Supporting information
Crystallographic Information File (CIF) https://doi.org/10.1107/S2053229614004021/fn3162sup1.cif | |
Structure factor file (CIF format) https://doi.org/10.1107/S2053229614004021/fn3162Isup2.hkl |
CCDC reference: 988088
Over the last few decades, the synthesis of transition metal phosphates with open-framework structures has been an area of intense research due to their potential applications in catalysis, adsorption, ionic conduction, ion exchange, magnetism and electronics (Cheetham et al., 1999). More recently, it became apparent that the phosphite group, (HPO3)2-, which is closely related to the tetrahedral phosphate group, (PO4)3-, can also be incorporated as a basic building unit of the framework structure. In this hydrogen phosphite group, the P atom remains in a low oxidation state of +3 and the group has trigonal pyramidal geometry. A careful study of the literature clearly shows that since the first organically templated vanadium phosphite with an open framework was isolated (Bonavia et al., 1995), the family of transition metal phosphites has grown rapidly and numerous compounds with interesting diversity have been reported (Natarajan & Mandal, 2008; Rojo et al., 2009). However, compared with the related phosphates, iron phosphites have not been studied widely and only a few iron phosphites with two- (Chung et al., 2004; Hamchaoui, Alonzo et al., 2013 or Hamchaoui, Rebbah & Le Fur, 2013 ?) and three-dimensional (Sghyar et al., 1991; Poojary et al., 1994; Attfield et al., 1994; Fan et al., 2005; Liu et al., 2005; Chung et al., 2006; Mandal et al., 2008; Chung et al., 2011) structures have been synthesized and characterized. Among them, only a few contain iron in both valence states. In order to enlarge the phosphite materials family incorporating metallic magnetic cations belonging to the first series of transition elements, particularly in the presence of a second metal atom, our work has focused on the alkali metal–iron–phosphite acid system. During our investigations, we obtained the title compound, K6[Fe8.27(HPO3)12], using hydrothermal treatment and autogenous pressure.
K6[Fe8.27(HPO3)12] was synthesized by a hydrothermal method. A mixture of FeSO4.7H2O (Merck, 99.5%), H3PO3 (Aldrich, 99%), K2CO3 (Merck, 99%) and deionized water in a 0.2:1.5:0.8:28 molar ratio was placed in a Teflon acid digestion bomb (23 ml, Parr Instruments), heated at 453 K for 72 h and cooled slowly to room temperature. The product obtained was filtered off, washed with deionized water and dried in a desiccator. Medium dark-grey crystals were selected for the structural study. Comparison of the X-ray powder diffraction pattern of the synthesized product with that simulated from the structure of K6[Fe8.27(HPO3)12] revealed that the title compound as obtained is not pure.
Crystal data, data collection and structure refinement details are summarized in Table 1. Both H atoms were located from a Fourier difference map and their Uiso(H) values were constrained to be 1.2Ueq of the attached P atom.
The crystal structure of K6[Fe8.27(HPO3)12] consists of a two-dimensional framework built up from iron cations adopting an octahedral environment and PIII cations exhibiting pseudotetrahedral geometry. As shown in Fig. 1, there are two crystallographically independent Fe atoms in the asymmetric unit of the title compound. They occupy two different special sites; the Fe2 site is fully occupied, whereas the Fe1 site presents an occupational disorder with an occupancy of 0.757. The O atoms are located on three special positions (18h); the O1 site is fully occupied, and atoms O2A and O2B present positional disorder with occupancies of 0.757 and 0.243, respectively. Six O atoms define an octahedral geometry around the metallic centre, while three O atoms and one H atom define the pseudotetrahedral environment of the P atom. The connection of the Fe1(O2A)6 and Fe2(O1)3(O2A)3 octahedra by face-sharing forms a linear Fe3O12 trimer unit, where atom Fe1 is located at the centre and atom Fe2 at the extremes. The phosphite groups link these trimeric entities through the O atoms (Fig. 2a), leading to [Fe3(HPO3)4]2- layers which propagate in the ab plane (Fig. 2b). This kind of layering has been encountered in some transition metal phosphites (Fernandez et al., 2000, 2001; Chung et al., 2004; Hamchaoui et al., 2009; Duan et al., 2013).
