Download citation
Download citation
link to html
The mol­ecules of 2-[6-amino-3-methyl-2-(methyl­sulfanyl)-4-oxo-3,4-dihydro­pyrimidin-5-yl­carbonyl]­acetonitrile, C9H10N4O2S, (I), are linked in pairs by N—H...O hydrogen bonds to form cyclic centrosymmetric R22(4) dimers. Similar dimers formed by 2-(6-amino-1,3-dimethyl-2,4-dioxo-1,2,3,4-tetra­hy­dro­pyrimidin-5-yl­carbonyl)­acetonitrile, C9H10N4O3, (II), are reinforced by paired N—H...N hydrogen bonds and linked into chains of rings by C—H...O hydrogen bonds. The mol­ecules of 2-cyano-N-[6-meth­oxy-2-(methyl­sulfanyl)­pyrimidin-4-yl]­acetamide, C9H10N4O2S, (III), are linked into simple C(6) chains by an N—H...N hydrogen bond, and the chains are weakly linked into sheets by a π–π stacking inter­action. A combination of one two-centre N—H...N hydrogen bond and one three-centre C—H...(N,O) hydrogen bond links the mol­ecules of 2-cyano-N-[6-chloro-2-(methyl­sulfanyl)­pyrimidin-4-yl]­acetamide, C8H7ClN4OS, (IV), into a chain of alternating edge-fused R21(6) and R12(6) rings. The crystal structures reported in this study, and those of some related examples from the recent literature, show a wide variation in hydrogen-bonded aggregation consequent upon rather small changes in molecular constitution.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270108003557/ga3078sup1.cif
Contains datablocks global, I, II, III, IV

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270108003557/ga3078Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270108003557/ga3078IIsup3.hkl
Contains datablock II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270108003557/ga3078IIIsup4.hkl
Contains datablock III

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270108003557/ga3078IVsup5.hkl
Contains datablock IV

CCDC references: 682825; 682826; 682827; 682828

Comment top

As part of a wider programme on the development of synthetic routes to new heterocyclic systems likely to exhibit biological activity, we have attempted to develop a route to the functionalization of the C5 position of pyrimidines. Accordingly, we have investigated the reactions of pyrimidines and their simple derivatives with cyanoacetic acid, in the presence of acetic anhydride as an activator. When pyrimidin-4(3H)-ones are used as substrates, substitution does indeed occur at C5 to provide derivatives such as the title compounds (I) and (II) (Figs. 1 and 2). However, when the substrates are aromatic pyrimidines, no ring substitution occurs. Instead, acylation occurs at the exocyclic amino group, to give products such as the title compounds (III) and (IV) (Figs. 3 and 4). Here, we report the molecular and supramolecular structures of compounds (I)–(IV), which exhibit a range of different hydrogen-bonded structures, and we compare the structure of (III) with that of the closely related analogue, (V) (Low et al., 1996), and with that of (VI) (Lynch & McClenaghan, 2001).

In each of compounds (I) and (II), the exocyclic carbonyl group is nearly coplanar with the ring, with deviations of carbonyl atom O51 from the mean plane of the ring of only 0.080 (2) Å in (I) and 0.018 (2) Å in (II); this is probably associated both with the polarization of the molecular-electronic structure, discussed below, and with the intramolecular N—H···O hydrogen bond (Table 2), which is charge-assisted (Gilli et al., 1994) as a consequence of the polarization. In each of (III) [which is isomeric with (I)], (IV) and (V), the conformation of the side-chain at C6 may in part be controlled by a rather short intramolecular C—H···O contact. Here, the deviations of carbonyl atom O61 from the ring planes, 0.038 (2) Å in (III) and 0.427 (3) Å in (IV), may be contrasted with the exact planarity in (V), where all of the non-H atoms lie on a mirror plane in space group Pnma (Low et al., 1996). The conformation adopted by the methylsulfanyl group in (IV) differs markedly from those in (I) and (III) (Figs. 1, 2 and 4; Table 1), although it is similar to that in (V).

The bond distances in compounds (I)–(III) (Table 1) show some unexpected features. We consider firstly the pair (I) and (II). In each of compounds (I) and (II), the exocyclic C6—N6 bond is short for its type (mean value 1.353 Å; Allen et al., 1987) and certainly much shorter than the corresponding bonds in compounds (III) and (IV). In addition, the C5—C6 bond, which is formally a double bond, is long for its type (expected value 1.331 Å; Allen et al., 1987) and is only slightly shorter than the C4—C5 and C5—C51 bonds, which are both formally single bonds. Finally, the C51—O51 bond is long for its type (mean value 1.210 Å; Allen et al., 1987), although the length of the C4—O4 bond is typical of its type. Overall, these effects are somewhat more marked in (II) than in (I), and they indicate that polarized forms such as (IIa) and (IIb) (see second scheme) are contributors to the overall molecular-electronic structure.

In compound (III), there is some evidence for a measure of bond fixation within the pyrimidine ring. Thus, the N1—C2 and N3—C4 bonds are slightly shorter by than the C2—N3 and C6—N1 bonds, by ca 0.02 and 0.03 Å, respectively, while C5—C6 is slightly shorter (ca 0.02 Å) than C4—C5, indicative of a modest contribution to the overall structure of the form (IIIa) in addition to the dominant delocalized form (III). For compound (IV), this pattern in the C—N bonds is not apparent, while the C4—C5 and C5—C6 bond distances are not distinguishable within experimental uncertainty. The lower precision of the determination precludes any meaningful metrical comparisons at this level. In compound (V), which was determined from diffraction data collected at 294 K (Low et al., 1996), the distances provide no evidence for any bond fixation in the ring, while in (VI), which crystallizes with Z' = 2 (Lynch & McClenaghan, 2001), no obvious pattern can be discerned in the ring bond distances.

The hydrogen-bonded supramolecular structures of (I) and (II) show both similarities and differences. In each compound, a planar three-centre N—H···(O)2 hydrogen bond links the molecules in pairs to form a centrosymmetric dimer characterized by an R22(4) (Bernstein et al., 1995) motif (Fig. 5). Within this dimer there is a pair of fairly long, possibly adventitious, N—H···N hydrogen bonds involving the two symmetry-related cyano atoms N54 as the acceptors. The cyclic dimers formed by (II) are linked into chains of rings by a single C—H···O hydrogen bond (eighth entry in Table 2): atom C52 in the molecule at (x, y, z) acts as donor, via atom H52B, to carbonyl atom O4 in the molecule at (3/2 - x, 1/2 - y, 1 - z), so forming a centrosymmetric R22(12) motif. Propagation by inversion of the hydrogen bonds links the molecules of (II) into a rather complex chain of edge-fused rings running parallel to the [110] direction (Fig. 6).

The same R22(4) motif as found in (II) is also seen in (I), but the N—H···N and C—H···O contacts in (I) corresponding to the other intermolecular hydrogen bonds in (II) have H···A distances much longer than those in (II) (Table 2), such that they are not structurally significant (first and fourth entries in Table 2). Thus, the hydrogen bonding in (I) leads to finite dimeric units, while that in (II) generates a chain of rings.

