) | 0.0222 (5) | |
H2 | 0.3968 | 1.0133 | 0.6825 | 0.027* | |
C3 | 0.2048 (4) | 1.09372 (19) | 0.74692 (14) | 0.0236 (5) | |
C4 | 0.0139 (4) | 1.0998 (2) | 0.76971 (15) | 0.0293 (6) | |
H4 | −0.0275 | 1.1539 | 0.8023 | 0.035* | |
C5 | −0.1143 (4) | 1.0259 (2) | 0.74415 (15) | 0.0312 (6) | |
H5 | −0.2441 | 1.0279 | 0.7606 | 0.037* | |
C6 | −0.0554 (3) | 0.9485 (2) | 0.69468 (14) | 0.0257 (5) | |
H6 | −0.1454 | 0.8985 | 0.6771 | 0.031* | |
C7 | 0.2006 (4) | 0.86126 (18) | 0.61550 (14) | 0.0221 (5) | |
O1 | 0.3768 (3) | 0.84991 (14) | 0.60588 (10) | 0.0286 (4) | |
O2 | 0.0719 (2) | 0.80881 (14) | 0.58230 (10) | 0.0300 (4) | |
I1 | 0.40354 (2) | 1.200055 (13) | 0.792448 (10) | 0.03146 (6) | |
C8 | 0.2291 (4) | 0.26298 (19) | 0.48336 (14) | 0.0221 (5) | |
C9 | 0.2343 (4) | 0.2586 (2) | 0.40536 (15) | 0.0303 (6) | |
H9 | 0.2383 | 0.3214 | 0.3772 | 0.036* | |
C10 | 0.2336 (4) | 0.1634 (2) | 0.36767 (16) | 0.0344 (6) | |
H10 | 0.2363 | 0.1618 | 0.3142 | 0.041* | |
C11 | 0.2289 (4) | 0.0719 (2) | 0.40755 (17) | 0.0322 (6) | |
H11 | 0.2288 | 0.0071 | 0.3818 | 0.039* | |
C12 | 0.2242 (4) | 0.0746 (2) | 0.48556 (16) | 0.0305 (6) | |
H12 | 0.2211 | 0.0116 | 0.5135 | 0.037* | |
C13 | 0.2243 (4) | 0.1693 (2) | 0.52254 (15) | 0.0268 (6) | |
H13 | 0.2209 | 0.1704 | 0.576 | 0.032* | |
C14 | 0.2270 (4) | 0.36355 (19) | 0.52730 (15) | 0.0242 (5) | |
H14A | 0.3416 | 0.3649 | 0.5603 | 0.029* | |
H14B | 0.1124 | 0.3636 | 0.5603 | 0.029* | |
C15 | 0.2251 (4) | 0.46302 (18) | 0.48080 (14) | 0.0236 (5) | |
H15A | 0.343 | 0.4664 | 0.4497 | 0.028* | |
H15B | 0.1132 | 0.4622 | 0.4464 | 0.028* | |
C16 | 0.2143 (4) | 0.55823 (19) | 0.53091 (15) | 0.0262 (5) | |
H16A | 0.0987 | 0.5535 | 0.5632 | 0.031* | |
H16B | 0.3284 | 0.5601 | 0.5642 | 0.031* | |
N1 | 0.2059 (4) | 0.65606 (17) | 0.48579 (13) | 0.0228 (4) | |
H1A | 0.185 (5) | 0.712 (2) | 0.5114 (18) | 0.034* | |
H1B | 0.109 (5) | 0.655 (2) | 0.4555 (18) | 0.034* | |
H1C | 0.307 (5) | 0.667 (2) | 0.4616 (19) | 0.034* |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0230 (13) | 0.0194 (11) | 0.0197 (11) | 0.0049 (9) | −0.0013 (9) | 0.0013 (9) |
C2 | 0.0210 (11) | 0.0225 (12) | 0.0233 (13) | 0.0020 (9) | 0.0015 (10) | 0.0025 (10) |
C3 | 0.0282 (13) | 0.0177 (12) | 0.0249 (13) | −0.0019 (11) | −0.0018 (11) | −0.0019 (10) |
C4 | 0.0321 (14) | 0.0289 (14) | 0.0269 (14) | 0.0050 (12) | 0.0024 (11) | −0.0046 (11) |
C5 | 0.0221 (13) | 0.0397 (16) | 0.0319 (13) | 0.0017 (13) | 0.0007 (13) | −0.0047 (11) |
C6 | 0.0235 (13) | 0.0276 (13) | 0.0260 (13) | 0.0009 (10) | −0.0018 (10) | −0.0014 (10) |
C7 | 0.0266 (13) | 0.0171 (12) | 0.0227 (12) | 0.0045 (10) | 0.0000 (11) | 0.0022 (9) |