To continue the structural description of the title compound, we can assume that the absence of the Fe1 atom, due to the partial occupancy of its site, leads to the formation of two [Fe(HPO3)2]- layers (Fig. 2c) instead of the [Fe3(HPO3)4]2- triple layer. Such monolayers have also previously been observed in some phosphite compounds (Li et al., 2013; Wang et al., 2013; Hamchaoui, Alonzo et al., 2013; Hamchaoui, Rebbah & Le Fur, 2013). Each isolated Fe2O6 octahedron then shares its six apices with hydrogen phosphite groups. Reciprocally, each HPO3 trigonal pyramid shares all its O atoms with three different metallic centres. Finally, the association of FeO6 and HPO3 polyhedra leads to a layered structure formed by sheets of [Fe3(HPO3)4]2- and [Fe(HPO3)2]- formula units stacked in a disordered way along the c axis (Fig. 3). While these anionic sheets are known separately, the title compound is the first example with the simultaneous presence of both.
The K+ cations are located between the [Fe3(HPO3)4]2- layers, and between the [Fe3(HPO3)4]2- and [Fe(HPO3)2]- layers, compensating their negative charge. They are in ninefold coordination sites, with interactions to six nearest-neighbour O atoms from one layer and three further ones from an adjacent layer (Fig. 4). The coordination environment adopted by the alkali cation is supported by bond-valence sum (BVS) calculations (Brown & Altermatt, 1985) which give a value of 1.27 valence units (v.u.) for K.
The formation of the mixed-valence iron phosphite indicates the partial oxidation of this metal during the reaction. The BVS calculations give an oxidation state of 1.94 for atom Fe1. As mentioned above, a statistical disorder is observed on two O atoms (O2A and O2B) surrounding atom Fe2. These two atoms cannot be present at the same time, due to very short O2A—O2B distance (calculated distance of ca 0.5 Å). Consequently, two distinct octahedral environments can be defined for Fe2: Fe2(O1)3(O2A)3 and Fe2(O1)3(O2B)3, for which the BVS values are 2.04 and 2.88 v.u., respectively. A mean value of 2.25 can be estimated for Fe2, considering the occupancy factors of atoms O2A and O2B. As described previously, when atom O2A is present the trimeric [Fe3(HPO3)4]2- layer is observed with divalent iron (FeII) and when O2B is present [Fe(HPO3)2]- monolayers with trivalent iron (FeIII) are observed, in agreement with the literature. The disordered situation in the title structure is extended to one phosphite group, in which atom P2 is surrounded statistically by atoms O2A and O2B, while no disorder is observed around atom P1.
It is interesting to mention that transition metal phosphites showing the same [M3(HPO3)4]2- sheets as exhibited by the title compound, viz. the two purely inorganic phosphite compounds, K2[Mn3(HPO3)4] and (H3O)2[Co3(HPO3)]4 (Duan et al., 2013), are isotypic with K6[Fe8.27(HPO3)12], neglecting disorder in the cobalt and iron phosphites. In the other A[M3(HPO3)4] compounds [A = C2H10N2 (name?) and M = Mn (Fernandez et al., 2000); A = C3H12N2 (name?) and M = Mn (Fernandez et al., 2001); A = C2H10N2 (name?) and M = Co (Fernandez et al., 2001); A = C2H10N2 (name?) and M = Fe (Chung et al., 2004)], the absence of the threefold axis, due to the geometry of the intercalated cations in the interlayer space, leads to lower symmetries compared with the trigonal symmetry obtained with the presence of K+ or H3O+ cations in the structure. The A[M(HPO3)2] phosphite compounds [A = H3O+ and M = In (Li et al., 2013); A = Rb and M = In (Wang et al., 2013); A = K, NH4 and Rb, and M = V and Fe (Hamchaoui, Alonzo et al., 2013; OR Hamchaoui, Rebbah & Le Fur, 2013); A = NH4 and M = In (Hamchaoui, Alonzo et al., 2013; OR Hamchaoui, Rebbah & Le Fur, 2013)] showing the same [M(HPO3)2]- sheets as exhibited by the title compound are all isotypic and their structures are described in the hexagonal P63mc space group. Finally, the potassium-ion environment described here compares favourably with those observed for K[M(HPO3)2] (M = V and Fe) and K2[Mn3(HPO3)4].
Data collection: COLLECT (Nonius, 1998); cell refinement: DIRAX/LSQ (Duisenberg et al., 2000); data reduction: EVALCCD (Duisenberg et al., 2003); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXL97 (Sheldrick, 2008); software used to prepare material for publication: WinGX (Farrugia, 2012).
K6[Fe8.27(HPO3)12] | Dx = 3.164 Mg m−3 |
Mr = 1656.18 | Mo Kα radiation, λ = 0.71073 Å |
Trigonal, R3m | Cell parameters from 1362 reflections |
Hall symbol: -R 3 2" | θ = 2.9–42.1° |
a = 5.3822 (1) Å | µ = 4.75 mm−1 |
c = 34.6521 (8) Å | T = 293 K |
V = 869.32 (3) Å3 | Prism, dark grey |
Z = 1 | 0.08 × 0.05 × 0.05 mm |
F(000) = 809 |
Nonius KappaCCD area-detector diffractometer | 633 reflections with I > 2σ(I) |
CCD rotation images, thick slices scans | Rint = 0.032 |
Absorption correction: multi-scan (SADABS; Sheldrick, 2002) | θmax = 40.0°, θmin = 3.5° |
Tmin = 0.684, Tmax = 0.789 | h = −9→9 |
6203 measured reflections | k = −9→9 |
748 independent reflections | l = −62→58 |
Refinement on F2 | Only H-atom coordinates refined |
Least-squares matrix: full | w = 1/[σ2(Fo2) + (0.0469P)2 + 0.4877P] where P = (Fo2 + 2Fc2)/3 |
R[F2 > 2σ(F2)] = 0.027 | (Δ/σ)max < 0.001 |
wR(F2) = 0.070 | Δρmax = 1.69 e Å−3 |
S = 1.01 | Δρmin = −1.07 e Å−3 |
748 reflections | Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
33 parameters | Extinction coefficient: 0.0017 (5) |
2 restraints |
K6[Fe8.27(HPO3)12] | Z = 1 |
Mr = 1656.18 | Mo Kα radiation |
Trigonal, R3m | µ = 4.75 mm−1 |
a = 5.3822 (1) Å | T = 293 K |
c = 34.6521 (8) Å | 0.08 × 0.05 × 0.05 mm |
V = 869.32 (3) Å3 |
Nonius KappaCCD area-detector diffractometer | 748 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 2002) | 633 reflections with I > 2σ(I) |
Tmin = 0.684, Tmax = 0.789 | Rint = 0.032 |
6203 measured reflections |
R[F2 > 2σ(F2)] = 0.027 | 2 restraints |
wR(F2) = 0.070 | Only H-atom coordinates refined |
S = 1.01 | Δρmax = 1.69 e Å−3 |
748 reflections | Δρmin = −1.07 e Å−3 |
33 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Fe1 | 0 | 0 | 0 | 0.01012 (18) | 0.757 (3) |
Fe2 | 0 | 0 | 0.083444 (11) | 0.00926 (10) | |
P1 | 0.3333 | 0.6667 | 0.10603 (2) | 0.00972 (13) | |