In compound (III), a single N—H···N hydrogen bond links the molecules related by a 21 screw axis into C(6) chains running parallel to the [010] direction (Fig. 7), and the hydrogen-bonded chains are weakly linked into sheets by a ππ stacking interaction (not shown in Fig. 7). The molecules at (x, y, z) and (1 - x, y, 3/2 - z) form parts of the hydrogen-bonded chains around the 21 screw axes along (3/4, y, 3/4) and (1/4, y, 3/4), respectively. The pyrimidine rings of these molecules make a dihedral angle of 5.9 (2)°; the ring centroid separation is 3.819 (2) Å and the interplanar spacing is ca 3.39 Å. The resulting ππ stacking interaction thus links two molecules, related by the twofold rotation axis along (1/2, y, 3/4), and propagation of this interaction by the twofold rotation axes links the hydrogen-bonded chain along (3/4, y, 3/4) (Fig. 7) to those along (1/4, y, 3/4) and (5/4, y, 3/4), thereby generating a sheet of π-stacked hydrogen-bonded chains parallel to (001).

As in compound (III), a single N—H···N hydrogen bond in (IV) links molecules related by a 21 screw axis into C(6) chains running parallel to the [010] direction. However, this chain is reinforced by two further interactions which together form a planar three-centre C—H···(N,O) hydrogen bond, and the combined effect of all three interactions is the generation of a chain of edge-fused rings in which R21(6) and R12(6) rings alternate (Fig. 8, Table 2). There are no direction-specific interactions between adjacent chains.

The molecules in compound (V) (Low et al., 1996) are linked by N—H···O hydrogen bonds into C(4) chains, and it is interesting to note the contrast between the hydrogen bonding in (III) and (V). Although both compounds contain a carbonyl O atom, this is utilized as a hydrogen-bond acceptor only in (V), where the cyano group is absent. In both (III) and (IV), where a cyano group is present, N—H···O hydrogen bonds are absent from both structures. Compound (VI) contains neither carbonyl nor cyano groups and each type of molecule is linked into a C(6) chain by N—H···N hydrogen bonds, both utilizing a ring N atom as the acceptor (Lynch & McClenaghan, 2001).

Related literature top

For related literature, see: Allen et al. (1987); Bernstein et al. (1995); Gilli et al. (1994); Low et al. (1996); Lynch & McClenaghan (2001).

Experimental top

The appropriate pyrimidine, 6-amino-3-methyl-2-methylsulfanylpyrimidine 4(3H)-one for (I), 6-amino-1,3-dimethylpyrimidine-2,4(1H,3H)-dione for (II), 6-amino-4-methoxy-2-methylsulfanylpyrimidine for (III), and 6-amino-4-chloro-2-methylsulfanylpyrimidine for (IV) (50 mmol), was added to a solution of cyanoacetic acid (50 mmol) in acetic anhydride (50 ml) at 323 K. The mixtures were heated to 358 K for 5 min, when the products started to crystallize. After a further 5 min, the mixtures were allowed to cool to ambient temperature, and the resulting solid products were collected by filtration, washed with methanol and dried in air. Recrystallization from dimethylformamide for (I) and (II), or from ethanol for (III) and (IV), gave crystals suitable for single-crystal X-ray diffraction. Analyses: (I), colourless crystals, yield 60%, m.p. 519–520 K, HRMS m/z found 238.0524, C9H10N4O2S requires 238.0523; (II), yellow crystals, yield 87%, m.p. 435–436 K, HRMS m/z found 222.0742, C9H10N4O3 requires 222.0753; (III), yellow crystals, yield 60%, m.p. 429–430 K, HRMS m/z found 238.0524, C9H10N4O2S requires 238.0533; (IV) yellow crystals, yield 70%, m.p. 529–530 K, HRMS m/z found 242.0029, C8H735ClN4OS requires 242.0028.

Refinement top

Crystals of (I) are triclinic. Space group P1 was selected and confirmed by the structure analysis. For each of (II) and (III), the systematic absences permitted C2/c and Cc as possible space groups. In each case, C2/c was selected and confirmed by the structure analysis. For (IV), space group P21/c was uniquely assigned from the systematic absences. For three low-angle reflections, 112 in (I), 204 in (III) and 202 in (IV), satisfactory integration could not be achieved, and they were therefore discarded from the data sets. All H atoms were located in difference maps and then treated as riding atoms in geometrically idealized positions, with distances C—H = 0.95 (aromatic and heteroaromatic), 0.98 (CH3) or 0.99 Å (CH2), and N—H = 0.86 Å, and with Uiso(H) = kUeq(carrier), where k = 1.5 for the methyl groups and 1.2 for all other H atoms.