O1 | 0.0227 (9) | 0.0284 (9) | 0.0348 (10) | 0.0065 (8) | 0.0045 (8) | −0.0023 (8) |
O2 | 0.0270 (9) | 0.0271 (9) | 0.0358 (9) | 0.0038 (9) | −0.0034 (8) | −0.0107 (8) |
I1 | 0.03126 (8) | 0.02426 (8) | 0.03885 (9) | −0.00373 (8) | 0.00276 (8) | −0.00771 (7) |
C8 | 0.0188 (12) | 0.0220 (12) | 0.0254 (13) | 0.0009 (10) | −0.0012 (10) | −0.0001 (10) |
C9 | 0.0382 (16) | 0.0252 (13) | 0.0275 (14) | 0.0056 (12) | −0.0003 (12) | −0.0013 (11) |
C10 | 0.0427 (16) | 0.0321 (15) | 0.0284 (14) | 0.0071 (13) | 0.0014 (13) | −0.0052 (11) |
C11 | 0.0307 (14) | 0.0234 (14) | 0.0425 (16) | 0.0004 (11) | 0.0019 (13) | −0.0069 (12) |
C12 | 0.0275 (14) | 0.0228 (13) | 0.0413 (16) | 0.0011 (11) | 0.0009 (12) | 0.0062 (11) |
C13 | 0.0255 (13) | 0.0263 (13) | 0.0287 (13) | 0.0021 (10) | 0.0011 (11) | 0.0025 (10) |
C14 | 0.0250 (13) | 0.0240 (13) | 0.0234 (12) | 0.0004 (10) | −0.0007 (10) | −0.0010 (10) |
C15 | 0.0235 (12) | 0.0200 (12) | 0.0272 (13) | 0.0006 (10) | 0.0008 (11) | −0.0013 (10) |
C16 | 0.0282 (13) | 0.0228 (13) | 0.0274 (13) | 0.0001 (11) | −0.0008 (11) | −0.0022 (10) |
N1 | 0.0210 (11) | 0.0190 (10) | 0.0283 (12) | −0.0009 (9) | 0.0014 (10) | −0.0052 (9) |
C1—C6 | 1.389 (4) | C10—C11 | 1.372 (4) |
C1—C2 | 1.392 (3) | C10—H10 | 0.95 |
C1—C7 | 1.518 (3) | C11—C12 | 1.386 (4) |
C2—C3 | 1.390 (4) | C11—H11 | 0.95 |
C2—H2 | 0.95 | C12—C13 | 1.382 (4) |
C3—C4 | 1.391 (4) | C12—H12 | 0.95 |
C3—I1 | 2.106 (3) | C13—H13 | 0.95 |
C4—C5 | 1.380 (4) | C14—C15 | 1.522 (3) |
C4—H4 | 0.95 | C14—H14A | 0.99 |
C5—C6 | 1.388 (4) | C14—H14B | 0.99 |
C5—H5 | 0.95 | C15—C16 | 1.515 (3) |
C6—H6 | 0.95 | C15—H15A | 0.99 |
C7—O1 | 1.247 (3) | C15—H15B | 0.99 |
C7—O2 | 1.267 (3) | C16—N1 | 1.492 (3) |
C8—C9 | 1.386 (4) | C16—H16A | 0.99 |
C8—C13 | 1.391 (4) | C16—H16B | 0.99 |
C8—C14 | 1.510 (3) | N1—H1A | 0.86 (3) |
C9—C10 | 1.395 (4) | N1—H1B | 0.87 (4) |
C9—H9 | 0.95 | N1—H1C | 0.84 (4) |
C6—C1—C2 | 119.6 (2) | C12—C11—H11 | 120.2 |
C6—C1—C7 | 121.1 (2) | C13—C12—C11 | 119.8 (3) |
C2—C1—C7 | 119.4 (2) | C13—C12—H12 | 120.1 |
C3—C2—C1 | 119.5 (2) | C11—C12—H12 | 120.1 |
C3—C2—H2 | 120.3 | C12—C13—C8 | 121.6 (2) |
C1—C2—H2 | 120.3 | C12—C13—H13 | 119.2 |
C2—C3—C4 | 121.1 (2) | C8—C13—H13 | 119.2 |
C2—C3—I1 | 120.22 (19) | C8—C14—C15 | 116.0 (2) |
C4—C3—I1 | 118.66 (19) | C8—C14—H14A | 108.3 |
C5—C4—C3 | 118.9 (3) | C15—C14—H14A | 108.3 |
C5—C4—H4 | 120.5 | C8—C14—H14B | 108.3 |
C3—C4—H4 | 120.5 | C15—C14—H14B | 108.3 |
C4—C5—C6 | 120.6 (3) | H14A—C14—H14B | 107.4 |
C4—C5—H5 | 119.7 | C16—C15—C14 | 111.1 (2) |
C6—C5—H5 | 119.7 | C16—C15—H15A | 109.4 |
C5—C6—C1 | 120.3 (3) | C14—C15—H15A | 109.4 |
C5—C6—H6 | 119.9 | C16—C15—H15B | 109.4 |
C1—C6—H6 | 119.8 | C14—C15—H15B | 109.4 |
O1—C7—O2 | 124.7 (2) | H15A—C15—H15B | 108 |
O1—C7—C1 | 118.0 (2) | N1—C16—C15 | 111.6 (2) |
O2—C7—C1 | 117.3 (2) | N1—C16—H16A | 109.3 |
C9—C8—C13 | 117.7 (2) | C15—C16—H16A | 109.3 |
C9—C8—C14 | 123.4 (2) | N1—C16—H16B | 109.3 |
C13—C8—C14 | 118.9 (2) | C15—C16—H16B | 109.3 |
C8—C9—C10 | 120.9 (3) | H16A—C16—H16B | 108 |
C8—C9—H9 | 119.5 | C16—N1—H1A | 115 (2) |
C10—C9—H9 | 119.5 | C16—N1—H1B | 111 (2) |
C11—C10—C9 | 120.3 (3) | H1A—N1—H1B | 102 (3) |
C11—C10—H10 | 119.9 | C16—N1—H1C | 112 (2) |
C9—C10—H10 | 119.9 | H1A—N1—H1C | 106 (3) |
C10—C11—C12 | 119.6 (3) | H1B—N1—H1C | 110 (3) |
C10—C11—H11 | 120.2 | ||
C6—C1—C2—C3 | −1.2 (4) | C2—C1—C7—O2 | −167.8 (2) |
C7—C1—C2—C3 | 178.5 (2) | C13—C8—C9—C10 | 0.3 (4) |
C1—C2—C3—C4 | −0.1 (4) | C14—C8—C9—C10 | −179.2 (3) |
C1—C2—C3—I1 | 177.07 (18) | C8—C9—C10—C11 | −0.4 (5) |
C2—C3—C4—C5 | 1.7 (4) | C9—C10—C11—C12 | 0.2 (5) |
I1—C3—C4—C5 | −175.5 (2) | C10—C11—C12—C13 | 0.0 (4) |
C3—C4—C5—C6 | −1.9 (4) | C11—C12—C13—C8 | −0.1 (4) |
C4—C5—C6—C1 | 0.6 (4) | C9—C8—C13—C12 | −0.1 (4) |
C2—C1—C6—C5 | 1.0 (4) | C14—C8—C13—C12 | 179.5 (2) |
C7—C1—C6—C5 | −178.8 (2) | C9—C8—C14—C15 | 1.7 (4) |
C6—C1—C7—O1 | −168.2 (2) | C13—C8—C14—C15 | −177.8 (2) |
C2—C1—C7—O1 | 12.1 (3) | C8—C14—C15—C16 | 177.5 (2) |
C6—C1—C7—O2 | 11.9 (3) | C14—C15—C16—N1 | −178.2 (2) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1A···O2 | 0.86 (3) | 1.94 (3) | 2.767 (3) | 161 (3) |
N1—H1B···O1i | 0.87 (4) | 1.95 (4) | 2.811 (3) | 175 (3) |
N1—H1C···O2ii | 0.84 (4) | 2.03 (4) | 2.856 (3) | 172 (3) |
Symmetry codes: (i) x−1/2, −y+3/2, −z+1; (ii) x+1/2, −y+3/2, −z+1. |
Experimental details
(I) | (II) | |
Crystal data | ||
Chemical formula | C9H14N+·C7H5O2− | C9H14N+·C7H4IO2− |
Mr | 257.32 | 383.21 |
Crystal system, space group | Orthorhombic, Pccn | Orthorhombic, P212121 |
Temperature (K) | 173 | 173 |
a, b, c (Å) | 16.2963 (2), 23.3235 (5), 7.4094 (7) | 6.9616 (2), 12.8517 (3), 17.7512 (3) |
V (Å3) | 2816.2 (3) | 1588.17 (6) |
Z | 8 | 4 |
Radiation type | Mo Kα | Mo Kα |
µ (mm−1) | 0.08 | 2.02 |
Crystal size (mm) | 0.5 × 0.13 × 0.10 | 0.38 × 0.11 × 0.1 |
Data collection | ||
Diffractometer | Nonius KappaCCD area-detector diffractometer | Nonius KappaCCD area-detector diffractometer |
Absorption correction | Integration Bruker XPREP (Bruker, 1999) | Integration Bruker XPREP (Bruker, 1999) |
Tmin, Tmax | 0.966, 0.992 | 0.594, 0.845 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 16169, 3401, 2087 | 22976, 3826, 3554 |
Rint | 0.107 | 0.044 |
(sin θ/λ)max (Å−1) | 0.661 | 0.661 |
Refinement | ||
R[F2 > 2σ(F2)], wR(F2), S | 0.049, 0.133, 0.92 | 0.023, 0.051, 1.08 |
No. of reflections | 3401 | 3826 |
No. of parameters | 181 | 190 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.20, −0.23 | 0.59, −0.74 |
Absolute structure | ? | Flack (1983); 1625 Friedel pairs |
Absolute structure parameter | ? | −0.023 (18) |
Computer programs: COLLECT (Nonius, 2000), DENZO-SMN (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and DIAMOND (Brandenburg, 1999), WinGX (Farrugia, 1999) and PLATON (Spek, 2003).
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1A···O2 | 1.00 (2) | 1.85 (2) | 2.806 (2) | 161 (2) |
N1—H1B···O1i | 1.01 (2) | 1.86 (2) | 2.809 (2) | 157 (2) |
N1—H1C···O1ii | 0.94 (2) | 1.81 (2) | 2.746 (2) | 175 (2) |
Symmetry codes: (i) −x+3/2, −y+1/2, z; (ii) −x+3/2, y, z+1/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1A···O2 | 0.86 (3) | 1.94 (3) | 2.767 (3) | 161 (3) |
N1—H1B···O1i | 0.87 (4) | 1.95 (4) | 2.811 (3) | 175 (3) |
N1—H1C···O2ii | 0.84 (4) | 2.03 (4) | 2.856 (3) | 172 (3) |
Symmetry codes: (i) x−1/2, −y+3/2, −z+1; (ii) x+1/2, −y+3/2, −z+1. |
Supramolecular heterosynthons are defined as intermolecular interactions that exist between different but compatible functional groups (Walsh et al., 2003; Bis & Zaworotko, 2005; Bis et al., 2006). If one wishes to combine two or more molecules in the solid state, heterosynthons increase the number of possible combinations when compared to homosynthons, which only occur between the same functional group. Examples of neutral heterosynthons are the carboxylic acid–pyridine and carboxylic acid–amide dimers (Aakerōy & Schultheiss, 2007).
One of the aims of supramolecular chemistry is to identify and exploit those heterosynthons that behave predictably in the solid state. Desiraju and others have called the phenomenon of predictability `synthon robustness', with respect to those synthons that occur repeatedly in crystal structures (Banerjee, Mondal et al., 2006). If the intermolecular interaction is between charged species, the electrostatic attractive force strengthens the heterosynthon and a greater robustness is expected (Banerjee, Saha et al., 2006). Robustness of a heterosynthon refers to how a desired synthon changes under the influence of steric or electronic effects of functional groups on the molecules interacting in the crystal structures. To this end, we have investigated the heterosynthon formed between carboxylic acids and amines. More specifically, the compounds we have used all transfer the carboxylic acid proton to the amine to form ammonium carboxylate salts (Lemmerer et al., 2008a,b,c).
A data analysis of (R—NH3+).(R'—CO2-) ammonium carboxylate salt structures in the Cambridge Structural Database (CSD, Ver. 5.29, November 2007 release; Allen, 2002) revealed the three most frequently occurring heterosynthons described using graph set notation (Bernstein et al., 1995): one-dimensional columns of R34(10) hydrogen-bonded rings (75/126), one-dimensional columns of alternating R24(8) and R44(12) hydrogen-bonded rings (26/126) and two-dimensional layers built up with R56(16) hydrogen-bonded rings (19/126) (Lemmerer et al., 2008b). The one-dimensional columns of R34(10) rings are also called type-II columns by Kinbara et al. (1996) and are shown schematically in Fig. 1. In fact, this motif occurs even more frequently with increasing robustness if the cation containing the ammonium group is chiral, such as 1-phenylethylammonium. In those ammonium carboxylate salts, the type-II heterosynthon is formed in 69 out of 83 structures located in the CSD. This paper describes an attempt to determine if the type-II motif occurs in a related salt using achiral 3-phenylpropylammonium as the cation and benzoate and 3-iodobenzoate as the anion.
The molecular structure and atomic numbering scheme of (I) are shown in Fig. 2(a). The asymmetric unit consists of one 3-phenylpropylammonium cation and one benzoate anion. The propylammonium chain is parallel to the aromatic ring, with the mean deviation of a least-squares plane less than 0.209 (1) Å. The ammonium group forms three charge-assisted N—H···O hydrogen bonds to the benzoate group. H atoms H1A and H1B form a 12-membered hydrogen-bonded ring, R44(12), connecting two cations and two anions. This ring is parallel to the ab plane. Adjacent R44(12) rings are joined through a hydrogen bond from H1C to O2 in the direction of the crystallographic c axis (Fig. 3). This means that O2 functions as a bifurcated hydrogen-bond acceptor. Ultimately, this results in one-dimensional hydrogen-bonded columns made up of four cations and four anions. Compound (I) does not form the type-II column. Adjacent columns are connected via a C—H···π interaction from the cation of adjacent columns (C14—H14A···Cg; d = 2.64 Å, D = 3.563 (2) Å, θ = 155°) [Cg is the centroid of the benzoate ring C1–C6 at (1-x,1-y,1-z)].
The molecular structure and atomic numbering scheme of the asymmetric unit of (II) are shown in Fig. 2(b). The molecular geometries of the propylammonium cation and 3-iodobenzoate anion are similar to (I). The ammonium group forms three charge-asisted hydrogen bonds to form a ring, graph set notation R34(10), consisting of two ammonium cations and two carboxylate anions, one involving both O atoms, O1 and O2, and the second involving only the O1 atom (see Fig. 1). This hydrogen-bonded pattern has translational symmetry via a twofold screw axis inherent in the space group and is repeated along the a axis [6.9616 (2) Å]. All three ammonium H atoms are used to form the ring and O2 acts as a bifurcated hydrogen-bond acceptor. Compound (II) thus forms the type-II hydrogen-bonded column with two cations and two anions (Fig. 4). The columns are connected by a pair of C—H···π interactions through both H atoms on the benzylic position to the aromatic ring of adjacent cations [C14A—H14A···Cgi: d = 2.73 Å, D = 3.550 (3) Å, θ = 141°; C14B—H14B···Cgii: d = 2.70 Å, D =3.522 (3) Å, θ = 141°] (Fig. 5) [Cgi and Cgii are the centroids of the m-iodobenzoate ring C1–C6 at (1/2+x,1/2-y,1-z) and at (-1/2+x,1/2-y,1-z), respectively]. Adjacent columns are further stabilized by a C3—I1···O1iii [iii is equivalent position (1-x,1/2+y,3/2-z)] halogen bond (Ramasubbu et al., 1986; Corradi et al., 2000; Aakerōy et al., 2007) with d(I1···O1) = 3.050 (2) Å, θ (C3—I1···O1) = 165.04 (8)° along the [011] and [01-1] directions to create a chicken-wire shaped mesh of columns (Fig. 5).
Both compounds (I) and (II) do not contain a cation or anion that is chiral and the type-II synthon is not formed in (I). However, the I atom attached to the anion in (II) causes the type-II column to be formed and crystallizes in the chiral spacegroup P212121. In supramolecular chemistry, the creation of chiral crystals from constituents that do not possess a chirality centre is a much studied phenomenon (Mateos-Timoneda et al., 2004). Chiral helices are created when the molecules interact to create an arrangement with 21 symmetry (Tanaka et al., 2007). The type-II supramolecular heterosynthon of (II) is such a `helical' generating interaction (Koshima, 2000).