H1 | 0.3333 | 0.6667 | 0.0658 (5) | 0.012* | |
P2 | 0.6667 | 0.3333 | 0.03222 (2) | 0.01131 (14) | |
H2 | 0.6667 | 0.3333 | −0.0081 (5) | 0.014* | |
O1 | 0.17710 (13) | 0.3542 (3) | 0.11944 (3) | 0.0143 (2) | |
O2A | 0.3501 (4) | 0.17506 (18) | 0.04047 (5) | 0.0133 (3) | 0.757 (3) |
O2B | 0.3719 (12) | 0.1860 (6) | 0.05498 (18) | 0.0133 (3) | 0.243 (3) |
K1 | 0.6667 | 0.3333 | 0.14646 (2) | 0.01822 (14) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Fe1 | 0.0096 (2) | 0.0096 (2) | 0.0112 (3) | 0.00480 (11) | 0 | 0 |
Fe2 | 0.00826 (12) | 0.00826 (12) | 0.01126 (17) | 0.00413 (6) | 0 | 0 |
P1 | 0.00850 (18) | 0.00850 (18) | 0.0122 (2) | 0.00425 (9) | 0 | 0 |
P2 | 0.00945 (18) | 0.00945 (18) | 0.0150 (3) | 0.00473 (9) | 0 | 0 |
O1 | 0.0148 (4) | 0.0095 (5) | 0.0169 (4) | 0.0048 (2) | 0.00020 (19) | 0.0004 (4) |
O2A | 0.0073 (5) | 0.0139 (4) | 0.0164 (8) | 0.0036 (3) | −0.0017 (6) | −0.0009 (3) |
O2B | 0.0073 (5) | 0.0139 (4) | 0.0164 (8) | 0.0036 (3) | −0.0017 (6) | −0.0009 (3) |
K1 | 0.01617 (18) | 0.01617 (18) | 0.0223 (3) | 0.00808 (9) | 0 | 0 |
Fe1—O2Ai | 2.1517 (18) | P1—K1 | 3.4087 (4) |
Fe1—O2A | 2.1517 (18) | P1—H1 | 1.392 (19) |
Fe1—O2Aii | 2.1517 (18) | P2—O2Axi | 1.5029 (16) |
Fe1—O2Aiii | 2.1517 (18) | P2—O2A | 1.5029 (16) |
Fe1—O2Aiv | 2.1517 (18) | P2—O2Axii | 1.5029 (16) |
Fe1—O2Av | 2.1517 (18) | P2—O2Bxi | 1.584 (6) |
Fe1—Fe2 | 2.8915 (4) | P2—O2Bxii | 1.584 (6) |
Fe1—Fe2i | 2.8915 (4) | P2—O2B | 1.584 (6) |
Fe2—O2Bv | 1.995 (6) | P2—H2 | 1.396 (18) |
Fe2—O2Biv | 1.995 (6) | O1—K1vii | 2.8510 (4) |
Fe2—O2B | 1.995 (6) | O1—K1 | 2.8510 (4) |
Fe2—O1 | 2.0692 (12) | O1—K1vi | 2.8612 (13) |
Fe2—O1iv | 2.0692 (12) | O2A—O2B | 0.513 (5) |
Fe2—O1v | 2.0692 (12) | K1—O1v | 2.8510 (4) |
Fe2—O2Av | 2.2093 (17) | K1—O1xiii | 2.8510 (4) |
Fe2—O2Aiv | 2.2093 (17) | K1—O1xi | 2.8510 (4) |
Fe2—O2A | 2.2093 (17) | K1—O1ix | 2.8510 (4) |
Fe2—K1vi | 3.5842 (8) | K1—O1xii | 2.8510 (4) |
Fe2—K1vii | 3.7979 (4) | K1—O1xiv | 2.8612 (13) |
P1—O1viii | 1.5288 (12) | K1—O1vi | 2.8612 (13) |
P1—O1ix | 1.5288 (12) | K1—O1xv | 2.8612 (13) |
P1—O1 | 1.5288 (12) | K1—K1xvi | 3.4084 (6) |
P1—K1x | 3.4087 (4) | K1—K1xvii | 3.4085 (6) |
P1—K1vii | 3.4087 (4) | K1—K1vi | 3.4085 (6) |
O2Ai—Fe1—O2A | 180.00 (9) | O1—P1—H1 | 107.70 (5) |
O2Ai—Fe1—O2Aii | 82.12 (7) | K1x—P1—H1 | 114.269 (15) |
O2A—Fe1—O2Aii | 97.88 (7) | K1vii—P1—H1 | 114.269 (15) |
O2Ai—Fe1—O2Aiii | 82.12 (7) | K1—P1—H1 | 114.269 (15) |
O2A—Fe1—O2Aiii | 97.88 (7) | O2Axi—P2—O2A | 116.47 (5) |
O2Aii—Fe1—O2Aiii | 82.12 (7) | O2Axi—P2—O2Axii | 116.47 (5) |
O2Ai—Fe1—O2Aiv | 97.88 (7) | O2A—P2—O2Axii | 116.47 (5) |
O2A—Fe1—O2Aiv | 82.12 (7) | O2Axi—P2—O2Bxi | 18.89 (19) |
O2Aii—Fe1—O2Aiv | 180.00 (8) | O2A—P2—O2Bxi | 109.34 (13) |
O2Aiii—Fe1—O2Aiv | 97.88 (7) | O2Axii—P2—O2Bxi | 109.34 (13) |
O2Ai—Fe1—O2Av | 97.88 (7) | O2Axi—P2—O2Bxii | 109.34 (13) |
O2A—Fe1—O2Av | 82.12 (7) | O2A—P2—O2Bxii | 109.34 (13) |
O2Aii—Fe1—O2Av | 97.88 (7) | O2Axii—P2—O2Bxii | 18.89 (19) |
O2Aiii—Fe1—O2Av | 180.00 (9) | O2Bxi—P2—O2Bxii | 97.4 (3) |
O2Aiv—Fe1—O2Av | 82.12 (7) | O2Axi—P2—O2B | 109.34 (13) |
O2Ai—Fe1—Fe2 | 130.67 (5) | O2A—P2—O2B | 18.89 (19) |
O2A—Fe1—Fe2 | 49.33 (5) | O2Axii—P2—O2B | 109.34 (13) |
O2Aii—Fe1—Fe2 | 130.67 (5) | O2Bxi—P2—O2B | 97.4 (3) |
O2Aiii—Fe1—Fe2 | 130.67 (5) | O2Bxii—P2—O2B | 97.4 (3) |
O2Aiv—Fe1—Fe2 | 49.33 (5) | O2Axi—P2—H2 | 100.96 (8) |
O2Av—Fe1—Fe2 | 49.33 (5) | O2A—P2—H2 | 100.96 (8) |
O2Ai—Fe1—Fe2i | 49.33 (5) | O2Axii—P2—H2 | 100.96 (8) |
O2A—Fe1—Fe2i | 130.67 (5) | O2Bxi—P2—H2 | 119.9 (2) |
O2Aii—Fe1—Fe2i | 49.33 (5) | O2Bxii—P2—H2 | 119.9 (2) |
O2Aiii—Fe1—Fe2i | 49.33 (5) | O2B—P2—H2 | 119.9 (2) |
O2Aiv—Fe1—Fe2i | 130.67 (5) | P1—O1—Fe2 | 125.23 (7) |
O2Av—Fe1—Fe2i | 130.67 (5) | P1—O1—K1vii | 97.61 (3) |
Fe2—Fe1—Fe2i | 180 | Fe2—O1—K1vii | 99.83 (3) |
O2Bv—Fe2—O2Biv | 97.6 (2) | P1—O1—K1 | 97.61 (3) |
O2Bv—Fe2—O2B | 97.6 (2) | Fe2—O1—K1 | 99.83 (3) |
O2Biv—Fe2—O2B | 97.6 (2) | K1vii—O1—K1 | 141.44 (5) |
O2Bv—Fe2—O1 | 172.57 (18) | P1—O1—K1vi | 142.94 (7) |
O2Biv—Fe2—O1 | 87.21 (13) | Fe2—O1—K1vi | 91.83 (4) |
O2B—Fe2—O1 | 87.21 (13) | K1vii—O1—K1vi | 73.27 (2) |
O2Bv—Fe2—O1iv | 87.21 (13) | K1—O1—K1vi | 73.27 (2) |
O2Biv—Fe2—O1iv | 87.21 (13) | O2B—O2A—P2 | 89.5 (7) |
O2B—Fe2—O1iv | 172.57 (18) | O2B—O2A—Fe1 | 142.1 (7) |
O1—Fe2—O1iv | 87.42 (5) | P2—O2A—Fe1 | 128.37 (11) |
O2Bv—Fe2—O1v | 87.21 (13) | O2B—O2A—Fe2 | 59.0 (7) |
O2Biv—Fe2—O1v | 172.57 (18) | P2—O2A—Fe2 | 148.58 (12) |
O2B—Fe2—O1v | 87.21 (13) | Fe1—O2A—Fe2 | 83.05 (6) |
O1—Fe2—O1v | 87.42 (5) | O2A—O2B—P2 | 71.6 (7) |
O1iv—Fe2—O1v | 87.42 (5) | O2A—O2B—Fe2 | 108.2 (8) |
O2Bv—Fe2—O2Av | 12.74 (16) | P2—O2B—Fe2 | 179.8 (4) |
O2Biv—Fe2—O2Av | 89.29 (15) | O1v—K1—O1xiii | 109.77 (2) |
O2B—Fe2—O2Av | 89.29 (15) | O1v—K1—O1xi | 52.51 (5) |
O1—Fe2—O2Av | 174.69 (6) | O1xiii—K1—O1xi | 60.20 (5) |
O1iv—Fe2—O2Av | 96.41 (4) | O1v—K1—O1ix | 109.77 (2) |
O1v—Fe2—O2Av | 96.41 (4) | O1xiii—K1—O1ix | 109.77 (2) |
O2Bv—Fe2—O2Aiv | 89.29 (15) | O1xi—K1—O1ix | 141.44 (5) |
O2Biv—Fe2—O2Aiv | 12.74 (16) | O1v—K1—O1xii | 141.44 (5) |
O2B—Fe2—O2Aiv | 89.29 (15) | O1xiii—K1—O1xii | 52.51 (5) |
O1—Fe2—O2Aiv | 96.41 (4) | O1xi—K1—O1xii | 109.77 (2) |
O1iv—Fe2—O2Aiv | 96.41 (4) | O1ix—K1—O1xii | 60.20 (5) |
O1v—Fe2—O2Aiv | 174.69 (6) | O1v—K1—O1 | 60.20 (5) |
O2Av—Fe2—O2Aiv | 79.54 (7) | O1xiii—K1—O1 | 141.44 (5) |
O2Bv—Fe2—O2A | 89.29 (15) | O1xi—K1—O1 | 109.77 (2) |
O2Biv—Fe2—O2A | 89.29 (15) | O1ix—K1—O1 | 52.51 (5) |
O2B—Fe2—O2A | 12.74 (16) | O1xii—K1—O1 | 109.77 (2) |
O1—Fe2—O2A | 96.41 (4) | O1v—K1—O1xiv | 136.892 (19) |
O1iv—Fe2—O2A | 174.69 (6) | O1xiii—K1—O1xiv | 77.68 (4) |
O1v—Fe2—O2A | 96.41 (4) | O1xi—K1—O1xiv | 106.73 (2) |
O2Av—Fe2—O2A | 79.54 (7) | O1ix—K1—O1xiv | 106.73 (2) |
O2Aiv—Fe2—O2A | 79.54 (7) | O1xii—K1—O1xiv | 77.68 (4) |
O2Bv—Fe2—Fe1 | 60.36 (17) | O1—K1—O1xiv | 136.892 (19) |
O2Biv—Fe2—Fe1 | 60.36 (17) | O1v—K1—O1vi | 77.68 (4) |
O2B—Fe2—Fe1 | 60.36 (17) | O1xiii—K1—O1vi | 106.73 (2) |
O1—Fe2—Fe1 | 127.07 (3) | O1xi—K1—O1vi | 77.68 (4) |
O1iv—Fe2—Fe1 | 127.07 (3) | O1ix—K1—O1vi | 136.892 (19) |
O1v—Fe2—Fe1 | 127.07 (3) | O1xii—K1—O1vi | 136.892 (19) |
O2Av—Fe2—Fe1 | 47.62 (5) | O1—K1—O1vi | 106.73 (2) |
O2Aiv—Fe2—Fe1 | 47.62 (5) | O1xiv—K1—O1vi | 59.96 (4) |
O2A—Fe2—Fe1 | 47.62 (5) | O1v—K1—O1xv | 106.73 (2) |
O2Bv—Fe2—K1vi | 119.64 (17) | O1xiii—K1—O1xv | 136.892 (19) |
O2Biv—Fe2—K1vi | 119.64 (17) | O1xi—K1—O1xv | 136.892 (19) |
O2B—Fe2—K1vi | 119.64 (17) | O1ix—K1—O1xv | 77.68 (4) |
O1—Fe2—K1vi | 52.93 (3) | O1xii—K1—O1xv | 106.73 (2) |
O1iv—Fe2—K1vi | 52.93 (3) | O1—K1—O1xv | 77.68 (4) |
O1v—Fe2—K1vi | 52.93 (3) | O1xiv—K1—O1xv | 59.96 (4) |
O2Av—Fe2—K1vi | 132.38 (5) | O1vi—K1—O1xv | 59.96 (4) |
O2Aiv—Fe2—K1vi | 132.38 (5) | O1v—K1—K1xvi | 95.96 (2) |
O2A—Fe2—K1vi | 132.38 (5) | O1xiii—K1—K1xvi | 53.50 (2) |
Fe1—Fe2—K1vi | 180 | O1xi—K1—K1xvi | 53.50 (2) |
O2Bv—Fe2—K1vii | 129.79 (7) | O1ix—K1—K1xvi | 153.61 (2) |
O2Biv—Fe2—K1vii | 64.74 (17) | O1xii—K1—K1xvi | 95.96 (2) |
O2B—Fe2—K1vii | 129.79 (7) | O1—K1—K1xvi | 153.61 (2) |
O1—Fe2—K1vii | 47.701 (10) | O1xiv—K1—K1xvi | 53.229 (15) |
O1iv—Fe2—K1vii | 47.701 (10) | O1vi—K1—K1xvi | 53.229 (15) |
O1v—Fe2—K1vii | 107.83 (4) | O1xv—K1—K1xvi | 100.98 (4) |
O2Av—Fe2—K1vii | 133.609 (10) | O1v—K1—K1xvii | 153.61 (2) |
O2Aiv—Fe2—K1vii | 77.48 (5) | O1xiii—K1—K1xvii | 95.96 (2) |
O2A—Fe2—K1vii | 133.609 (10) | O1xi—K1—K1xvii | 153.61 (2) |
Fe1—Fe2—K1vii | 125.096 (9) | O1ix—K1—K1xvii | 53.50 (2) |
K1vi—Fe2—K1vii | 54.903 (9) | O1xii—K1—K1xvii | 53.50 (2) |
O1viii—P1—O1ix | 111.18 (5) | O1—K1—K1xvii | 95.96 (2) |
O1viii—P1—O1 | 111.18 (5) | O1xiv—K1—K1xvii | 53.228 (15) |
O1ix—P1—O1 | 111.18 (5) | O1vi—K1—K1xvii | 100.98 (4) |
O1viii—P1—K1x | 56.000 (16) | O1xv—K1—K1xvii | 53.228 (15) |
O1ix—P1—K1x | 56.000 (16) | K1xvi—K1—K1xvii | 104.28 (2) |
O1—P1—K1x | 138.03 (6) | O1v—K1—K1vi | 53.50 (2) |
O1viii—P1—K1vii | 56.000 (16) | O1xiii—K1—K1vi | 153.61 (2) |
O1ix—P1—K1vii | 138.03 (6) | O1xi—K1—K1vi | 95.96 (2) |
O1—P1—K1vii | 56.000 (16) | O1ix—K1—K1vi | 95.96 (2) |
K1x—P1—K1vii | 104.275 (17) | O1xii—K1—K1vi | 153.61 (2) |
O1viii—P1—K1 | 138.03 (6) | O1—K1—K1vi | 53.50 (2) |
O1ix—P1—K1 | 56.000 (16) | O1xiv—K1—K1vi | 100.98 (4) |
O1—P1—K1 | 56.000 (16) | O1vi—K1—K1vi | 53.228 (15) |
K1x—P1—K1 | 104.275 (17) | O1xv—K1—K1vi | 53.228 (15) |
K1vii—P1—K1 | 104.275 (17) | K1xvi—K1—K1vi | 104.29 (2) |
O1viii—P1—H1 | 107.70 (5) | K1xvii—K1—K1vi | 104.28 (2) |
O1ix—P1—H1 | 107.70 (5) |
Symmetry codes: (i) −x, −y, −z; (ii) y, −x+y, −z; (iii) x−y, x, −z; (iv) −y, x−y, z; (v) −x+y, −x, z; (vi) −x+2/3, −y+1/3, −z+1/3; (vii) x−1, y, z; (viii) −x+y, −x+1, z; (ix) −y+1, x−y+1, z; (x) x, y+1, z; (xi) −y+1, x−y, z; (xii) −x+y+1, −x+1, z; (xiii) x+1, y, z; (xiv) y+2/3, −x+y+1/3, −z+1/3; (xv) x−y+2/3, x+1/3, −z+1/3; (xvi) −x+5/3, −y+1/3, −z+1/3; (xvii) −x+5/3, −y+4/3, −z+1/3. |
Experimental details
Crystal data | |
Chemical formula | K6[Fe8.27(HPO3)12] |
Mr | 1656.18 |
Crystal system, space group | Trigonal, R3m |
Temperature (K) | 293 |
a, c (Å) | 5.3822 (1), 34.6521 (8) |
V (Å3) | 869.32 (3) |
Z | 1 |
Radiation type | Mo Kα |
µ (mm−1) | 4.75 |
Crystal size (mm) | 0.08 × 0.05 × 0.05 |
Data collection | |
Diffractometer | Nonius KappaCCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 2002) |
Tmin, Tmax | 0.684, 0.789 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 6203, 748, 633 |
Rint | 0.032 |
(sin θ/λ)max (Å−1) | 0.904 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.027, 0.070, 1.01 |
No. of reflections | 748 |
No. of parameters | 33 |
No. of restraints | 2 |
H-atom treatment | Only H-atom coordinates refined |
Δρmax, Δρmin (e Å−3) | 1.69, −1.07 |
Computer programs: COLLECT (Nonius, 1998), DIRAX/LSQ (Duisenberg et al., 2000), EVALCCD (Duisenberg et al., 2003), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), WinGX (Farrugia, 2012).
Fe1—O2A | 2.1517 (18) | P1—H1 | 1.392 (19) |
Fe1—Fe2 | 2.8915 (4) | P2—O2A | 1.5029 (16) |
Fe2—O2B | 1.995 (6) | P2—O2B | 1.584 (6) |
Fe2—O1 | 2.0692 (12) | P2—H2 | 1.396 (18) |
Fe2—O2A | 2.2093 (17) | O1—K1 | 2.8510 (4) |
P1—O1 | 1.5288 (12) | K1—O1i | 2.8612 (13) |
O2Aii—Fe1—O2A | 180.00 (9) | O1v—Fe2—O2A | 174.69 (6) |
O2Aii—Fe1—O2Aiii | 82.12 (7) | O2Av—Fe2—O2A | 79.54 (7) |
O2A—Fe1—O2Aiii | 97.88 (7) | O1vi—P1—O1 | 111.18 (5) |
Fe2—Fe1—Fe2ii | 180 | O1—P1—H1 | 107.70 (5) |
O2Biv—Fe2—O2B | 97.6 (2) | O2Avii—P2—O2A | 116.47 (5) |
O2Biv—Fe2—O1 | 172.57 (18) | O2Bviii—P2—O2B | 97.4 (3) |
O1—Fe2—O1iv | 87.42 (5) | O2A—P2—H2 | 100.96 (8) |
O1—Fe2—O2A | 96.41 (4) | O2B—P2—H2 | 119.9 (2) |
Symmetry codes: (i) y+2/3, −x+y+1/3, −z+1/3; (ii) −x, −y, −z; (iii) y, −x+y, −z; (iv) −x+y, −x, z; (v) −y, x−y, z; (vi) −x+y, −x+1, z; (vii) −y+1, x−y, z; (viii) −x+y+1, −x+1, z. |