Computing details top

For all compounds, data collection: COLLECT (Nonius, 1999); cell refinement: DIRAX/LSQ (Duisenberg et al., 2000); data reduction: EVALCCD (Duisenberg et al., 2003); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: OSCAIL (McArdle, 2003) and SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PRPKAPPA (Ferguson, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of compound (I) showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 2] Fig. 2. The molecular structure of compound (II) showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 3] Fig. 3. The molecular structure of compound (III) showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 4] Fig. 4. The molecular structure of compound (IV) showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 5] Fig. 5. Part of the crystal structure of compound (II), showing the formation of a hydrogen-bonded dimer. For the sake of clarity, H atoms bonded to C atoms have been omitted. Atoms marked with an asterisk (*) are at the symmetry position (1 - x, -y, 1 - z).
[Figure 6] Fig. 6. A stereoview of part of the crystal structure of compound (II), showing the formation of a hydrogen-bonded chain of rings along [110]. For the sake of clarity, H atoms not involved in the hydrogen bonding have been omitted.
[Figure 7] Fig. 7. Part of the crystal structure of compound (III), showing the formation of a hydrogen-bonded C(6) chain along [010]. For the sake of clarity, H atoms bonded to C atoms have been omitted. Atoms marked with an asterisk (*), a hash (#) or an ampersand (&) are at the symmetry positions (3/2 - x, 1/2 + y, 3/2 - z), (3/2 - x, -1/2 + y, 3/2 - z) and (x, 1 + y, z), respectively.
[Figure 8] Fig. 8. Part of the crystal structure of compound (IV), showing the formation of a hydrogen-bonded chain of alternating R21(6) and R12(6) rings along [010]. For the sake of clarity, H atoms bonded to atoms C5 and C21 have been omitted. Atoms marked with an asterisk (*), a hash (#) or an ampersand (&) are at the symmetry positions (1 - x, 1/2 + y, 1/2 - z), (1 - x, -1/2 + y, 1/2 - z) and (x, 1 + y, z), respectively.
(I) 2-[6-amino-3-methyl-2-(methylsulfanyl)-4-oxo-3,4-dihydropyrimidin- 5-ylcarbonyl]acetonitrile top
Crystal data top
C9H10N4O2SZ = 2
Mr = 238.27F(000) = 248
Triclinic, P1Dx = 1.517 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.6449 (3) ÅCell parameters from 2386 reflections
b = 8.7262 (3) Åθ = 3.9–27.5°
c = 9.4092 (2) ŵ = 0.30 mm1
α = 76.390 (3)°T = 120 K
β = 81.079 (2)°Block, colourless
γ = 82.654 (4)°0.56 × 0.33 × 0.32 mm
V = 521.48 (3) Å3
Data collection top
Bruker Nonius KappaCCD
diffractometer
2386 independent reflections
Radiation source: Bruker Nonius FR591 rotating anode1902 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.039
Detector resolution: 9.091 pixels mm-1θmax = 27.5°, θmin = 3.9°
ϕ and ω scansh = 88
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
k = 1111
Tmin = 0.849, Tmax = 0.910l = 1212
14244 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.107H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0509P)2 + 0.249P]
where P = (Fo2 + 2Fc2)/3
2386 reflections(Δ/σ)max < 0.001
147 parametersΔρmax = 0.37 e Å3
0 restraintsΔρmin = 0.35 e Å3
Crystal data top
C9H10N4O2Sγ = 82.654 (4)°
Mr = 238.27V = 521.48 (3) Å3
Triclinic, P1Z = 2
a = 6.6449 (3) ÅMo Kα radiation
b = 8.7262 (3) ŵ = 0.30 mm1
c = 9.4092 (2) ÅT = 120 K
α = 76.390 (3)°0.56 × 0.33 × 0.32 mm
β = 81.079 (2)°
Data collection top
Bruker Nonius KappaCCD
diffractometer
2386 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
1902 reflections with I > 2σ(I)
Tmin = 0.849, Tmax = 0.910Rint = 0.039
14244 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.107H-atom parameters constrained
S = 1.09Δρmax = 0.37 e Å3
2386 reflectionsΔρmin = 0.35 e Å3
147 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S20.27553 (7)0.69280 (5)0.01672 (5)0.02794 (15)
O40.09630 (19)0.19833 (15)0.36410 (14)0.0313 (3)
O510.36327 (19)0.38048 (15)0.51151 (14)0.0302 (3)
N10.0195 (2)0.65511 (17)0.18592 (15)0.0228 (3)
N30.1713 (2)0.43663 (17)0.21224 (15)0.0230 (3)
N60.2761 (2)0.64532 (17)0.32177 (16)0.0259 (3)
N540.4779 (3)0.0317 (2)0.71760 (19)0.0396 (4)
C20.1253 (2)0.5872 (2)0.15182 (17)0.0226 (3)
C40.0539 (3)0.3357 (2)0.31833 (18)0.0236 (3)
C50.1050 (2)0.4075 (2)0.35968 (17)0.0221 (3)
C60.1343 (3)0.5671 (2)0.29144 (18)0.0233 (3)
C210.1677 (3)0.8799 (2)0.0363 (2)0.0334 (4)
C310.3366 (3)0.3704 (2)0.16650 (19)0.0265 (4)
C510.2321 (3)0.3191 (2)0.47005 (18)0.0237 (4)
C520.2050 (3)0.1454 (2)0.53794 (19)0.0273 (4)
C530.3569 (3)0.0812 (2)0.6396 (2)0.0309 (4)
H6A0.28350.74290.27690.031*
H6B0.35090.59740.38880.031*
H21A0.18360.92830.04930.050*
H21B0.23880.95020.11430.050*
H21C0.02200.86320.07260.050*
H31A0.46240.44180.17310.040*
H31B0.35920.26670.23130.040*
H31C0.29850.35850.06450.040*
H52A0.06540.13510.59180.033*
H52B0.22260.08520.45920.033*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S20.0273 (2)0.0318 (3)0.0268 (2)0.00137 (17)0.01427 (17)0.00426 (17)
O40.0334 (7)0.0278 (7)0.0352 (7)0.0045 (5)0.0171 (6)0.0030 (5)
O510.0285 (7)0.0345 (7)0.0304 (7)0.0039 (5)0.0162 (5)0.0042 (5)
N10.0210 (7)0.0268 (7)0.0225 (7)0.0010 (6)0.0084 (5)0.0061 (5)
N30.0199 (7)0.0284 (7)0.0231 (7)0.0004 (6)0.0098 (6)0.0069 (6)
N60.0251 (7)0.0275 (8)0.0271 (7)0.0025 (6)0.0128 (6)0.0038 (6)
N540.0439 (10)0.0379 (9)0.0393 (9)0.0067 (8)0.0216 (8)0.0079 (7)
C20.0206 (8)0.0283 (8)0.0195 (8)0.0031 (6)0.0061 (6)0.0071 (6)
C40.0227 (8)0.0279 (9)0.0216 (8)0.0027 (7)0.0079 (6)0.0077 (7)
C50.0196 (8)0.0280 (8)0.0203 (8)0.0012 (6)0.0068 (6)0.0075 (6)
C60.0208 (8)0.0300 (9)0.0202 (8)0.0007 (7)0.0032 (6)0.0089 (6)
C210.0361 (10)0.0324 (10)0.0326 (10)0.0014 (8)0.0171 (8)0.0017 (8)
C310.0216 (8)0.0318 (9)0.0292 (9)0.0024 (7)0.0114 (7)0.0080 (7)
C510.0214 (8)0.0306 (9)0.0205 (8)0.0013 (7)0.0059 (6)0.0085 (7)
C520.0286 (9)0.0280 (9)0.0277 (9)0.0033 (7)0.0145 (7)0.0073 (7)
C530.0358 (10)0.0265 (9)0.0325 (9)0.0019 (7)0.0115 (8)0.0089 (7)
Geometric parameters (Å, º) top
S2—C21.7517 (16)C4—C51.439 (2)
S2—C211.798 (2)C5—C61.414 (2)
O4—C41.227 (2)C5—C511.454 (2)
O51—C511.234 (2)C21—H21A0.98
N1—C21.308 (2)C21—H21B0.98
N1—C61.372 (2)C21—H21C0.98
N3—C21.357 (2)C31—H31A0.98
N3—C41.426 (2)C31—H31B0.98
N3—C311.467 (2)C31—H31C0.98
N6—C61.333 (2)C51—C521.521 (2)
N6—H6A0.86C52—C531.466 (2)
N6—H6B0.86C52—H52A0.99
N54—C531.148 (2)C52—H52B0.99
C2—S2—C21101.69 (8)S2—C21—H21B109.5
C2—N1—C6117.43 (15)H21A—C21—H21B109.5
C2—N3—C4120.63 (14)S2—C21—H21C109.5
C2—N3—C31121.40 (14)H21A—C21—H21C109.5
C4—N3—C31117.92 (14)H21B—C21—H21C109.5
C6—N6—H6A118.3N3—C31—H31A109.5
C6—N6—H6B118.3N3—C31—H31B109.5
H6A—N6—H6B123.3H31A—C31—H31B109.5
N1—C2—N3125.29 (15)N3—C31—H31C109.5
N1—C2—S2119.62 (14)H31A—C31—H31C109.5
N3—C2—S2115.09 (12)H31B—C31—H31C109.5
O4—C4—N3117.80 (15)O51—C51—C5122.02 (16)
O4—C4—C5126.79 (15)O51—C51—C52118.08 (15)
N3—C4—C5115.41 (15)C5—C51—C52119.90 (15)
C6—C5—C4118.51 (15)C53—C52—C51109.50 (15)
C6—C5—C51120.44 (15)C53—C52—H52A109.8
C4—C5—C51121.05 (16)C51—C52—H52A109.8
N6—C6—N1113.80 (15)C53—C52—H52B109.8
N6—C6—C5123.53 (15)C51—C52—H52B109.8
N1—C6—C5122.66 (15)H52A—C52—H52B108.2
S2—C21—H21A109.5N54—C53—C52179.0 (2)
C6—N1—C2—N30.1 (2)O4—C4—C5—C512.3 (3)
C6—N1—C2—S2179.42 (12)N3—C4—C5—C51178.17 (14)
C4—N3—C2—N12.4 (3)C2—N1—C6—N6178.91 (15)
C31—N3—C2—N1179.81 (16)C2—N1—C6—C51.8 (2)
C4—N3—C2—S2176.97 (12)C4—C5—C6—N6179.74 (15)
C31—N3—C2—S20.4 (2)C51—C5—C6—N60.3 (3)
C21—S2—C2—N10.20 (16)C4—C5—C6—N11.1 (2)
C21—S2—C2—N3179.21 (13)C51—C5—C6—N1179.47 (14)
C2—N3—C4—O4176.64 (15)C6—C5—C51—O512.6 (3)
C31—N3—C4—O40.9 (2)C4—C5—C51—O51176.88 (16)
C2—N3—C4—C52.9 (2)C6—C5—C51—C52177.44 (15)
C31—N3—C4—C5179.56 (14)C4—C5—C51—C523.1 (2)
O4—C4—C5—C6178.26 (16)O51—C51—C52—C532.9 (2)
N3—C4—C5—C61.3 (2)C5—C51—C52—C53177.06 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N6—H6A···N54i0.862.693.354 (2)135
N6—H6B···O510.861.972.627 (2)132
N6—H6B···O51i0.862.293.019 (2)142
C52—H52B···O4ii0.992.783.068 (2)97
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y, z+1.
(II) 2-(6-amino-1,3-dimethyl-2,4-dioxo-1,2,3,4-tetrahydropyrimidin-5- ylcarbonyl)acetonitrile top
Crystal data top
C9H10N4O3F(000) = 928
Mr = 222.21Dx = 1.560 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 2171 reflections
a = 22.488 (3) Åθ = 3.8–27.5°
b = 5.0709 (5) ŵ = 0.12 mm1
c = 18.6139 (17) ÅT = 120 K
β = 116.956 (7)°Plate, yellow
V = 1892.0 (4) Å30.44 × 0.31 × 0.08 mm
Z = 8
Data collection top
Bruker Nonius KappaCCD
diffractometer
2171 independent reflections
Radiation source: Bruker Nonius FR591 rotating anode1603 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.042
Detector resolution: 9.091 pixels mm-1θmax = 27.5°, θmin = 3.8°
ϕ and ω scansh = 2828
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
k = 66
Tmin = 0.952, Tmax = 0.990l = 2424
20693 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.136H-atom parameters constrained
S = 1.13 w = 1/[σ2(Fo2) + (0.0634P)2 + 2.0582P]
where P = (Fo2 + 2Fc2)/3
2171 reflections(Δ/σ)max < 0.001
147 parametersΔρmax = 0.33 e Å3
0 restraintsΔρmin = 0.31 e Å3
Crystal data top
C9H10N4O3V = 1892.0 (4) Å3
Mr = 222.21Z = 8
Monoclinic, C2/cMo Kα radiation
a = 22.488 (3) ŵ = 0.12 mm1
b = 5.0709 (5) ÅT = 120 K
c = 18.6139 (17) Å0.44 × 0.31 × 0.08 mm
β = 116.956 (7)°
Data collection top
Bruker Nonius KappaCCD
diffractometer
2171 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
1603 reflections with I > 2σ(I)
Tmin = 0.952, Tmax = 0.990Rint = 0.042
20693 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.136H-atom parameters constrained
S = 1.13Δρmax = 0.33 e Å3
2171 reflectionsΔρmin = 0.31 e Å3
147 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O20.69274 (7)0.9978 (3)0.72376 (8)0.0280 (3)
O40.71908 (6)0.5298 (3)0.53324 (8)0.0253 (3)
O510.55262 (7)0.0760 (3)0.48546 (8)0.0298 (3)
N10.61700 (7)0.6740 (3)0.65906 (8)0.0209 (3)
N30.70333 (7)0.7731 (3)0.62494 (8)0.0196 (3)
N60.54059 (7)0.3452 (3)0.59615 (9)0.0240 (4)
N540.57387 (8)0.2473 (3)0.34920 (10)0.0299 (4)
C20.67293 (9)0.8262 (3)0.67273 (10)0.0205 (4)
C40.68496 (9)0.5683 (3)0.56851 (10)0.0193 (4)
C50.62672 (8)0.4180 (3)0.55553 (10)0.0187 (4)
C60.59369 (8)0.4762 (3)0.60310 (10)0.0192 (4)
C110.58251 (10)0.7358 (4)0.70790 (11)0.0260 (4)
C310.76370 (9)0.9255 (4)0.64153 (11)0.0232 (4)
C510.60227 (9)0.2107 (3)0.49680 (11)0.0209 (4)
C520.63546 (9)0.1489 (4)0.44328 (10)0.0217 (4)
C530.60076 (9)0.0734 (4)0.39029 (11)0.0233 (4)
H6A0.52160.37230.62650.029*
H6B0.52570.21960.56140.029*
H11A0.53710.79580.67260.039*
H11B0.60680.87530.74660.039*
H11C0.58070.57760.73710.039*
H31A0.75701.10980.65200.035*
H31B0.77280.91650.59480.035*
H31C0.80160.85190.68880.035*
H52A0.63350.30540.41050.026*
H52B0.68290.10330.47710.026*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O20.0305 (7)0.0294 (7)0.0248 (7)0.0073 (6)0.0130 (6)0.0073 (6)
O40.0249 (7)0.0286 (7)0.0276 (7)0.0052 (5)0.0164 (6)0.0041 (5)
O510.0295 (7)0.0320 (8)0.0354 (8)0.0112 (6)0.0213 (6)0.0119 (6)
N10.0213 (8)0.0244 (8)0.0185 (7)0.0014 (6)0.0105 (6)0.0022 (6)
N30.0189 (7)0.0214 (8)0.0181 (7)0.0027 (6)0.0080 (6)0.0003 (6)
N60.0238 (8)0.0265 (8)0.0262 (8)0.0058 (6)0.0154 (7)0.0054 (6)
N540.0315 (9)0.0321 (9)0.0278 (8)0.0030 (7)0.0149 (7)0.0060 (7)
C20.0213 (9)0.0199 (8)0.0181 (8)0.0003 (7)0.0071 (7)0.0016 (7)
C40.0208 (8)0.0206 (8)0.0159 (8)0.0009 (7)0.0078 (7)0.0018 (7)
C50.0189 (8)0.0198 (8)0.0187 (8)0.0001 (7)0.0097 (7)0.0006 (7)
C60.0190 (8)0.0206 (9)0.0172 (8)0.0012 (7)0.0074 (7)0.0022 (7)
C110.0285 (10)0.0298 (10)0.0246 (9)0.0038 (8)0.0164 (8)0.0050 (8)
C310.0220 (9)0.0243 (9)0.0227 (9)0.0033 (7)0.0097 (7)0.0004 (7)
C510.0202 (9)0.0224 (9)0.0211 (8)0.0008 (7)0.0103 (7)0.0014 (7)
C520.0230 (9)0.0223 (9)0.0212 (9)0.0018 (7)0.0112 (7)0.0012 (7)
C530.0253 (9)0.0276 (10)0.0219 (9)0.0016 (8)0.0149 (8)0.0016 (8)
Geometric parameters (Å, º) top
O2—C21.214 (2)C4—C51.438 (2)
O4—C41.231 (2)C5—C61.421 (2)
O51—C511.243 (2)C5—C511.434 (2)
N1—C61.368 (2)C11—H11A0.98
N1—C21.397 (2)C11—H11B0.98
N1—C111.472 (2)C11—H11C0.98
N3—C21.372 (2)C31—H31A0.98
N3—C41.400 (2)C31—H31B0.98
N3—C311.468 (2)C31—H31C0.98
N6—C61.320 (2)C51—C521.524 (2)
N6—H6A0.86C52—C531.468 (3)
N6—H6B0.86C52—H52A0.99
N54—C531.144 (2)C52—H52B0.99
C6—N1—C2123.13 (14)N1—C11—H11B109.5
C6—N1—C11119.96 (15)H11A—C11—H11B109.5
C2—N1—C11116.92 (14)N1—C11—H11C109.5
C2—N3—C4124.58 (15)H11A—C11—H11C109.5
C2—N3—C31116.46 (14)H11B—C11—H11C109.5
C4—N3—C31118.60 (14)N3—C31—H31A109.5
C6—N6—H6A123.5N3—C31—H31B109.5
C6—N6—H6B118.2H31A—C31—H31B109.5
H6A—N6—H6B118.2N3—C31—H31C109.5
O2—C2—N3122.26 (16)H31A—C31—H31C109.5
O2—C2—N1121.28 (16)H31B—C31—H31C109.5
N3—C2—N1116.46 (15)O51—C51—C5122.46 (16)
O4—C4—N3118.32 (15)O51—C51—C52116.39 (15)
O4—C4—C5124.55 (16)C5—C51—C52121.14 (15)
N3—C4—C5117.13 (15)C53—C52—C51109.19 (14)
C6—C5—C51119.95 (15)C53—C52—H52A109.8
C6—C5—C4118.61 (15)C51—C52—H52A109.8
C51—C5—C4121.44 (15)C53—C52—H52B109.8
N6—C6—N1117.44 (15)C51—C52—H52B109.8
N6—C6—C5122.65 (16)H52A—C52—H52B108.3
N1—C6—C5119.91 (15)N54—C53—C52179.7 (3)
N1—C11—H11A109.5
C4—N3—C2—O2176.18 (16)N3—C4—C5—C51177.57 (15)
C31—N3—C2—O23.2 (2)C2—N1—C6—N6179.59 (16)
C4—N3—C2—N14.6 (2)C11—N1—C6—N60.8 (2)
C31—N3—C2—N1177.55 (14)C2—N1—C6—C50.1 (3)
C6—N1—C2—O2178.93 (16)C11—N1—C6—C5179.50 (15)
C11—N1—C2—O21.5 (3)C51—C5—C6—N60.4 (3)
C6—N1—C2—N31.8 (2)C4—C5—C6—N6178.84 (16)
C11—N1—C2—N3177.79 (15)C51—C5—C6—N1179.95 (15)
C2—N3—C4—O4175.09 (16)C4—C5—C6—N10.8 (2)
C31—N3—C4—O42.3 (2)C6—C5—C51—O510.3 (3)
C2—N3—C4—C55.3 (2)C4—C5—C51—O51178.93 (17)
C31—N3—C4—C5178.16 (15)C6—C5—C51—C52178.27 (15)
O4—C4—C5—C6177.22 (16)C4—C5—C51—C522.5 (3)
N3—C4—C5—C63.2 (2)O51—C51—C52—C532.2 (2)
O4—C4—C5—C512.0 (3)C5—C51—C52—C53179.14 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N6—H6A···N54i0.862.473.206 (2)144
N6—H6B···O510.861.922.586 (2)134
N6—H6B···O51i0.862.172.894 (2)141
C52—H52B···O4ii0.992.403.227 (2)141
Symmetry codes: (i) x+1, y, z+1; (ii) x+3/2, y+1/2, z+1.
(III) 2-cyano-N-[6-methoxy-2-(methylsulfanyl)pyrimidin-4-yl]acetamide top
Crystal data top
C9H10N4O2SF(000) = 992
Mr = 238.27Dx = 1.445 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 2505 reflections
a = 17.106 (3) Åθ = 3.9–27.5°
b = 11.8218 (13) ŵ = 0.29 mm1
c = 13.7187 (19) ÅT = 120 K
β = 127.836 (8)°Block, yellow
V = 2191.0 (6) Å30.78 × 0.52 × 0.33 mm
Z = 8
Data collection top
Bruker Nonius KappaCCD
diffractometer
2505 independent reflections
Radiation source: Bruker Nonius FR591 rotating anode2078 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.067
Detector resolution: 9.091 pixels mm-1θmax = 27.5°, θmin = 3.9°
ϕ and ω scansh = 2222
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
k = 1515
Tmin = 0.807, Tmax = 0.911l = 1717
24464 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.111H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0505P)2 + 2.9264P]
where P = (Fo2 + 2Fc2)/3
2505 reflections(Δ/σ)max < 0.001
147 parametersΔρmax = 0.34 e Å3
0 restraintsΔρmin = 0.44 e Å3
Crystal data top
C9H10N4O2SV = 2191.0 (6) Å3
Mr = 238.27Z = 8
Monoclinic, C2/cMo Kα radiation
a = 17.106 (3) ŵ = 0.29 mm1
b = 11.8218 (13) ÅT = 120 K
c = 13.7187 (19) Å0.78 × 0.52 × 0.33 mm
β = 127.836 (8)°
Data collection top
Bruker Nonius KappaCCD
diffractometer
2505 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
2078 reflections with I > 2σ(I)
Tmin = 0.807, Tmax = 0.911Rint = 0.067
24464 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.111H-atom parameters constrained
S = 1.09Δρmax = 0.34 e Å3
2505 reflectionsΔρmin = 0.44 e Å3
147 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S20.40944 (3)0.75318 (3)0.56284 (4)0.02526 (15)
O40.23850 (8)0.39416 (10)0.48389 (11)0.0251 (3)
O610.54762 (9)0.19949 (10)0.66549 (12)0.0266 (3)
N10.49741 (10)0.55180 (11)0.61921 (12)0.0206 (3)
N30.32428 (10)0.56000 (11)0.52420 (13)0.0222 (3)
N60.58385 (10)0.38726 (11)0.67299 (12)0.0204 (3)
N640.74502 (12)0.04023 (14)0.73883 (15)0.0324 (4)
C20.41309 (12)0.60493 (13)0.57118 (14)0.0200 (3)
C40.32368 (12)0.44820 (14)0.52908 (15)0.0206 (3)
C50.40685 (12)0.38007 (13)0.57797 (14)0.0204 (3)
C60.49251 (12)0.43741 (13)0.62155 (14)0.0193 (3)
C210.53493 (14)0.78768 (15)0.62714 (18)0.0307 (4)
C410.15123 (13)0.46402 (15)0.42872 (18)0.0294 (4)
C610.60612 (13)0.27475 (14)0.69313 (15)0.0209 (3)
C620.71582 (13)0.25209 (14)0.75964 (16)0.0245 (4)
C630.73146 (12)0.13320 (15)0.74687 (16)0.0256 (4)
H60.63090.43420.69670.024*
H50.40440.30000.58090.024*
H21A0.57940.76260.71330.046*
H21B0.54110.86970.62340.046*
H21C0.55270.74960.57970.046*
H41A0.15970.51370.49180.044*
H41B0.09320.41560.39420.044*
H41C0.14170.51010.36280.044*
H62A0.74000.30050.72430.029*
H62B0.75390.27120.84820.029*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S20.0298 (3)0.0135 (2)0.0322 (2)0.00169 (15)0.0189 (2)0.00029 (15)
O40.0194 (6)0.0168 (6)0.0350 (7)0.0006 (4)0.0146 (5)0.0001 (5)
O610.0248 (6)0.0162 (6)0.0365 (7)0.0004 (5)0.0176 (6)0.0021 (5)
N10.0239 (7)0.0156 (6)0.0218 (7)0.0011 (5)0.0138 (6)0.0002 (5)
N30.0239 (7)0.0169 (7)0.0230 (7)0.0027 (5)0.0128 (6)0.0004 (5)
N60.0189 (7)0.0143 (6)0.0253 (7)0.0006 (5)0.0122 (6)0.0011 (5)
N640.0323 (9)0.0251 (8)0.0344 (8)0.0066 (6)0.0178 (7)0.0016 (6)
C20.0240 (8)0.0161 (7)0.0198 (7)0.0011 (6)0.0134 (7)0.0002 (6)
C40.0200 (8)0.0184 (7)0.0230 (8)0.0009 (6)0.0129 (7)0.0007 (6)
C50.0218 (8)0.0147 (7)0.0224 (8)0.0008 (6)0.0124 (7)0.0000 (6)
C60.0224 (8)0.0178 (8)0.0183 (7)0.0036 (6)0.0127 (7)0.0016 (6)
C210.0346 (10)0.0208 (8)0.0359 (10)0.0046 (7)0.0212 (9)0.0021 (7)
C410.0205 (8)0.0208 (8)0.0409 (10)0.0014 (7)0.0157 (8)0.0019 (7)
C610.0221 (8)0.0193 (7)0.0201 (7)0.0027 (6)0.0123 (7)0.0021 (6)
C620.0213 (8)0.0187 (8)0.0271 (8)0.0012 (6)0.0116 (7)0.0008 (6)
C630.0201 (8)0.0255 (9)0.0257 (8)0.0029 (7)0.0113 (7)0.0022 (7)
Geometric parameters (Å, º) top
S2—C21.7548 (16)C4—C51.397 (2)
S2—C211.797 (2)C5—C61.375 (2)
O4—C41.344 (2)C5—H50.95
O4—C411.448 (2)C21—H21A0.98
O61—C611.213 (2)C21—H21B0.98
N1—C21.320 (2)C21—H21C0.98
N1—C61.356 (2)C41—H41A0.98
N3—C41.324 (2)C41—H41B0.98
N3—C21.343 (2)C41—H41C0.98
N6—C611.364 (2)C61—C621.525 (2)
N6—C61.392 (2)C62—C631.461 (2)
N6—H60.86C62—H62A0.99
N64—C631.143 (2)C62—H62B0.99
C2—S2—C21102.16 (8)H21A—C21—H21B109.5
C4—O4—C41116.63 (13)S2—C21—H21C109.5
C2—N1—C6114.94 (14)H21A—C21—H21C109.5
C4—N3—C2114.34 (14)H21B—C21—H21C109.5
C61—N6—C6127.23 (14)O4—C41—H41A109.5
C61—N6—H6118.2O4—C41—H41B109.5
C6—N6—H6114.6H41A—C41—H41B109.5
N1—C2—N3128.25 (15)O4—C41—H41C109.5
N1—C2—S2119.47 (12)H41A—C41—H41C109.5
N3—C2—S2112.28 (11)H41B—C41—H41C109.5
N3—C4—O4119.40 (14)O61—C61—N6125.27 (16)
N3—C4—C5124.24 (15)O61—C61—C62122.32 (15)
O4—C4—C5116.35 (14)N6—C61—C62112.38 (14)
C6—C5—C4115.12 (15)C63—C62—C61110.23 (14)
C6—C5—H5122.4C63—C62—H62A109.6
C4—C5—H5122.4C61—C62—H62A109.6
N1—C6—C5123.11 (14)C63—C62—H62B109.6
N1—C6—N6111.72 (14)C61—C62—H62B109.6
C5—C6—N6125.17 (15)H62A—C62—H62B108.1
S2—C21—H21A109.5N64—C63—C62178.9 (2)
S2—C21—H21B109.5
C6—N1—C2—N30.6 (2)O4—C4—C5—C6178.92 (14)
C6—N1—C2—S2179.95 (11)C2—N1—C6—C50.2 (2)
C4—N3—C2—N10.8 (2)C2—N1—C6—N6179.85 (13)
C4—N3—C2—S2179.73 (12)C4—C5—C6—N10.7 (2)
C21—S2—C2—N11.00 (15)C4—C5—C6—N6179.37 (15)
C21—S2—C2—N3178.54 (12)C61—N6—C6—N1177.73 (15)
C2—N3—C4—O4179.59 (14)C61—N6—C6—C52.2 (3)
C2—N3—C4—C50.2 (2)C6—N6—C61—O612.2 (3)
C41—O4—C4—N31.8 (2)C6—N6—C61—C62175.91 (15)
C41—O4—C4—C5177.67 (15)O61—C61—C62—C6318.6 (2)
N3—C4—C5—C60.5 (2)N6—C61—C62—C63163.22 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N6—H6···N64i0.862.132.993 (2)176
C5—H5···O610.952.302.872 (2)118
Symmetry code: (i) x+3/2, y+1/2, z+3/2.
(IV) 2-cyano-N-[6-chloro-2-(methylsulfanyl)pyrimidin-4-yl]acetamide top
Crystal data top
C8H7ClN4OSF(000) = 496
Mr = 242.69Dx = 1.579 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2336 reflections
a = 12.8655 (7) Åθ = 3.2–27.5°
b = 8.4390 (2) ŵ = 0.56 mm1
c = 9.9327 (15) ÅT = 120 K
β = 108.827 (13)°Block, colourless
V = 1020.72 (18) Å30.35 × 0.27 × 0.17 mm
Z = 4
Data collection top
Bruker Nonius KappaCCD
diffractometer
2336 independent reflections
Radiation source: Bruker Nonius FR591 rotating anode1676 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.075
Detector resolution: 9.091 pixels mm-1θmax = 27.5°, θmin = 3.2°
ϕ and ω scansh = 1616
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
k = 1010
Tmin = 0.843, Tmax = 0.910l = 1212
22495 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.061Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.175H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0836P)2 + 2.4077P]
where P = (Fo2 + 2Fc2)/3
2336 reflections(Δ/σ)max < 0.001
137 parametersΔρmax = 0.66 e Å3
0 restraintsΔρmin = 0.64 e Å3
Crystal data top
C8H7ClN4OSV = 1020.72 (18) Å3
Mr = 242.69Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.8655 (7) ŵ = 0.56 mm1
b = 8.4390 (2) ÅT = 120 K
c = 9.9327 (15) Å0.35 × 0.27 × 0.17 mm
β = 108.827 (13)°
Data collection top
Bruker Nonius KappaCCD
diffractometer
2336 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
1676 reflections with I > 2σ(I)
Tmin = 0.843, Tmax = 0.910Rint = 0.075
22495 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0610 restraints
wR(F2) = 0.175H-atom parameters constrained
S = 1.08Δρmax = 0.66 e Å3
2336 reflectionsΔρmin = 0.64 e Å3
137 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl40.18155 (7)0.13085 (10)0.59161 (9)0.0283 (3)
S20.10158 (8)0.73720 (10)0.64821 (9)0.0268 (3)
O610.4391 (2)0.3695 (3)0.3599 (3)0.0316 (6)
N10.2288 (2)0.6376 (3)0.5108 (3)0.0224 (6)
N30.1496 (2)0.4326 (4)0.6154 (3)0.0229 (6)
N60.3405 (2)0.5882 (3)0.3773 (3)0.0251 (6)
N640.6028 (3)0.4459 (4)0.1565 (3)0.0320 (7)
C20.1671 (3)0.5848 (4)0.5871 (3)0.0212 (7)
C40.2027 (3)0.3296 (4)0.5620 (3)0.0226 (7)
C50.2705 (3)0.3656 (4)0.4834 (4)0.0253 (7)
C60.2807 (3)0.5265 (4)0.4603 (3)0.0234 (7)
C210.0339 (3)0.6320 (4)0.7537 (4)0.0305 (8)
C610.4108 (3)0.5051 (4)0.3262 (4)0.0244 (7)
C620.4490 (3)0.5977 (5)0.2199 (4)0.0333 (9)
C630.5358 (3)0.5140 (4)0.1834 (4)0.0266 (8)
H60.33640.68900.36400.030*
H50.30730.28660.44770.030*
H21A0.08890.57870.83270.046*
H21B0.01610.55300.69440.046*
H21C0.00800.70690.79140.046*
H62A0.38600.61540.13250.040*
H62B0.47670.70250.26060.040*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl40.0356 (5)0.0230 (4)0.0307 (5)0.0000 (3)0.0170 (4)0.0027 (3)
S20.0313 (5)0.0264 (5)0.0278 (5)0.0001 (3)0.0164 (4)0.0030 (3)
O610.0366 (15)0.0275 (14)0.0401 (15)0.0076 (11)0.0254 (12)0.0073 (11)
N10.0266 (15)0.0221 (14)0.0209 (14)0.0005 (11)0.0111 (12)0.0004 (11)
N30.0223 (14)0.0301 (15)0.0174 (13)0.0007 (12)0.0077 (11)0.0008 (12)
N60.0313 (16)0.0217 (14)0.0273 (15)0.0024 (12)0.0166 (13)0.0024 (12)
N640.0368 (18)0.0324 (17)0.0322 (17)0.0047 (14)0.0186 (14)0.0020 (14)
C20.0241 (17)0.0229 (16)0.0168 (15)0.0021 (13)0.0069 (13)0.0033 (13)
C40.0234 (17)0.0231 (16)0.0176 (15)0.0029 (13)0.0015 (13)0.0028 (13)
C50.0288 (19)0.0261 (18)0.0241 (17)0.0002 (14)0.0128 (15)0.0022 (14)
C60.0246 (17)0.0267 (17)0.0212 (16)0.0006 (14)0.0107 (14)0.0037 (13)
C210.037 (2)0.033 (2)0.0288 (19)0.0022 (16)0.0215 (16)0.0028 (15)
C610.0274 (18)0.0249 (17)0.0227 (17)0.0014 (14)0.0105 (14)0.0004 (14)
C620.036 (2)0.0321 (19)0.041 (2)0.0075 (16)0.0259 (18)0.0093 (17)
C630.0327 (19)0.0250 (17)0.0245 (17)0.0026 (15)0.0125 (15)0.0013 (14)
Geometric parameters (Å, º) top
Cl4—C41.740 (3)N64—C631.136 (5)
S2—C21.750 (3)C4—C51.379 (5)
S2—C211.798 (4)C5—C61.390 (5)
O61—C611.215 (4)C5—H50.95
N1—C61.339 (4)C21—H21A0.98
N1—C21.339 (4)C21—H21B0.98
N3—C41.318 (5)C21—H21C0.98
N3—C21.349 (4)C61—C621.516 (5)
N6—C611.365 (4)C62—C631.463 (5)
N6—C61.398 (4)C62—H62A0.99
N6—H60.86C62—H62B0.99
C2—S2—C21102.54 (17)C5—C6—N6124.0 (3)
C6—N1—C2115.9 (3)S2—C21—H21A109.5
C4—N3—C2113.7 (3)S2—C21—H21B109.5
C61—N6—C6125.8 (3)H21A—C21—H21B109.5
C61—N6—H6117.8S2—C21—H21C109.5
C6—N6—H6116.1H21A—C21—H21C109.5
N1—C2—N3127.1 (3)H21B—C21—H21C109.5
N1—C2—S2113.1 (3)O61—C61—N6123.8 (3)
N3—C2—S2119.7 (2)O61—C61—C62122.8 (3)
N3—C4—C5125.9 (3)N6—C61—C62113.4 (3)
N3—C4—Cl4116.0 (3)C63—C62—C61111.7 (3)
C5—C4—Cl4118.1 (3)C63—C62—H62A109.3
C4—C5—C6114.8 (3)C61—C62—H62A109.3
C4—C5—H5122.6C63—C62—H62B109.3
C6—C5—H5122.6C61—C62—H62B109.3
N1—C6—C5122.5 (3)H62A—C62—H62B107.9
N1—C6—N6113.3 (3)N64—C63—C62178.3 (4)
C6—N1—C2—N31.8 (5)C2—N1—C6—C50.9 (5)
C6—N1—C2—S2179.6 (2)C2—N1—C6—N6177.8 (3)
C4—N3—C2—N11.5 (5)C4—C5—C6—N10.1 (5)
C4—N3—C2—S2179.2 (2)C4—C5—C6—N6176.5 (3)
C21—S2—C2—N1176.6 (3)C61—N6—C6—N1172.1 (3)
C21—S2—C2—N35.4 (3)C61—N6—C6—C511.1 (6)
C2—N3—C4—C50.3 (5)C6—N6—C61—O618.3 (6)
C2—N3—C4—Cl4178.8 (2)C6—N6—C61—C62170.5 (3)
N3—C4—C5—C60.4 (5)O61—C61—C62—C639.4 (5)
Cl4—C4—C5—C6178.1 (3)N6—C61—C62—C63171.8 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N6—H6···N64i0.862.343.149 (4)158
C5—H5···O610.952.252.816 (5)117
C62—H62B···N64i0.992.553.334 (5)136
C62—H62B···O61i0.992.332.949 (5)120
Symmetry code: (i) x+1, y+1/2, z+1/2.

Experimental details

(I)(II)(III)(IV)
Crystal data
Chemical formulaC9H10N4O2SC9H10N4O3C9H10N4O2SC8H7ClN4OS
Mr238.27222.21238.27242.69
Crystal system, space groupTriclinic, P1Monoclinic, C2/cMonoclinic, C2/cMonoclinic, P21/c
Temperature (K)120120120120
a, b, c (Å)6.6449 (3), 8.7262 (3), 9.4092 (2)22.488 (3), 5.0709 (5), 18.6139 (17)17.106 (3), 11.8218 (13), 13.7187 (19)12.8655 (7), 8.4390 (2), 9.9327 (15)
α, β, γ (°)76.390 (3), 81.079 (2), 82.654 (4)90, 116.956 (7), 9090, 127.836 (8), 9090, 108.827 (13), 90
V3)521.48 (3)1892.0 (4)2191.0 (6)1020.72 (18)
Z2884
Radiation typeMo KαMo KαMo KαMo Kα
µ (mm1)0.300.120.290.56
Crystal size (mm)0.56 × 0.33 × 0.320.44 × 0.31 × 0.080.78 × 0.52 × 0.330.35 × 0.27 × 0.17
Data collection
DiffractometerBruker Nonius KappaCCD
diffractometer
Bruker Nonius KappaCCD
diffractometer
Bruker Nonius KappaCCD
diffractometer
Bruker Nonius KappaCCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Multi-scan
(SADABS; Sheldrick, 2003)
Multi-scan
(SADABS; Sheldrick, 2003)
Multi-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.849, 0.9100.952, 0.9900.807, 0.9110.843, 0.910
No. of measured, independent and
observed [I > 2σ(I)] reflections
14244, 2386, 1902 20693, 2171, 1603 24464, 2505, 2078 22495, 2336, 1676
Rint0.0390.0420.0670.075
(sin θ/λ)max1)0.6490.6500.6500.651
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.107, 1.09 0.048, 0.136, 1.13 0.040, 0.111, 1.09 0.061, 0.175, 1.08
No. of reflections2386217125052336
No. of parameters147147147137
H-atom treatmentH-atom parameters constrainedH-atom parameters constrainedH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.37, 0.350.33, 0.310.34, 0.440.66, 0.64

Computer programs: COLLECT (Nonius, 1999), DIRAX/LSQ (Duisenberg et al., 2000), EVALCCD (Duisenberg et al., 2003), SIR2004 (Burla et al., 2005), OSCAIL (McArdle, 2003) and SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2003), SHELXL97 (Sheldrick, 2008) and PRPKAPPA (Ferguson, 1999).

Selected geometric parameters (Å, °) for compounds (I)–(IV) top
Parameter(I)(II)(III)(IV)
N1-C21.308 (2)1.397 (2)1.320 (2)1.339 (4)
C2-N31.357 (2)1.372 (2)1.343 (2)1.349 (4)
N3-C41.426 (2)1.400 (2)1.324 (2)1.318 (4)
C4-C51.439 (2)1.438 (2)1.397 (2)1.379 (5)
C5-C61.414 (2)1.421 (2)1.375 (2)1.390 (5)
C6-N11.372 (2)1.368 (2)1.356 (2)1.339 (4)
C4-O41.227 (2)1.231 (2)1.344 (2)
C5-C511.454 (2)1.434 (2)
C51-O511.234 (2)1.243 (2)
C6-N61.333 (2)1.320 (2)1.392 (2)1.398 (4)
N1-C2-S2-C210.20 (16)1.00 (15)-176.6 (3)
C6-N6-C61-O612.2 (3)-8.3 (6)
Hydrogen bonds and short inter- and intra-molecular contacts (Å, °) for compounds (I)–(IV) top
CompoundD-H···AD-HH···AD···AD-H···A
(I)N6-H6A···N54i0.862.693.354 (2)135
N6-H6B···O510.861.972.627 (2)132
N6-H6B···O51i0.862.293.019 (2)142
C52-H52B···O4ii0.992.783.068 (3)97
(II)N6-H6A···N54iii0.862.473.206 (3)144
N6-H6B···O510.861.922.586 (2)134
N6-H6B···O51iii0.862.172.894 (2)141
C52-H52B···O4iv0.992.403.227 (3)141
(III)N6-H6···N64v0.862.132.993 (3)176
C5-H5···O610.952.302.872 (2)118
C41-H41B···O61vi0.982.433.404 (3)172
(IV)N6-H6···N64vii0.862.343.149 (4)158
C5-H5···O610.952.252.816 (5)117
C62-H62B···O61vii0.992.332.949 (5)120
C62-H62B···N64vii0.992.553.334 (5)136
Symmetry codes: (i) 1 - x, 1 - y, 1 - z; (ii) -x, -y, 1 - z; (iii) 1 - x, -y, 1 - z; (iv) 3/2 - x, 1/2 - y, 1 - z; (v) 3/2 - x, 1/2 + y, 3/2 - z; (vi) 1/2 - x, 1/2 - y, 1 - z; (vii) 1 - x, 1/2 + y, 1/2 - z.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds