Download citation
Download citation
link to html
In order to characterize the structural elements that might play a role in non-covalent DNA binding by the antitumor antibiotic leinamycin, we have solved the crystal structures of the two leinamycin analogs, methyl (R)-5-{2-[1-(tert-butoxy­carbonyl­amino)­ethyl]­thia­zol-4-yl}penta-(E,E)-2,4-dienoate, C16H22N2O4S, (II), and 2-methyl-8-oxa-16-thia-3,17-di­aza­bicyclo­[12.2.1]­heptadeca-(Z,E)-1(17),10,12,14-tetraene-4,9-di­one, C14H16N2O3S, (III). The penta-2,4-dienone moiety in both of these analogs adopts a conformation close to planarity, with the thia­zole ring twisted out of the plane by 12.9 (2)° in (II) and by 21.4 (4)° in (III).

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270102007503/fr1371sup1.cif
Contains datablocks global, II, III

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270102007503/fr1371IIsup2.hkl
Contains datablock II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270102007503/fr1371IIIsup3.hkl
Contains datablock III

CCDC references: 193413; 193414

Comment top

Leinamycin, (I), is a natural product with promising antitumor activity (Hara et al., 1989, 1990). This activity is believed to result from the ability of the compound to damage cellular DNA (Hara et al., 1990; Asai et al., 1996; Mitra et al., 1997; Breydo et al., 2001). Leinamycin has a unique structure, with an unusual 1,2-dithiolan-3-one 1-oxide moiety connected by a spiro linkage to an 18-membered macrocycle. This antibiotic is capable of both DNA alkylation and oxidative DNA damage (Gates, 2000). \sch

Recent studies showing that leinamycin does not efficiently alkylate single-stranded DNA suggest that non-covalent association of leinamycin with the double helix facilitates DNA alkylation by the antibiotic (Asai et al., 1996; Breydo et al., 2002). It seems likely that the macrocycle of leinamycin plays a major role in non-covalent binding of the compound to DNA. Thus, in order to understand better the nature of the interaction between leinamycin and DNA, it is important to characterize the three-dimensional structure of the thiazol-5-yl-penta-2,4-dienone fragment of the antibiotic. Although crystal structures of leinamycin and several of its derivatives have been solved previously (Hirayama & Matsuzawa, 1993; Kanda et al., 1999), the coordinates for these structures have not been published.

As a part of an investigation of non-covalent DNA binding by leinamycin, we prepared several E,E- and Z,E-thiazol-5-yl-penta-2,4-dienones. Here, we present the crystal structures of methyl (R)-5-{2-[1-(tert-butoxycarbonylamino)ethyl]thiazol-4-yl}-penta-(E,E)- 2,4-dienoate, (II), and 2-methyl-8-oxa-16-thia-3,17-diazabicyclo[12.2.1]heptadeca(Z,E)- 1(17),10,12,14-tetraene-4,9-dione, (III). Our results provide the first detailed structural information regarding leinamycin analogs containing the thiazol-5-yl-penta-2,4-dienone moiety.

The structures of (II) and (III) reveal that the penta-2,4-dienone fragment is nearly planar [to within 0.02 Å for (II) and 0.05 Å for (III)], similar to the known structures of compounds containing an α,β,γ,δ-conjugated carbonyl group (Cox, 1994; Rabinovich & Schmidt, 1967). The bond lengths in the penta-2,4-dienone system indicate conjugation (Ladd & Palmer, 1993; Wiberg et al., 1991) between the double bonds and with the thiazole ring. The thiazole ring is twisted out of plane relative to the penta-2,4-dienone moiety, by 12.9 (2)° in (II) and by 21.4 (4)° in (III) (PLATON; Spek, 2001). Presumably, this twist serves to minimize steric repulsion between the lone pair on the thiazole N atom and an adjacent H atom [H12 in (II) or H11 in (III)]. This assumption is supported by a comparison with the known structure of epothilone B, (IV) (Hoefle et al., 1996). Epothilone B contains an alkene moiety in the C4 position of the thiazole ring that is also slightly twisted out of plane. Although coordinates for the crystal structure of leinamycin are not available, the graphical representations that have been published (Hirayama & Matsuzawa, 1993) indicate that the antibiotic also adopts a conformation with a nearly planar penta-2,4-dienone moiety and the thiazole ring twisted slightly out of plane.

The 18-membered macrocycle of leinamycin clearly presents a large hydrophobic surface that may drive association of the natural product with the hydrophobic major groove of duplex DNA (Jadhav et al., 1999). In addition, it is possible that the conjugated thiazol-5-yl-penta-2,4-dienone moiety found in leinamycin may represent a novel type of DNA intercalator where, individual double bonds are a part of the intercalating system. Several examples of such small intercalators are known and include esperamycin A1 (Yu et al., 1994), C-1027 (Yu et al., 1995), and amiloride (Bailly et al., 1993). The results reported here may provide important structural information that will ultimately help us understand the detailed nature of the non-covalent interactions between leinamycin and DNA.

Experimental top

Compounds (II) and (III) were prepared from (R)—N-Boc alanine, and their synthesis will be described separately. Racemization of compound (III) occurred in the course of the synthesis. Crystals suitable for X-ray diffraction analysis were obtained by slow evaporation of dichloromethane solutions of the compounds.

Refinement top

H atoms were placed at calculated positions and were updated with each cycle of refinement, but not refined. The C—H distances were fixed in the range 0.95–1.00 Å and N—H distances were fixed at 0.88 Å. The displacement parameters were fixed at 1.2 times the equivalent isotropic factor for the parent atom.

Computing details top

For both compounds, data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPIII (Burnett & Johnson, 1996); software used to prepare material for publication: CIFTAB (Sheldrick, 1997).

Figures top
[Figure 1] Fig. 1. A view of the molecule of (II) showing 50% probability displacement ellipsoids. H atoms are drawn as small spheres of arbitrary radii.
[Figure 2] Fig. 2. A view of the molecule of (III) showing 50% probability displacement ellipsoids. H atoms are drawn as small spheres of arbitrary radii.
(II) Methyl (R)-5-{2-[1-(tert-butoxycarbonylamino)ethyl]-thiazol-4-yl}-penta- (E,E)-2,4-dienoate top
Crystal data top
C16H22N2O4SZ = 1
Mr = 338.42F(000) = 180
Triclinic, P1Dx = 1.278 Mg m3
a = 5.207 (2) ÅMo Kα radiation, λ = 0.71070 Å
b = 5.876 (3) ÅCell parameters from 2894 reflections
c = 15.339 (7) Åθ = 2.7–27.1°
α = 82.21 (1)°µ = 0.20 mm1
β = 81.43 (1)°T = 173 K
γ = 72.17 (1)°Prism, yellow
V = 439.8 (3) Å30.45 × 0.35 × 0.35 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
2820 independent reflections
Radiation source: fine-focus sealed tube2702 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.019
ω scansθmax = 27.1°, θmin = 1.4°
Absorption correction: multi-scan
(SADABS; Blessing, 1995)
h = 66
Tmin = 0.89, Tmax = 0.94k = 77
3484 measured reflectionsl = 1916
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.035H-atom parameters constrained
wR(F2) = 0.100 w = 1/[σ2(Fo2) + (0.0665P)2 + 0.0536P]
where P = (Fo2 + 2Fc2)/3
S = 1.12(Δ/σ)max < 0.001
2820 reflectionsΔρmax = 0.25 e Å3
213 parametersΔρmin = 0.26 e Å3
3 restraintsAbsolute structure: Flack (1983); 908 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.07 (7)
Crystal data top
C16H22N2O4Sγ = 72.17 (1)°
Mr = 338.42V = 439.8 (3) Å3
Triclinic, P1Z = 1
a = 5.207 (2) ÅMo Kα radiation
b = 5.876 (3) ŵ = 0.20 mm1
c = 15.339 (7) ÅT = 173 K
α = 82.21 (1)°0.45 × 0.35 × 0.35 mm
β = 81.43 (1)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2820 independent reflections
Absorption correction: multi-scan
(SADABS; Blessing, 1995)
2702 reflections with I > 2σ(I)
Tmin = 0.89, Tmax = 0.94Rint = 0.019
3484 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.035H-atom parameters constrained
wR(F2) = 0.100Δρmax = 0.25 e Å3
S = 1.12Δρmin = 0.26 e Å3
2820 reflectionsAbsolute structure: Flack (1983); 908 Friedel pairs
213 parametersAbsolute structure parameter: 0.07 (7)
3 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.87448 (9)0.75876 (8)0.47934 (5)0.03525 (16)
O10.6765 (3)0.6049 (3)0.77640 (12)0.0341 (4)
N10.6938 (4)0.4313 (3)0.43791 (13)0.0266 (4)
C10.8123 (4)0.4810 (4)0.49867 (16)0.0253 (4)
O20.4359 (3)0.4865 (3)0.68712 (13)0.0372 (4)
N20.8903 (4)0.4308 (3)0.65545 (14)0.0304 (4)
H21.03540.45650.67010.037*
C20.6438 (5)0.6189 (4)0.37076 (16)0.0282 (5)
O30.0892 (4)0.0388 (3)0.15064 (14)0.0439 (5)
C30.7319 (5)0.8076 (4)0.38194 (19)0.0341 (5)
H30.71660.94720.34140.041*
O40.0580 (5)0.3922 (4)0.08202 (15)0.0538 (6)
C40.9104 (4)0.3065 (4)0.57729 (16)0.0272 (4)
H40.79340.19640.59150.033*
C50.6475 (4)0.5067 (4)0.70538 (16)0.0281 (5)
C60.4403 (5)0.6928 (4)0.84305 (16)0.0305 (5)
C71.2047 (5)0.1543 (4)0.55458 (17)0.0313 (5)
H7A1.32390.25830.54350.047*
H7B1.21760.07360.50150.047*
H7C1.26050.03380.60430.047*
C80.2299 (5)0.9053 (4)0.79992 (19)0.0373 (5)
H8A0.32031.02040.76750.056*
H8B0.09230.98420.84590.056*
H8C0.14270.84720.75880.056*
C90.5663 (6)0.7775 (5)0.9114 (2)0.0436 (6)
H9A0.69660.63950.93960.065*
H9B0.42310.85390.95650.065*
H9C0.66000.89340.88210.065*
C100.3274 (6)0.4908 (5)0.8847 (2)0.0416 (6)
H10A0.23560.44540.84150.062*
H10B0.19720.54360.93630.062*
H10C0.47590.35220.90340.062*
C110.5037 (5)0.6039 (4)0.29702 (17)0.0314 (5)
H110.50430.71760.24670.038*
C120.3743 (5)0.4392 (4)0.29608 (18)0.0303 (5)
H120.37150.32720.34680.036*
C130.2394 (5)0.4215 (4)0.22320 (17)0.0316 (5)
H130.23540.53790.17360.038*
C140.1191 (5)0.2518 (4)0.22068 (17)0.0325 (5)
H140.12030.13460.26990.039*
C150.0152 (5)0.2409 (4)0.14385 (18)0.0334 (5)
C160.2147 (7)0.0087 (5)0.0766 (2)0.0479 (7)
H16A0.38020.14230.06960.072*
H16B0.26090.14310.08760.072*
H16C0.08790.00650.02240.072*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0336 (3)0.0298 (3)0.0470 (4)0.0127 (2)0.0057 (3)0.0106 (2)
O10.0238 (8)0.0504 (9)0.0312 (9)0.0110 (7)0.0002 (7)0.0184 (7)
N10.0256 (9)0.0277 (8)0.0280 (10)0.0085 (7)0.0043 (8)0.0052 (7)
C10.0201 (10)0.0262 (9)0.0305 (12)0.0081 (7)0.0028 (9)0.0094 (8)
O20.0230 (8)0.0555 (10)0.0378 (10)0.0137 (7)0.0012 (7)0.0186 (8)
N20.0228 (9)0.0446 (10)0.0287 (11)0.0124 (8)0.0016 (8)0.0151 (8)
C20.0241 (11)0.0276 (9)0.0303 (12)0.0042 (8)0.0002 (9)0.0050 (9)
O30.0563 (12)0.0407 (9)0.0398 (11)0.0155 (8)0.0178 (9)0.0046 (8)
C30.0287 (12)0.0275 (10)0.0444 (15)0.0059 (9)0.0021 (10)0.0053 (10)
O40.0709 (15)0.0630 (12)0.0378 (11)0.0326 (11)0.0230 (11)0.0088 (10)
C40.0247 (11)0.0344 (10)0.0268 (11)0.0118 (8)0.0025 (9)0.0102 (9)
C50.0246 (11)0.0351 (10)0.0272 (12)0.0097 (8)0.0041 (9)0.0076 (9)
C60.0269 (11)0.0395 (11)0.0253 (12)0.0077 (9)0.0002 (9)0.0112 (9)
C70.0270 (11)0.0357 (11)0.0307 (13)0.0066 (9)0.0024 (9)0.0090 (9)
C80.0365 (13)0.0383 (11)0.0361 (14)0.0077 (10)0.0057 (11)0.0056 (10)
C90.0333 (14)0.0640 (16)0.0358 (14)0.0098 (12)0.0037 (11)0.0236 (13)
C100.0409 (14)0.0437 (13)0.0375 (15)0.0115 (11)0.0003 (11)0.0009 (11)
C110.0269 (11)0.0323 (11)0.0313 (12)0.0038 (8)0.0043 (9)0.0013 (9)
C120.0243 (11)0.0342 (11)0.0294 (13)0.0031 (8)0.0041 (9)0.0038 (9)
C130.0256 (11)0.0384 (11)0.0276 (12)0.0035 (9)0.0036 (9)0.0055 (9)
C140.0305 (12)0.0358 (11)0.0275 (12)0.0035 (9)0.0047 (9)0.0031 (9)
C150.0287 (12)0.0418 (12)0.0297 (12)0.0079 (9)0.0019 (10)0.0100 (10)
C160.0531 (18)0.0556 (15)0.0423 (16)0.0177 (13)0.0128 (14)0.0170 (13)
Geometric parameters (Å, º) top
S1—C31.717 (3)C7—H7B0.9800
S1—C11.738 (2)C7—H7C0.9800
O1—C51.347 (3)C8—H8A0.9800
O1—C61.484 (3)C8—H8B0.9800
N1—C11.300 (3)C8—H8C0.9800
N1—C21.393 (3)C9—H9A0.9800
C1—C41.515 (3)C9—H9B0.9800
O2—C51.220 (3)C9—H9C0.9800
N2—C51.357 (3)C10—H10A0.9800
N2—C41.461 (3)C10—H10B0.9800
N2—H20.8800C10—H10C0.9800
C2—C31.363 (3)C11—C121.340 (3)
C2—C111.460 (3)C11—H110.9500
O3—C151.343 (3)C12—C131.437 (4)
O3—C161.447 (3)C12—H120.9500
C3—H30.9500C13—C141.338 (4)
O4—C151.205 (3)C13—H130.9500
C4—C71.534 (3)C14—C151.475 (4)
C4—H41.0000C14—H140.9500
C6—C101.508 (4)C16—H16A0.9800
C6—C91.524 (3)C16—H16B0.9800
C6—C81.533 (3)C16—H16C0.9800
C7—H7A0.9800
C3—S1—C188.99 (11)C6—C8—H8B109.5
C5—O1—C6120.41 (18)H8A—C8—H8B109.5
C1—N1—C2110.92 (18)C6—C8—H8C109.5
N1—C1—C4123.65 (18)H8A—C8—H8C109.5
N1—C1—S1114.85 (17)H8B—C8—H8C109.5
C4—C1—S1121.34 (16)C6—C9—H9A109.5
C5—N2—C4119.94 (18)C6—C9—H9B109.5
C5—N2—H2120.0H9A—C9—H9B109.5
C4—N2—H2120.0C6—C9—H9C109.5
C3—C2—N1114.5 (2)H9A—C9—H9C109.5
C3—C2—C11125.5 (2)H9B—C9—H9C109.5
N1—C2—C11120.0 (2)C6—C10—H10A109.5
C15—O3—C16115.5 (2)C6—C10—H10B109.5
C2—C3—S1110.8 (2)H10A—C10—H10B109.5
C2—C3—H3124.6C6—C10—H10C109.5
S1—C3—H3124.6H10A—C10—H10C109.5
N2—C4—C1111.60 (18)H10B—C10—H10C109.5
N2—C4—C7109.83 (18)C12—C11—C2123.9 (2)
C1—C4—C7110.38 (19)C12—C11—H11118.1
N2—C4—H4108.3C2—C11—H11118.1
C1—C4—H4108.3C11—C12—C13124.1 (2)
C7—C4—H4108.3C11—C12—H12117.9
O2—C5—O1125.9 (2)C13—C12—H12117.9
O2—C5—N2123.7 (2)C14—C13—C12124.2 (2)
O1—C5—N2110.34 (18)C14—C13—H13117.9
O1—C6—C10110.7 (2)C12—C13—H13117.9
O1—C6—C9102.49 (19)C13—C14—C15122.1 (2)
C10—C6—C9110.1 (2)C13—C14—H14119.0
O1—C6—C8109.3 (2)C15—C14—H14119.0
C10—C6—C8113.4 (2)O4—C15—O3122.8 (2)
C9—C6—C8110.3 (2)O4—C15—C14125.6 (2)
C4—C7—H7A109.5O3—C15—C14111.6 (2)
C4—C7—H7B109.5O3—C16—H16A109.5
H7A—C7—H7B109.5O3—C16—H16B109.5
C4—C7—H7C109.5H16A—C16—H16B109.5
H7A—C7—H7C109.5O3—C16—H16C109.5
H7B—C7—H7C109.5H16A—C16—H16C109.5
C6—C8—H8A109.5H16B—C16—H16C109.5
C2—N1—C1—C4175.7 (2)C6—O1—C5—N2177.63 (19)
C2—N1—C1—S10.3 (2)C4—N2—C5—O23.2 (4)
C3—S1—C1—N10.47 (18)C4—N2—C5—O1176.76 (18)
C3—S1—C1—C4175.11 (19)C5—O1—C6—C1060.5 (3)
C1—N1—C2—C31.1 (3)C5—O1—C6—C9177.9 (2)
C1—N1—C2—C11178.0 (2)C5—O1—C6—C865.1 (3)
N1—C2—C3—S11.5 (3)C3—C2—C11—C12166.7 (2)
C11—C2—C3—S1177.62 (18)N1—C2—C11—C1212.4 (3)
C1—S1—C3—C21.07 (19)C2—C11—C12—C13179.1 (2)
C5—N2—C4—C179.8 (3)C11—C12—C13—C14177.3 (2)
C5—N2—C4—C7157.4 (2)C12—C13—C14—C15179.6 (2)
N1—C1—C4—N2147.7 (2)C16—O3—C15—O42.5 (4)
S1—C1—C4—N237.1 (2)C16—O3—C15—C14178.0 (2)
N1—C1—C4—C789.9 (3)C13—C14—C15—O48.9 (4)
S1—C1—C4—C785.3 (2)C13—C14—C15—O3171.6 (2)
C6—O1—C5—O22.3 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O2i0.882.203.072 (3)170
Symmetry code: (i) x+1, y, z.
(III) 2-methyl-8-oxa-16-thia-3,17-diazabicyclo[12.2.1]heptadeca-(Z,E)- 1(17),10,12,14-tetraene-4,9-dione top
Crystal data top
C14H16N2O3SF(000) = 308
Mr = 292.35Dx = 1.355 Mg m3
Monoclinic, PcMo Kα radiation, λ = 0.71073 Å
a = 10.078 (1) ÅCell parameters from 2334 reflections
b = 8.882 (1) Åθ = 2.3–27.0°
c = 8.512 (1) ŵ = 0.23 mm1
β = 109.89 (1)°T = 173 K
V = 716.5 (1) Å3Plate, colorless
Z = 20.4 × 0.3 × 0.1 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
2391 independent reflections
Radiation source: fine-focus sealed tube2177 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
ω scansθmax = 27.1°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Blessing, 1995)
h = 1212
Tmin = 0.77, Tmax = 0.98k = 1011
4350 measured reflectionsl = 108
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.030H-atom parameters constrained
wR(F2) = 0.070 w = 1/[σ2(Fo2) + (0.0425P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max = 0.001
2391 reflectionsΔρmax = 0.24 e Å3
182 parametersΔρmin = 0.17 e Å3
2 restraintsAbsolute structure: Flack (1983); 812 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.05 (7)
Crystal data top
C14H16N2O3SV = 716.5 (1) Å3
Mr = 292.35Z = 2
Monoclinic, PcMo Kα radiation
a = 10.078 (1) ŵ = 0.23 mm1
b = 8.882 (1) ÅT = 173 K
c = 8.512 (1) Å0.4 × 0.3 × 0.1 mm
β = 109.89 (1)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2391 independent reflections
Absorption correction: multi-scan
(SADABS; Blessing, 1995)
2177 reflections with I > 2σ(I)
Tmin = 0.77, Tmax = 0.98Rint = 0.023
4350 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.030H-atom parameters constrained
wR(F2) = 0.070Δρmax = 0.24 e Å3
S = 1.00Δρmin = 0.17 e Å3
2391 reflectionsAbsolute structure: Flack (1983); 812 Friedel pairs
182 parametersAbsolute structure parameter: 0.05 (7)
2 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.51970 (6)0.85254 (6)1.15002 (7)0.04036 (15)
O10.04934 (15)0.86575 (15)1.08613 (18)0.0329 (3)
O20.13676 (15)0.68768 (17)0.67895 (19)0.0363 (4)
O30.25950 (17)0.5626 (2)0.4443 (2)0.0533 (5)
N10.30161 (17)0.78224 (18)0.9008 (2)0.0267 (4)
N20.12174 (17)1.01991 (17)0.9200 (2)0.0271 (4)
H20.09821.06740.82370.033*
C10.3492 (2)0.8850 (2)1.0134 (2)0.0263 (4)
C20.5246 (2)0.6898 (2)1.0447 (3)0.0347 (5)
H2A0.60310.62351.07160.042*
C30.4009 (2)0.6681 (2)0.9173 (3)0.0272 (4)
C40.2678 (2)1.0248 (2)1.0305 (3)0.0287 (4)
H40.26821.02901.14800.034*
C50.0214 (2)0.9456 (2)0.9595 (3)0.0263 (4)
C60.1287 (2)0.9748 (2)0.8473 (3)0.0310 (5)
H6A0.12890.99500.73280.037*
H6B0.16331.06660.88680.037*
C70.2317 (2)0.8452 (2)0.8399 (3)0.0327 (5)
H7A0.18980.77910.93800.039*
H7B0.31990.88780.84790.039*
C80.2675 (2)0.7514 (3)0.6841 (3)0.0373 (5)
H8A0.33410.67030.68640.045*
H8B0.31190.81460.58410.045*
C90.1486 (2)0.5900 (2)0.5522 (3)0.0376 (5)
C100.0128 (2)0.5205 (2)0.5669 (3)0.0366 (5)
H100.01140.44320.49030.044*
C110.1091 (2)0.5608 (2)0.6829 (3)0.0303 (4)
H110.10730.64050.75650.036*
C120.2439 (2)0.4907 (2)0.7037 (3)0.0328 (5)
H120.24300.40470.63700.039*
C130.3699 (2)0.5361 (2)0.8085 (3)0.0317 (5)
H130.44840.47510.81240.038*
C140.3365 (2)1.1680 (2)0.9974 (3)0.0379 (5)
H14A0.28341.25561.01370.057*
H14B0.33651.16710.88230.057*
H14C0.43381.17371.07500.057*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0263 (3)0.0413 (3)0.0438 (3)0.0004 (2)0.0008 (2)0.0080 (3)
O10.0383 (8)0.0337 (8)0.0250 (8)0.0008 (6)0.0085 (7)0.0017 (6)
O20.0263 (8)0.0388 (8)0.0397 (9)0.0023 (6)0.0057 (7)0.0088 (7)
O30.0357 (9)0.0624 (11)0.0535 (12)0.0078 (8)0.0044 (8)0.0188 (9)
N10.0275 (8)0.0237 (8)0.0280 (9)0.0004 (6)0.0083 (7)0.0011 (6)
N20.0306 (9)0.0260 (8)0.0242 (9)0.0018 (7)0.0084 (8)0.0009 (7)
C10.0270 (10)0.0274 (10)0.0236 (11)0.0022 (8)0.0071 (8)0.0022 (8)
C20.0262 (11)0.0330 (11)0.0443 (14)0.0037 (8)0.0113 (10)0.0011 (9)
C30.0262 (10)0.0257 (9)0.0326 (11)0.0018 (7)0.0139 (9)0.0035 (8)
C40.0305 (10)0.0299 (10)0.0247 (11)0.0001 (8)0.0081 (9)0.0022 (8)
C50.0314 (11)0.0234 (9)0.0251 (11)0.0037 (8)0.0107 (9)0.0029 (8)
C60.0311 (11)0.0294 (10)0.0336 (12)0.0064 (8)0.0125 (10)0.0043 (9)
C70.0255 (10)0.0351 (11)0.0395 (13)0.0061 (8)0.0136 (10)0.0057 (9)
C80.0224 (10)0.0387 (12)0.0472 (14)0.0015 (8)0.0071 (10)0.0002 (10)
C90.0362 (12)0.0328 (11)0.0408 (14)0.0078 (9)0.0092 (11)0.0055 (10)
C100.0401 (12)0.0308 (11)0.0392 (12)0.0037 (9)0.0140 (10)0.0085 (9)
C110.0352 (11)0.0240 (9)0.0337 (11)0.0003 (8)0.0142 (10)0.0035 (8)
C120.0414 (12)0.0237 (10)0.0364 (12)0.0014 (9)0.0170 (10)0.0044 (9)
C130.0335 (11)0.0254 (10)0.0397 (13)0.0059 (8)0.0170 (10)0.0009 (9)
C140.0369 (13)0.0289 (11)0.0475 (14)0.0050 (9)0.0138 (11)0.0073 (10)
Geometric parameters (Å, º) top
S1—C21.711 (2)C6—H6A0.9900
S1—C11.740 (2)C6—H6B0.9900
O1—C51.240 (2)C7—C81.503 (3)
O2—C91.358 (3)C7—H7A0.9900
O2—C81.448 (3)C7—H7B0.9900
O3—C91.205 (3)C8—H8A0.9900
N1—C11.292 (3)C8—H8B0.9900
N1—C31.397 (2)C9—C101.467 (3)
N2—C51.342 (2)C10—C111.337 (3)
N2—C41.453 (2)C10—H100.9500
N2—H20.8800C11—C121.449 (3)
C1—C41.522 (3)C11—H110.9500
C2—C31.359 (3)C12—C131.342 (3)
C2—H2A0.9500C12—H120.9500
C3—C131.460 (3)C13—H130.9500
C4—C141.520 (3)C14—H14A0.9800
C4—H41.0000C14—H14B0.9800
C5—C61.511 (3)C14—H14C0.9800
C6—C71.537 (3)
C2—S1—C189.30 (10)C6—C7—H7A108.7
C9—O2—C8116.02 (17)C8—C7—H7B108.7
C1—N1—C3111.45 (17)C6—C7—H7B108.7
C5—N2—C4122.42 (16)H7A—C7—H7B107.6
C5—N2—H2118.8O2—C8—C7107.20 (17)
C4—N2—H2118.8O2—C8—H8A110.3
N1—C1—C4124.82 (18)C7—C8—H8A110.3
N1—C1—S1114.30 (15)O2—C8—H8B110.3
C4—C1—S1120.88 (14)C7—C8—H8B110.3
C3—C2—S1110.85 (15)H8A—C8—H8B108.5
C3—C2—H2A124.6O3—C9—O2122.8 (2)
S1—C2—H2A124.6O3—C9—C10125.2 (2)
C2—C3—N1114.10 (17)O2—C9—C10111.95 (19)
C2—C3—C13124.04 (18)C11—C10—C9123.1 (2)
N1—C3—C13121.84 (18)C11—C10—H10118.4
N2—C4—C14109.28 (17)C9—C10—H10118.4
N2—C4—C1111.98 (15)C10—C11—C12124.28 (19)
C14—C4—C1111.77 (17)C10—C11—H11117.9
N2—C4—H4107.9C12—C11—H11117.9
C14—C4—H4107.9C13—C12—C11126.01 (18)
C1—C4—H4107.9C13—C12—H12117.0
O1—C5—N2122.09 (18)C11—C12—H12117.0
O1—C5—C6121.98 (18)C12—C13—C3127.78 (18)
N2—C5—C6115.78 (17)C12—C13—H13116.1
C5—C6—C7114.49 (16)C3—C13—H13116.1
C5—C6—H6A108.6C4—C14—H14A109.5
C7—C6—H6A108.6C4—C14—H14B109.5
C5—C6—H6B108.6H14A—C14—H14B109.5
C7—C6—H6B108.6C4—C14—H14C109.5
H6A—C6—H6B107.6H14A—C14—H14C109.5
C8—C7—C6114.05 (18)H14B—C14—H14C109.5
C8—C7—H7A108.7
C3—N1—C1—C4179.99 (18)C4—N2—C5—C6169.12 (16)
C3—N1—C1—S10.1 (2)O1—C5—C6—C731.0 (3)
C2—S1—C1—N10.31 (16)N2—C5—C6—C7153.50 (18)
C2—S1—C1—C4179.54 (17)C5—C6—C7—C8102.6 (2)
C1—S1—C2—C30.68 (17)C9—O2—C8—C7175.52 (18)
S1—C2—C3—N10.9 (2)C6—C7—C8—O260.1 (2)
S1—C2—C3—C13177.35 (17)C8—O2—C9—O33.8 (3)
C1—N1—C3—C20.7 (2)C8—O2—C9—C10174.46 (19)
C1—N1—C3—C13177.62 (19)O3—C9—C10—C11175.9 (2)
C5—N2—C4—C14153.05 (18)O2—C9—C10—C116.0 (3)
C5—N2—C4—C182.6 (2)C9—C10—C11—C12177.9 (2)
N1—C1—C4—N28.2 (3)C10—C11—C12—C13173.8 (2)
S1—C1—C4—N2171.97 (14)C11—C12—C13—C33.3 (4)
N1—C1—C4—C14114.8 (2)C2—C3—C13—C12165.4 (2)
S1—C1—C4—C1465.0 (2)N1—C3—C13—C1212.7 (3)
C4—N2—C5—O16.4 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O1i0.882.002.869 (2)168
Symmetry code: (i) x, y+2, z1/2.

Experimental details

(II)(III)
Crystal data
Chemical formulaC16H22N2O4SC14H16N2O3S
Mr338.42292.35
Crystal system, space groupTriclinic, P1Monoclinic, Pc
Temperature (K)173173
a, b, c (Å)5.207 (2), 5.876 (3), 15.339 (7)10.078 (1), 8.882 (1), 8.512 (1)
α, β, γ (°)82.21 (1), 81.43 (1), 72.17 (1)90, 109.89 (1), 90
V3)439.8 (3)716.5 (1)
Z12
Radiation typeMo KαMo Kα
µ (mm1)0.200.23
Crystal size (mm)0.45 × 0.35 × 0.350.4 × 0.3 × 0.1
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Bruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Blessing, 1995)
Multi-scan
(SADABS; Blessing, 1995)
Tmin, Tmax0.89, 0.940.77, 0.98
No. of measured, independent and
observed [I > 2σ(I)] reflections
3484, 2820, 2702 4350, 2391, 2177
Rint0.0190.023
(sin θ/λ)max1)0.6410.641
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.100, 1.12 0.030, 0.070, 1.00
No. of reflections28202391
No. of parameters213182
No. of restraints32
H-atom treatmentH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.25, 0.260.24, 0.17
Absolute structureFlack (1983); 908 Friedel pairsFlack (1983); 812 Friedel pairs
Absolute structure parameter0.07 (7)0.05 (7)

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SAINT, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEPIII (Burnett & Johnson, 1996), CIFTAB (Sheldrick, 1997).

Selected geometric parameters (Å, º) for (II) top
C2—C31.363 (3)C12—C131.437 (4)
C2—C111.460 (3)C13—C141.338 (4)
O4—C151.205 (3)C14—C151.475 (4)
C11—C121.340 (3)
C3—C2—N1114.5 (2)C14—C13—C12124.2 (2)
C3—C2—C11125.5 (2)C13—C14—C15122.1 (2)
C12—C11—C2123.9 (2)O4—C15—C14125.6 (2)
C11—C12—C13124.1 (2)
C1—N1—C2—C11178.0 (2)C2—C11—C12—C13179.1 (2)
C11—C2—C3—S1177.62 (18)C11—C12—C13—C14177.3 (2)
C3—C2—C11—C12166.7 (2)C12—C13—C14—C15179.6 (2)
N1—C2—C11—C1212.4 (3)C13—C14—C15—O48.9 (4)
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O2i0.882.203.072 (3)170.1
Symmetry code: (i) x+1, y, z.
Selected geometric parameters (Å, º) for (III) top
O3—C91.205 (3)C9—C101.467 (3)
N1—C11.292 (3)C10—C111.337 (3)
C1—C41.522 (3)C11—C121.449 (3)
C2—C31.359 (3)C12—C131.342 (3)
C1—N1—C3111.45 (17)O3—C9—C10125.2 (2)
C4—C1—S1120.88 (14)C11—C10—C9123.1 (2)
C3—C2—S1110.85 (15)C10—C11—C12124.28 (19)
C2—C3—C13124.04 (18)C13—C12—C11126.01 (18)
N1—C3—C13121.84 (18)C12—C13—C3127.78 (18)
C1—S1—C2—C30.68 (17)C10—C11—C12—C13173.8 (2)
S1—C2—C3—C13177.35 (17)C11—C12—C13—C33.3 (4)
O3—C9—C10—C11175.9 (2)C2—C3—C13—C12165.4 (2)
C9—C10—C11—C12177.9 (2)N1—C3—C13—C1212.7 (3)
Hydrogen-bond geometry (Å, º) for (III) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O1i0.882.002.869 (2)168.3
Symmetry code: (i) x, y+2, z1/2.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds