Download citation
Download citation
link to html
The structures of the 1:1 proton-transfer compounds of 4,5-di­chloro­phthalic acid with 8-hydroxy­quinoline, 8-amino­quinoline and quinoline-2-carboxylic acid (quinaldic acid), namely anhydrous 8-hydroxy­quinolinium 2-carb­oxy-4,5-di­chloro­benzoate, C9H8NO+·C8H3Cl2O4, (I), 8-amino­quino­lin­ium 2-carb­oxy-4,5-dichloro­benzoate, C9H9N2+·C8H3Cl2O4, (II), and the adduct hydrate 2-car­boxy­quino­linium 2-car­boxy-4,5-dichloro­benzoate quinolinium-2-car­box­yl­ate mono­hy­drate, C10H8NO2+·C8H3Cl2O4·C10H7NO2·H2O, (III), have been determined at 130 K. Compounds (I) and (II) are isomorphous and all three compounds have one-dimensional hydrogen-bonded chain structures, formed in (I) through O—H...Ocarboxyl extensions and in (II) through N+—H...Ocarboxyl extensions of cation–anion pairs. In (III), a hydrogen-bonded cyclic R22(10) pseudo-dimer unit comprising a proton­ated quinaldic acid cation and a zwitterionic quinaldic acid adduct mol­ecule is found and is propagated through carboxylic acid O—H...Ocarboxyl and water O—H...Ocarboxyl inter­actions. In both (I) and (II), there are also cation–anion aromatic ring π–π associations. This work further illustrates the utility of both hydrogen phthalate anions and interactive-group-substituted quinoline cations in the formation of low-dimensional hydrogen-bonded structures.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270108004034/gd3186sup1.cif
Contains datablocks global, I, II, III

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270108004034/gd3186Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270108004034/gd3186IIsup3.hkl
Contains datablock II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270108004034/gd3186IIIsup4.hkl
Contains datablock III

CCDC references: 682839; 682840; 682841

Comment top

The crystal structures of the proton-transfer compounds of 4,5-dichlorophthalic acid (DCPA) are not common, being limited to tetramethylammonium hydrogen 4,5-dichlorophthalate (Bozkurt et al., 2006), naphthalene-1,8-bis(dimethylammonium) 4,5-dichlorophthalate (Mallinson et al., 2003), brucinium hydrogen 4,5-dichlorophthalate (Smith, Wermuth, Healy & White, 2007 or Smith, Wermuth & White, 2007 ?) and the 1:1 salts with 4-chloroaniline, 1,10-phenanthroline and the three isomeric monoaminobenzoic acids (Smith et al., 2008a). A non-transfer adduct with trans-cinnamamide is also known (Hosomi et al., 2000). In the hydrogen 4,5-dichlorophthalates, as well as other substituted hydrogen phthalate salts (Glidewell et al., 2003, 2005; Smith et al., 2008), low-dimensional hydrogen-bonded structures are common. It was considered that, combined with the heteroaromatic Lewis bases derived from quinoline, namely the interactive functional group-substituted analogues 8-hydroxyquinoline (quinolin-8-ol), 8-aminoquinoline and quinoline-2-carboxylic acid (quinaldic acid), DCPA would give one-dimensional 1:1 proton-transfer salts. This is found to be the case, with the determination of the structures of 8-hydroxyquinolinium 2-carboxy-4,5-dichlorobenzoate, C9H8NO+·C8H3Cl2O4-, (I), 8-aminoquinolinium 2-carboxy-4,5-dichlorobenzoate, C9H9N2+·C8H3Cl2O4-, (II), and the adduct hydrate 2-carboxyquinolinium 2-carboxy-4,5-dichlorobenzoate quinolinium-2-carboxylate monohydrate, C10H8NO2+·C8H3Cl2O4-·C10H7NO2·H2O, (III), reported here.

In all three compounds, proton transfer has occurred, with the quinolinium group giving a primary N+H···Ocarboxyl hydrogen-bonding interaction (Tables 1–3). However, in (I) and (II), which are isomorphous, the association is heteromeric (Figs. 1 and 2), whereas in (III), the primary association is homomeric, forming a cation–adduct molecule pseudodimer (Fig. 3). All three compounds are extended into one-dimensional chain structures [graph set C(11) in (I) and (II), and C(13) in (III) (Etter et al., 1990)] by secondary hydrogen bonding involving the second functional groups of both the cation and anion, as well as, in the case of (III), the water molecule of solvation (Figs. 3–6). In (I), the single intermolecular cation–anion N+—H···O association is extended through the 8-hydroxy group of the cation, giving zigzag chains analogous to those found in other proton-transfer compounds of 8-hydroxyquinoline (Smith, Wermuth & White, 2001; Smith, Wermuth & Healy, 2004 or Smith, Wermuth & White, 2004 ?). There is also a short intramolecular N1A—H···O8A contact [2.689 (3) Å], common in these compounds. In (II), duplex asymmetric N+—H···O hydrogen bonds form a primary cyclic R22(9) association which encloses an intramolecular N+H···Namine contact [N1A—H···N8A = 2.829 (2) Å]. Propagation down a 21 screw axis in the unit cell [as is also found in (I)] is through a three-centre aminium N+H···O,O'carboxyl association. Again, this is analogous to the mode of propagation found in a number of other proton-transfer compounds of 8-aminoquinoline with aromatic carboxylic acids (Smith, Wermuth, Bott et al., 2001).

With the adduct hydrate, (III), the basic hydrogen-bonding pattern is quite different. The asymmetric unit comprises the protonated quinaldic acid cation, the hydrogen 4,5-dichlorophthalate anion, a zwitterionic quinaldic acid adduct molecule and a water molecule of solvation (Fig. 3). The two quinaldic acid species form a hydrogen-bonded cyclic pseudodimer through N+H···Ocarboxyl interactions [graph set R22(10)]. These units are similar to those found in the structures of the quinolinium-2-carboxylate adducts of the 1:1 proton-transfer salts of quinaldic acid with both 5-sulfosalicylic acid (Smith, Wermuth & Healy, 2004 or Smith, Wermuth & White, 2004 ?) and 2,4,6-trinitrobenzenesulfonic acid (Smith, Wermuth & White, 2007). The quinaldic acid adduct species is also found to be zwitterionic in both the parent acid structure (Dobrzyńska & Jerzykiewicz, 2004) and in the non-transfer adduct compound L-tartaric acid–quinaldic acid (1/2) (Smith et al., 2006). However, they are absent in the 1:1 proton-transfer compound 2-carboxyquinolinium 3,5-dinitrosalicylate (Smith, Wermuth, Healy & White, 2007).

With both (I) and (II) there are additional ππ interactions due to partial aromatic ring overlap of the anion (C1–C6) with C5A–C10A of the cation [ring centroid separation 3.6642 (13) Å and dihedral angle 1.29 (1)° in (I), compared with 3.6715 (9) Å and and 2.16 (1)° in (II)].

The anion species in (I) and (II) are conformationally similar but differ significantly from that found in (III). Both (I) and (II) have a short intramolecular carboxylic acid OH···Ocarboxylate hydrogen bond, resulting in the anions being essentially planar, with C2—C1—C11—O11 torsion angles of 171.3 (2)° in (I) and 175.88 (15)° in (II), and C1—C2—C21—O22 torsion angles of -176.6 (2)° in (I) and -174.38 (18)° in (II). With (III), the two carboxyl groups of the anion are rotated out of the plane of the benzene ring, with corresponding torsion angles of -38.2 (3) and 125.4 (2)°. In (III), the carboxylic acid groups of both quinaldic acid species (A and B) are essentially planar, with N1—C2—C21—O21 torsion angles of -177.7 (2) and 173.8 (2)°, respectively. In addition, there are solvent-accessible voids of 171 Å3 in the structure of (III).

Related literature top

For related literature, see: Bozkurt et al. (2006); Dobrzyńska & Jerzykiewicz (2004); Etter et al. (1990); Glidewell et al. (2003, 2005); Hosomi et al. (2000); Mallinson et al. (2003); Smith et al. (2006, 2008, 2008a); Smith, Wermuth & Healy (2004); Smith, Wermuth & White (2001, 2004, 2007); Smith, Wermuth, Bott, White & Willis (2001); Smith, Wermuth, Healy & White (2007).

Experimental top

Compounds (I)–(III) were synthesized by heating together for 10 min under reflux 1 mmol quantities of 4,5-dichlorophthalic acid and, respectively, 8-hydroxyquinoline (quinolin-8-ol), 8-aminoquinoline and quinoline-2-carboxylic acid (quinaldic acid) in 50 ml of ethanol–water (8:2 v/v, 50 ml) for (I) and (III), or 95% ethanol (50 ml) for (II). Compound (I) was obtained as pale-yellow flat prismatic crystals (m.p. 499 K), (II) as pale-brown flat prisms (m.p. 471 K) and (III) as colourless prisms (m.p. 453–455 K), after partial room-temperature evaporation of solvent.

Refinement top

In all compounds, H atoms potentially involved in hydrogen-bonding interactions were located by difference methods and their positional and isotropic displacement parameters were refined, giving distance ranges N—H = 0.80 (2)–0.97 (3) Å and O—H = 0.84 (4)–1.01 (3) Å. All other H atoms were included at calculated positions, with C—H = 0.93–0.95 Å, and treated as riding, with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2007) for (I); SMART (Bruker, 2000) for (II), (III). Cell refinement: CrysAlis RED (Oxford Diffraction, 2007) for (I); SMART (Bruker, 2000) for (II), (III). Data reduction: CrysAlis RED (Oxford Diffraction, 2007) for (I); SAINT (Bruker, 1999) for (II), (III). For all compounds, program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The molecular configuration and atom-numbering scheme for the 8-hydroxyquinolinium cation and the 2-carboxy-4,5-dichlorobenzoate anion in (I). The interspecies hydrogen bond is shown as a dashed line. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 2] Fig. 2. The molecular configuration and atom-numbering scheme for the 8-aminoquinolinium cation and the 2-carboxy-4,5-dichlorobenzoate anion in (II). The interspecies cyclic R22(9) hydrogen-bonding interaction and the intramolecular hydrogen bonds are shown as dashed lines. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 3] Fig. 3. The molecular configuration and atom-numbering scheme for the 2-carboxyquinolinium cation, the 2-carboxy-4,5-dichlorobenzoate anion, the quinolinium-2-carboxylate adduct molecule and the water molecule of solvation in (III). Dashed lines indicate the interspecies hydrogen bonds. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 4] Fig. 4. The hydrogen-bonded cation–anion chain structure in (I), viewed down the a-axis direction. Hydrogen bonds are shown as dashed lines. H atoms not involved in these interactions have been omitted. [Symmetry code: (i) see Table 1; (ii) -x + 2, y - 1/2, -z + 3/2.]
[Figure 5] Fig. 5. A view of the chain extension in the one-dimensional hydrogen-bonded chain structure of (II), viewed down the a-axis direction. Hydrogen bonds are shown as dashed lines. H atoms not involved in these interactions have been omitted. [Symmetry codes: (i) see Table 2; (ii) -x, y - 1/2, -z + 3/2.]
[Figure 6] Fig. 6. A perspective view of the chain extension in the one-dimensional hydrogen-bonded structure of (III). Hydrogen bonds are shown as dashed lines. H atoms not involved in these interactions have been omitted. For symmetry codes, see Table 3.
(I) 8-hydroxyquinolinium 2-carboxy-4,5-dichlorobenzoate top
Crystal data top
C9H8NO+·C8H3Cl2O4Dx = 1.632 Mg m3
Mr = 380.17Melting point: 499 K
Orthorhombic, P212121Cu Kα radiation, λ = 1.54184 Å
Hall symbol: P 2ac 2abCell parameters from 3863 reflections
a = 6.8915 (3) Åθ = 4.3–73.4°
b = 7.2887 (2) ŵ = 4.06 mm1
c = 30.8009 (8) ÅT = 130 K
V = 1547.13 (9) Å3Prism, pale yellow
Z = 40.61 × 0.56 × 0.20 mm
F(000) = 776
Data collection top
Oxford Diffraction Xcalibur KM4 CCD area-detector
diffractometer
2506 independent reflections
Radiation source: Enhance (Cu) X-ray source2437 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
Detector resolution: 16.0711 pixels mm-1θmax = 73.4°, θmin = 5.8°
ϕ and ω scansh = 86
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
k = 88
Tmin = 0.112, Tmax = 0.443l = 3836
4879 measured reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.036 w = 1/[σ2(Fo2) + (0.078P)2 + 0.296P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.099(Δ/σ)max = 0.002
S = 1.06Δρmax = 0.40 e Å3
2506 reflectionsΔρmin = 0.26 e Å3
239 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0072 (7)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983), with 662 Friedel pairs
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.035 (15)
Crystal data top
C9H8NO+·C8H3Cl2O4V = 1547.13 (9) Å3
Mr = 380.17Z = 4
Orthorhombic, P212121Cu Kα radiation
a = 6.8915 (3) ŵ = 4.06 mm1
b = 7.2887 (2) ÅT = 130 K
c = 30.8009 (8) Å0.61 × 0.56 × 0.20 mm
Data collection top
Oxford Diffraction Xcalibur KM4 CCD area-detector
diffractometer
2506 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2437 reflections with I > 2σ(I)
Tmin = 0.112, Tmax = 0.443Rint = 0.035
4879 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.036H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.099Δρmax = 0.40 e Å3
S = 1.06Δρmin = 0.26 e Å3
2506 reflectionsAbsolute structure: Flack (1983), with 662 Friedel pairs
239 parametersAbsolute structure parameter: 0.035 (15)
0 restraints
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O8A0.6734 (2)0.5914 (2)0.82329 (5)0.0201 (4)
N1A0.3513 (3)0.4331 (3)0.79128 (6)0.0172 (5)
C2A0.1943 (3)0.3654 (3)0.77302 (7)0.0210 (6)
C3A0.0382 (3)0.3079 (3)0.79842 (8)0.0233 (6)
C4A0.0508 (3)0.3210 (3)0.84276 (8)0.0208 (6)
C5A0.2455 (3)0.4051 (3)0.90836 (7)0.0210 (6)
C6A0.4158 (4)0.4736 (3)0.92433 (7)0.0217 (6)
C7A0.5656 (3)0.5351 (3)0.89713 (7)0.0192 (6)
C8A0.5450 (3)0.5278 (3)0.85235 (7)0.0151 (5)
C9A0.3719 (3)0.4502 (3)0.83541 (7)0.0155 (5)
C10A0.2207 (3)0.3908 (3)0.86273 (7)0.0175 (5)
Cl40.67789 (10)0.41744 (10)0.49719 (2)0.0323 (2)
Cl50.28475 (9)0.59039 (9)0.53303 (2)0.0324 (2)
O110.3598 (2)0.5912 (3)0.69516 (5)0.0269 (5)
O120.6126 (3)0.4418 (3)0.72043 (5)0.0258 (5)
O210.9054 (2)0.3071 (2)0.69386 (5)0.0230 (4)
O221.0662 (2)0.2720 (2)0.63266 (5)0.0230 (5)
C10.5745 (3)0.4727 (3)0.64188 (7)0.0158 (5)
C20.7517 (3)0.3985 (3)0.62641 (7)0.0151 (5)
C30.7780 (3)0.3869 (3)0.58140 (7)0.0181 (6)
C40.6378 (3)0.4416 (3)0.55256 (7)0.0193 (6)
C50.4640 (3)0.5140 (3)0.56761 (7)0.0192 (6)
C60.4364 (3)0.5285 (3)0.61193 (7)0.0184 (6)
C110.5097 (3)0.5050 (3)0.68868 (7)0.0182 (6)
C210.9195 (3)0.3225 (3)0.65280 (7)0.0164 (6)
H1A0.461 (5)0.473 (5)0.7755 (10)0.033 (9)*
H2A0.187300.355800.743000.0250*
H3A0.073200.261200.785400.0280*
H4A0.053100.283800.859900.0250*
H5A0.147200.368400.927100.0250*
H6A0.432900.479500.954200.0260*
H7A0.679400.581100.909200.0230*
H8A0.758 (6)0.657 (5)0.8351 (12)0.046 (10)*
H30.894300.340700.570700.0220*
H60.320400.577700.622100.0220*
H120.725 (6)0.379 (6)0.7100 (13)0.041 (12)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O8A0.0126 (7)0.0281 (8)0.0197 (7)0.0062 (7)0.0017 (6)0.0005 (7)
N1A0.0144 (8)0.0185 (9)0.0187 (8)0.0006 (7)0.0003 (7)0.0001 (7)
C2A0.0184 (10)0.0193 (10)0.0253 (10)0.0007 (8)0.0032 (9)0.0023 (8)
C3A0.0152 (10)0.0211 (11)0.0337 (12)0.0042 (9)0.0027 (10)0.0009 (9)
C4A0.0135 (10)0.0171 (10)0.0317 (11)0.0010 (9)0.0044 (9)0.0040 (9)
C5A0.0207 (10)0.0202 (10)0.0222 (10)0.0011 (9)0.0080 (9)0.0028 (9)
C6A0.0257 (11)0.0222 (11)0.0172 (9)0.0028 (9)0.0011 (9)0.0008 (8)
C7A0.0185 (10)0.0195 (10)0.0197 (10)0.0005 (8)0.0032 (9)0.0004 (8)
C8A0.0127 (9)0.0144 (10)0.0183 (9)0.0003 (8)0.0009 (8)0.0006 (7)
C9A0.0133 (9)0.0137 (9)0.0195 (9)0.0003 (8)0.0006 (8)0.0003 (7)
C10A0.0139 (9)0.0124 (9)0.0262 (10)0.0018 (8)0.0026 (9)0.0004 (8)
Cl40.0387 (4)0.0424 (4)0.0157 (2)0.0001 (3)0.0020 (2)0.0017 (2)
Cl50.0304 (3)0.0362 (3)0.0307 (3)0.0070 (3)0.0156 (2)0.0031 (3)
O110.0217 (8)0.0300 (9)0.0290 (8)0.0082 (8)0.0072 (7)0.0018 (7)
O120.0202 (8)0.0385 (10)0.0186 (7)0.0019 (8)0.0002 (7)0.0015 (7)
O210.0176 (7)0.0298 (8)0.0216 (7)0.0037 (7)0.0043 (7)0.0004 (7)
O220.0116 (7)0.0293 (9)0.0280 (8)0.0061 (7)0.0020 (6)0.0011 (7)
C10.0145 (9)0.0120 (9)0.0209 (10)0.0030 (8)0.0010 (8)0.0005 (7)
C20.0115 (9)0.0135 (9)0.0203 (10)0.0014 (8)0.0004 (8)0.0003 (8)
C30.0164 (10)0.0162 (10)0.0217 (10)0.0003 (9)0.0031 (8)0.0005 (8)
C40.0223 (11)0.0197 (10)0.0158 (8)0.0040 (9)0.0025 (8)0.0024 (8)
C50.0199 (10)0.0159 (10)0.0219 (10)0.0002 (9)0.0051 (9)0.0018 (8)
C60.0135 (9)0.0176 (10)0.0240 (10)0.0019 (8)0.0021 (8)0.0002 (8)
C110.0169 (10)0.0172 (10)0.0206 (10)0.0029 (9)0.0032 (9)0.0019 (8)
C210.0132 (10)0.0123 (10)0.0238 (10)0.0003 (8)0.0012 (9)0.0007 (8)
Geometric parameters (Å, º) top
Cl4—C41.737 (2)C8A—C9A1.420 (3)
Cl5—C51.724 (2)C9A—C10A1.408 (3)
O8A—C8A1.341 (3)C2A—H2A0.9300
O8A—H8A0.84 (4)C3A—H3A0.9300
O11—C111.226 (3)C4A—H4A0.9300
O12—C111.293 (3)C5A—H5A0.9300
O21—C211.273 (3)C6A—H6A0.9300
O22—C211.242 (3)C7A—H7A0.9300
O12—H120.96 (4)C1—C21.418 (3)
N1A—C2A1.316 (3)C1—C111.527 (3)
N1A—C9A1.372 (3)C1—C61.386 (3)
N1A—H1A0.95 (3)C2—C211.518 (3)
C2A—C3A1.395 (3)C2—C31.401 (3)
C3A—C4A1.372 (3)C3—C41.372 (3)
C4A—C10A1.417 (3)C4—C51.389 (3)
C5A—C10A1.420 (3)C5—C61.382 (3)
C5A—C6A1.367 (3)C3—H30.9300
C6A—C7A1.403 (3)C6—H60.9300
C7A—C8A1.388 (3)
C8A—O8A—H8A112 (3)C7A—C6A—H6A119.00
C11—O12—H12111 (2)C5A—C6A—H6A119.00
C2A—N1A—C9A122.9 (2)C8A—C7A—H7A120.00
C2A—N1A—H1A123.6 (19)C6A—C7A—H7A120.00
C9A—N1A—H1A114 (2)C2—C1—C11128.88 (19)
N1A—C2A—C3A120.5 (2)C2—C1—C6118.7 (2)
C2A—C3A—C4A119.3 (2)C6—C1—C11112.46 (18)
C3A—C4A—C10A120.6 (2)C1—C2—C21127.97 (19)
C6A—C5A—C10A119.1 (2)C1—C2—C3117.84 (19)
C5A—C6A—C7A122.2 (2)C3—C2—C21114.16 (18)
C6A—C7A—C8A120.4 (2)C2—C3—C4122.2 (2)
O8A—C8A—C9A116.54 (19)Cl4—C4—C5120.24 (16)
O8A—C8A—C7A125.63 (19)C3—C4—C5120.1 (2)
C7A—C8A—C9A117.81 (19)Cl4—C4—C3119.63 (16)
C8A—C9A—C10A121.7 (2)C4—C5—C6118.52 (19)
N1A—C9A—C10A119.18 (19)Cl5—C5—C4122.33 (17)
N1A—C9A—C8A119.16 (19)Cl5—C5—C6119.14 (16)
C5A—C10A—C9A118.70 (19)C1—C6—C5122.7 (2)
C4A—C10A—C5A123.8 (2)O11—C11—C1118.63 (19)
C4A—C10A—C9A117.6 (2)O12—C11—C1119.91 (19)
N1A—C2A—H2A120.00O11—C11—O12121.5 (2)
C3A—C2A—H2A120.00O22—C21—C2117.44 (19)
C2A—C3A—H3A120.00O21—C21—O22122.15 (19)
C4A—C3A—H3A120.00O21—C21—C2120.38 (18)
C10A—C4A—H4A120.00C2—C3—H3119.00
C3A—C4A—H4A120.00C4—C3—H3119.00
C6A—C5A—H5A120.00C1—C6—H6119.00
C10A—C5A—H5A120.00C5—C6—H6119.00
C9A—N1A—C2A—C3A0.4 (3)C11—C1—C2—C3178.5 (2)
C2A—N1A—C9A—C8A178.9 (2)C11—C1—C2—C213.5 (4)
C2A—N1A—C9A—C10A1.0 (3)C2—C1—C6—C50.3 (3)
N1A—C2A—C3A—C4A0.6 (3)C11—C1—C6—C5179.4 (2)
C2A—C3A—C4A—C10A0.5 (3)C2—C1—C11—O11171.3 (2)
C3A—C4A—C10A—C5A178.8 (2)C2—C1—C11—O128.7 (4)
C3A—C4A—C10A—C9A1.7 (3)C6—C1—C11—O117.7 (3)
C10A—C5A—C6A—C7A1.7 (3)C6—C1—C11—O12172.3 (2)
C6A—C5A—C10A—C4A179.7 (2)C1—C2—C3—C41.1 (3)
C6A—C5A—C10A—C9A0.9 (3)C21—C2—C3—C4177.1 (2)
C5A—C6A—C7A—C8A0.1 (3)C1—C2—C21—O215.5 (3)
C6A—C7A—C8A—O8A176.2 (2)C1—C2—C21—O22176.6 (2)
C6A—C7A—C8A—C9A2.4 (3)C3—C2—C21—O21172.6 (2)
O8A—C8A—C9A—N1A4.4 (3)C3—C2—C21—O225.4 (3)
O8A—C8A—C9A—C10A175.46 (19)C2—C3—C4—Cl4178.26 (17)
C7A—C8A—C9A—N1A176.9 (2)C2—C3—C4—C51.0 (3)
C7A—C8A—C9A—C10A3.2 (3)Cl4—C4—C5—Cl52.4 (3)
N1A—C9A—C10A—C4A2.0 (3)Cl4—C4—C5—C6179.04 (17)
N1A—C9A—C10A—C5A178.5 (2)C3—C4—C5—Cl5178.36 (17)
C8A—C9A—C10A—C4A177.9 (2)C3—C4—C5—C60.3 (3)
C8A—C9A—C10A—C5A1.7 (3)Cl5—C5—C6—C1179.07 (17)
C6—C1—C2—C30.5 (3)C4—C5—C6—C10.4 (3)
C6—C1—C2—C21177.5 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1A—H1A···O8A0.95 (3)2.25 (3)2.689 (3)108 (2)
N1A—H1A···O120.95 (3)2.01 (3)2.830 (3)145 (3)
O8A—H8A···O22i0.84 (4)1.78 (4)2.607 (2)171 (4)
O12—H12···O210.96 (4)1.44 (4)2.389 (2)173 (4)
C2A—H2A···O110.932.563.124 (3)120
C2A—H2A···O21ii0.932.493.176 (3)131
C3—H3···O220.932.302.672 (3)103
C3A—H3A···O11iii0.932.413.171 (3)139
C6—H6···O110.932.272.657 (3)104
C7A—H7A···O22i0.932.583.203 (3)125
Symmetry codes: (i) x+2, y+1/2, z+3/2; (ii) x1, y, z; (iii) x, y1/2, z+3/2.
(II) 8-aminoquinolinium 2-carboxy-4,5-dichlorobenzoate top
Crystal data top
C9H9N2+·C8H3Cl2O4Dx = 1.627 Mg m3
Mr = 379.19Melting point: 471 K
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 5985 reflections
a = 7.2003 (6) Åθ = 2.8–27.5°
b = 7.3039 (6) ŵ = 0.45 mm1
c = 29.438 (3) ÅT = 130 K
V = 1548.2 (2) Å3Cut plate, pale brown
Z = 40.45 × 0.40 × 0.10 mm
F(000) = 776
Data collection top
Bruker CCD area-detector
diffractometer
3529 independent reflections
Radiation source: sealed tube3425 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
ϕ and ω scansθmax = 27.6°, θmin = 1.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 94
Tmin = 0.842, Tmax = 0.956k = 99
9645 measured reflectionsl = 3738
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.029H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.073 w = 1/[σ2(Fo2) + (0.0415P)2 + 0.3288P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max = 0.001
3529 reflectionsΔρmax = 0.31 e Å3
242 parametersΔρmin = 0.22 e Å3
0 restraintsAbsolute structure: Flack H D (1983), Acta Cryst. A39, 876-881
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.04 (5)
Crystal data top
C9H9N2+·C8H3Cl2O4V = 1548.2 (2) Å3
Mr = 379.19Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 7.2003 (6) ŵ = 0.45 mm1
b = 7.3039 (6) ÅT = 130 K
c = 29.438 (3) Å0.45 × 0.40 × 0.10 mm
Data collection top
Bruker CCD area-detector
diffractometer
3529 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3425 reflections with I > 2σ(I)
Tmin = 0.842, Tmax = 0.956Rint = 0.022
9645 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.029H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.073Δρmax = 0.31 e Å3
S = 1.08Δρmin = 0.22 e Å3
3529 reflectionsAbsolute structure: Flack H D (1983), Acta Cryst. A39, 876-881
242 parametersAbsolute structure parameter: 0.04 (5)
0 restraints
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N1A0.30022 (19)0.4127 (2)0.79305 (5)0.0177 (3)
N8A0.6450 (2)0.5704 (2)0.81739 (5)0.0201 (4)
C2A0.1402 (2)0.3402 (2)0.77963 (6)0.0222 (5)
C3A0.0133 (2)0.2717 (2)0.81111 (7)0.0232 (5)
C4A0.0552 (2)0.2849 (2)0.85632 (6)0.0218 (5)
C5A0.2733 (2)0.3763 (2)0.91764 (6)0.0201 (5)
C6A0.4420 (2)0.4512 (2)0.92918 (5)0.0208 (5)
C7A0.5679 (2)0.5105 (2)0.89594 (6)0.0186 (4)
C8A0.5286 (2)0.4997 (2)0.84991 (6)0.0168 (4)
C9A0.3525 (2)0.4239 (2)0.83767 (5)0.0161 (4)
C10A0.2259 (2)0.3606 (2)0.87131 (6)0.0177 (4)
Cl40.60192 (6)0.42315 (7)0.49219 (1)0.0275 (1)
Cl50.24836 (6)0.57856 (6)0.54397 (1)0.0257 (1)
O110.41286 (18)0.53291 (17)0.71080 (4)0.0240 (3)
O120.67963 (18)0.39657 (19)0.72501 (4)0.0273 (4)
O210.94065 (18)0.26731 (18)0.68629 (4)0.0254 (4)
O221.05293 (18)0.2509 (2)0.61728 (5)0.0309 (4)
C10.5875 (2)0.4385 (2)0.64629 (5)0.0161 (4)
C20.7469 (2)0.37106 (19)0.62314 (5)0.0157 (4)
C30.7462 (2)0.3702 (2)0.57580 (6)0.0175 (4)
C40.5946 (2)0.4311 (2)0.55079 (5)0.0174 (4)
C50.4386 (2)0.4959 (2)0.57347 (6)0.0181 (4)
C60.4368 (2)0.4990 (2)0.62025 (5)0.0182 (4)
C110.5566 (2)0.4572 (2)0.69732 (5)0.0198 (4)
C210.9274 (2)0.2923 (2)0.64275 (6)0.0187 (4)
H1A0.366 (3)0.466 (3)0.7723 (8)0.030 (6)*
H2A0.111700.335000.748100.0270*
H3A0.099700.217100.801400.0280*
H4A0.031900.242300.878100.0260*
H5A0.189900.335600.940500.0240*
H6A0.473900.463100.960300.0250*
H7A0.684000.559600.905300.0220*
H81A0.648 (4)0.524 (3)0.7928 (8)0.036 (7)*
H82A0.748 (3)0.615 (3)0.8268 (7)0.024 (5)*
H30.852700.326600.560100.0220*
H60.329400.543600.635400.0210*
H210.827 (5)0.315 (4)0.7022 (9)0.058 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N1A0.0162 (6)0.0194 (6)0.0175 (6)0.0013 (6)0.0003 (5)0.0010 (5)
N8A0.0169 (7)0.0258 (7)0.0176 (7)0.0045 (6)0.0002 (5)0.0032 (6)
C2A0.0193 (8)0.0240 (8)0.0233 (8)0.0021 (7)0.0045 (7)0.0050 (7)
C3A0.0150 (8)0.0220 (8)0.0327 (9)0.0016 (7)0.0050 (7)0.0022 (7)
C4A0.0184 (8)0.0183 (7)0.0288 (9)0.0003 (7)0.0043 (7)0.0022 (7)
C5A0.0212 (8)0.0194 (8)0.0198 (8)0.0026 (7)0.0047 (6)0.0021 (6)
C6A0.0261 (9)0.0211 (8)0.0153 (7)0.0040 (7)0.0021 (7)0.0001 (6)
C7A0.0167 (8)0.0183 (7)0.0207 (8)0.0006 (6)0.0033 (6)0.0002 (6)
C8A0.0165 (7)0.0144 (7)0.0196 (8)0.0027 (6)0.0001 (6)0.0002 (6)
C9A0.0174 (7)0.0136 (7)0.0172 (7)0.0022 (7)0.0002 (6)0.0017 (6)
C10A0.0180 (8)0.0140 (7)0.0212 (8)0.0029 (6)0.0026 (6)0.0007 (6)
Cl40.0290 (2)0.0397 (2)0.0138 (2)0.0021 (2)0.0015 (2)0.0005 (2)
Cl50.0212 (2)0.0350 (2)0.0210 (2)0.0067 (2)0.0061 (2)0.0017 (2)
O110.0262 (6)0.0280 (6)0.0178 (6)0.0051 (5)0.0037 (5)0.0021 (5)
O120.0256 (6)0.0391 (8)0.0173 (6)0.0031 (6)0.0036 (5)0.0004 (5)
O210.0221 (6)0.0316 (7)0.0225 (6)0.0049 (6)0.0069 (5)0.0007 (5)
O220.0182 (6)0.0429 (8)0.0316 (7)0.0097 (6)0.0015 (5)0.0027 (6)
C10.0143 (7)0.0140 (7)0.0199 (7)0.0025 (6)0.0015 (6)0.0008 (5)
C20.0163 (7)0.0136 (7)0.0171 (7)0.0019 (6)0.0009 (6)0.0002 (6)
C30.0160 (8)0.0174 (7)0.0192 (8)0.0001 (6)0.0008 (6)0.0013 (6)
C40.0150 (7)0.0175 (7)0.0198 (8)0.0002 (6)0.0040 (6)0.0021 (6)
C50.0216 (8)0.0190 (7)0.0138 (7)0.0020 (7)0.0001 (6)0.0005 (6)
C60.0159 (7)0.0181 (7)0.0207 (7)0.0018 (7)0.0014 (6)0.0006 (6)
C110.0168 (8)0.0164 (7)0.0262 (8)0.0012 (6)0.0045 (7)0.0003 (6)
C210.0211 (8)0.0179 (8)0.0171 (7)0.0047 (7)0.0000 (6)0.0001 (6)
Geometric parameters (Å, º) top
Cl4—C41.7269 (15)C7A—C8A1.387 (2)
Cl5—C51.7306 (16)C8A—C9A1.430 (2)
O11—C111.2387 (19)C9A—C10A1.423 (2)
O12—C111.2827 (19)C2A—H2A0.9500
O21—C211.298 (2)C3A—H3A0.9500
O22—C211.213 (2)C4A—H4A0.9500
O21—H211.01 (3)C5A—H5A0.9500
N1A—C2A1.328 (2)C6A—H6A0.9500
N1A—C9A1.369 (2)C7A—H7A0.9500
N8A—C8A1.373 (2)C1—C21.423 (2)
N1A—H1A0.87 (2)C1—C111.525 (2)
N8A—H81A0.80 (2)C1—C61.400 (2)
N8A—H82A0.86 (2)C2—C211.534 (2)
C2A—C3A1.394 (2)C2—C31.394 (2)
C3A—C4A1.368 (3)C3—C41.390 (2)
C4A—C10A1.418 (2)C4—C51.390 (2)
C5A—C6A1.375 (2)C5—C61.377 (2)
C5A—C10A1.411 (2)C3—H30.9500
C6A—C7A1.403 (2)C6—H60.9500
C21—O21—H21110.6 (16)C10A—C5A—H5A120.00
C2A—N1A—C9A123.22 (14)C7A—C6A—H6A119.00
C9A—N1A—H1A120.0 (15)C5A—C6A—H6A119.00
C2A—N1A—H1A116.4 (15)C8A—C7A—H7A119.00
C8A—N8A—H81A119.2 (18)C6A—C7A—H7A119.00
C8A—N8A—H82A116.5 (14)C2—C1—C11128.36 (13)
H81A—N8A—H82A116 (2)C2—C1—C6118.18 (13)
N1A—C2A—C3A120.92 (16)C6—C1—C11113.46 (12)
C2A—C3A—C4A118.48 (14)C1—C2—C21129.27 (14)
C3A—C4A—C10A121.42 (15)C1—C2—C3118.53 (13)
C6A—C5A—C10A119.01 (14)C3—C2—C21112.19 (13)
C5A—C6A—C7A121.44 (14)C2—C3—C4122.08 (14)
C6A—C7A—C8A122.17 (14)Cl4—C4—C5121.07 (12)
N8A—C8A—C9A120.75 (15)C3—C4—C5119.30 (14)
N8A—C8A—C7A122.37 (14)Cl4—C4—C3119.64 (12)
C7A—C8A—C9A116.70 (14)C4—C5—C6119.57 (14)
N1A—C9A—C8A120.59 (14)Cl5—C5—C4121.16 (13)
N1A—C9A—C10A118.18 (13)Cl5—C5—C6119.24 (12)
C8A—C9A—C10A121.23 (14)C1—C6—C5122.34 (13)
C4A—C10A—C9A117.73 (15)O11—C11—C1118.52 (13)
C5A—C10A—C9A119.43 (13)O12—C11—C1119.63 (13)
C4A—C10A—C5A122.84 (15)O11—C11—O12121.84 (14)
N1A—C2A—H2A120.00O22—C21—C2119.49 (15)
C3A—C2A—H2A120.00O21—C21—O22121.37 (15)
C2A—C3A—H3A121.00O21—C21—C2119.11 (13)
C4A—C3A—H3A121.00C2—C3—H3119.00
C10A—C4A—H4A119.00C4—C3—H3119.00
C3A—C4A—H4A119.00C1—C6—H6119.00
C6A—C5A—H5A121.00C5—C6—H6119.00
C9A—N1A—C2A—C3A0.7 (2)C11—C1—C2—C3178.55 (14)
C2A—N1A—C9A—C8A178.55 (14)C11—C1—C2—C212.6 (2)
C2A—N1A—C9A—C10A2.3 (2)C2—C1—C6—C50.3 (2)
N1A—C2A—C3A—C4A1.6 (2)C11—C1—C6—C5179.05 (13)
C2A—C3A—C4A—C10A2.1 (2)C2—C1—C11—O11174.38 (15)
C3A—C4A—C10A—C5A179.95 (14)C2—C1—C11—O124.9 (2)
C3A—C4A—C10A—C9A0.4 (2)C6—C1—C11—O114.9 (2)
C10A—C5A—C6A—C7A0.6 (2)C6—C1—C11—O12175.87 (14)
C6A—C5A—C10A—C4A179.90 (14)C1—C2—C3—C40.7 (2)
C6A—C5A—C10A—C9A0.6 (2)C21—C2—C3—C4178.36 (13)
C5A—C6A—C7A—C8A1.0 (2)C1—C2—C21—O215.8 (2)
C6A—C7A—C8A—N8A174.84 (14)C1—C2—C21—O22175.88 (15)
C6A—C7A—C8A—C9A0.3 (2)C3—C2—C21—O21173.16 (14)
N8A—C8A—C9A—N1A3.0 (2)C3—C2—C21—O225.2 (2)
N8A—C8A—C9A—C10A176.07 (14)C2—C3—C4—Cl4179.08 (12)
C7A—C8A—C9A—N1A178.21 (14)C2—C3—C4—C50.3 (2)
C7A—C8A—C9A—C10A0.9 (2)Cl4—C4—C5—Cl52.23 (18)
N1A—C9A—C10A—C4A1.8 (2)Cl4—C4—C5—C6179.48 (11)
N1A—C9A—C10A—C5A177.81 (14)C3—C4—C5—Cl5178.39 (11)
C8A—C9A—C10A—C4A179.13 (14)C3—C4—C5—C60.1 (2)
C8A—C9A—C10A—C5A1.3 (2)Cl5—C5—C6—C1178.44 (12)
C6—C1—C2—C30.7 (2)C4—C5—C6—C10.1 (2)
C6—C1—C2—C21178.21 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O21—H12···O121.01 (3)1.39 (3)2.3922 (18)174 (3)
N1A—H1A···O110.87 (2)1.91 (2)2.7002 (19)152 (2)
N8A—H81A···O120.80 (2)2.21 (2)3.0116 (19)176 (3)
N8A—H82A···O21i0.86 (2)2.53 (2)3.314 (2)152.2 (18)
N8A—H82A···O22i0.86 (2)2.40 (2)3.189 (2)153.8 (18)
C2A—H2A···O21ii0.952.253.146 (2)156
C3—H3···O220.952.282.670 (2)103
C6—H6···O110.952.302.6826 (19)103
C7A—H7A···O22i0.952.453.269 (2)145
Symmetry codes: (i) x+2, y+1/2, z+3/2; (ii) x1, y, z.
(III) 2-carboxyquinolinium 2-carboxy-4,5-dichlorobenzoate quinolinium 2-carboxylate monohydrate top
Crystal data top
C10H8NO2+·C8H3Cl2O4·C10H7NO2·H2OZ = 2
Mr = 599.36F(000) = 616
Triclinic, P1Dx = 1.407 Mg m3
Hall symbol: -P 1Melting point: 455 K
a = 7.1893 (9) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.1172 (13) ÅCell parameters from 2565 reflections
c = 19.520 (3) Åθ = 3–25°
α = 87.558 (2)°µ = 0.29 mm1
β = 88.577 (2)°T = 130 K
γ = 83.996 (2)°Prism, colourless
V = 1410.4 (3) Å30.40 × 0.30 × 0.25 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
4878 independent reflections
Radiation source: sealed tube3980 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.094
ϕ and ω scansθmax = 25.0°, θmin = 1.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 88
Tmin = 0.865, Tmax = 0.931k = 129
6939 measured reflectionsl = 1723
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.059Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.160H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.1022P)2]
where P = (Fo2 + 2Fc2)/3
4878 reflections(Δ/σ)max = 0.002
390 parametersΔρmax = 0.67 e Å3
0 restraintsΔρmin = 0.51 e Å3
Crystal data top
C10H8NO2+·C8H3Cl2O4·C10H7NO2·H2Oγ = 83.996 (2)°
Mr = 599.36V = 1410.4 (3) Å3
Triclinic, P1Z = 2
a = 7.1893 (9) ÅMo Kα radiation
b = 10.1172 (13) ŵ = 0.29 mm1
c = 19.520 (3) ÅT = 130 K
α = 87.558 (2)°0.40 × 0.30 × 0.25 mm
β = 88.577 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
4878 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3980 reflections with I > 2σ(I)
Tmin = 0.865, Tmax = 0.931Rint = 0.094
6939 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0590 restraints
wR(F2) = 0.160H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.67 e Å3
4878 reflectionsΔρmin = 0.51 e Å3
390 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O21A0.6202 (3)0.26013 (17)0.38453 (8)0.0313 (6)
O22A0.6907 (3)0.05882 (17)0.41323 (9)0.0328 (6)
N1A0.6843 (3)0.1319 (2)0.54646 (10)0.0237 (6)
C2A0.6535 (3)0.2210 (2)0.50092 (12)0.0227 (7)
C3A0.6174 (4)0.3493 (2)0.52295 (13)0.0260 (8)
C4A0.6132 (4)0.3814 (3)0.59198 (13)0.0276 (8)
C5A0.6397 (4)0.3142 (3)0.71237 (13)0.0312 (8)
C6A0.6690 (4)0.2180 (3)0.75589 (13)0.0320 (8)
C7A0.7045 (4)0.0909 (3)0.73113 (13)0.0323 (8)
C8A0.7106 (4)0.0590 (3)0.66192 (13)0.0297 (8)
C9A0.6807 (3)0.1583 (3)0.61645 (12)0.0249 (8)
C10A0.6436 (3)0.2872 (3)0.64041 (12)0.0250 (8)
C21A0.6560 (4)0.1747 (2)0.42600 (12)0.0248 (8)
O21B0.8848 (3)0.3200 (2)0.55248 (9)0.0436 (7)
O22B0.7896 (3)0.12477 (19)0.52688 (9)0.0369 (7)
N1B0.8280 (3)0.1844 (2)0.39254 (10)0.0244 (7)
C2B0.8547 (3)0.2770 (3)0.43689 (12)0.0256 (8)
C3B0.8867 (4)0.4046 (3)0.41316 (13)0.0294 (8)
C4B0.8820 (4)0.4360 (3)0.34454 (13)0.0302 (8)
C5B0.8531 (4)0.3625 (3)0.22533 (13)0.0309 (8)
C6B0.8292 (4)0.2637 (3)0.18274 (13)0.0305 (8)
C7B0.8055 (4)0.1340 (3)0.20960 (13)0.0288 (8)
C8B0.8058 (4)0.1057 (2)0.27853 (13)0.0272 (8)
C9B0.8297 (3)0.2075 (2)0.32263 (12)0.0241 (8)
C10B0.8553 (3)0.3381 (2)0.29723 (13)0.0254 (8)
C21B0.8426 (4)0.2353 (3)0.51320 (13)0.0282 (8)
Cl40.59274 (10)0.16384 (7)1.03271 (3)0.0350 (2)
Cl50.17722 (10)0.11042 (7)1.07312 (3)0.0347 (2)
O110.0013 (3)0.32387 (18)0.77895 (10)0.0330 (6)
O120.1359 (3)0.15182 (18)0.82527 (9)0.0327 (6)
O210.3468 (3)0.17710 (18)0.73890 (9)0.0350 (6)
O220.4659 (3)0.36120 (17)0.76824 (9)0.0307 (6)
C10.1439 (4)0.2071 (2)0.87320 (12)0.0235 (7)
C20.3284 (4)0.2281 (2)0.85538 (12)0.0239 (7)
C30.4653 (4)0.2136 (2)0.90452 (13)0.0279 (8)
C40.4187 (4)0.1793 (2)0.97204 (12)0.0271 (8)
C50.2378 (4)0.1581 (2)0.98994 (12)0.0261 (8)
C60.1002 (4)0.1717 (2)0.94129 (12)0.0251 (8)
C110.0116 (4)0.2228 (2)0.82307 (12)0.0239 (7)
C210.3865 (3)0.2625 (2)0.78261 (12)0.0242 (8)
O1W0.7776 (4)0.3400 (3)0.68150 (13)0.0508 (9)
H1A0.731 (5)0.048 (4)0.5342 (18)0.064 (11)*
H3A0.595800.414300.491000.0310*
H4A0.589500.468500.607300.0330*
H5A0.616500.400100.730100.0370*
H6A0.665400.237000.804000.0380*
H7A0.724900.025300.762800.0390*
H8A0.734300.027500.645400.0360*
H21A0.632 (6)0.230 (4)0.341 (2)0.040 (10)*
H1B0.794 (4)0.096 (3)0.4080 (16)0.046 (9)*
H3B0.911700.469300.444600.0350*
H4B0.896700.524300.328400.0360*
H5B0.868600.449100.206700.0370*
H6B0.828300.281400.134600.0370*
H7B0.789000.065700.179100.0340*
H8B0.790000.018600.296200.0330*
H30.590800.227100.892200.0330*
H60.024500.156900.954100.0300*
H110.095 (6)0.330 (4)0.754 (2)0.072 (13)*
H1W0.643 (6)0.347 (5)0.693 (2)0.062 (16)*
H2W0.800 (6)0.333 (4)0.635 (2)0.059 (14)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O21A0.0479 (12)0.0293 (10)0.0187 (9)0.0139 (9)0.0080 (8)0.0041 (7)
O22A0.0498 (12)0.0275 (10)0.0232 (9)0.0160 (9)0.0038 (8)0.0007 (7)
N1A0.0265 (11)0.0260 (11)0.0191 (10)0.0060 (9)0.0060 (8)0.0027 (9)
C2A0.0223 (13)0.0249 (12)0.0212 (12)0.0037 (10)0.0061 (10)0.0038 (10)
C3A0.0263 (14)0.0271 (13)0.0245 (13)0.0046 (10)0.0055 (10)0.0005 (10)
C4A0.0307 (14)0.0263 (13)0.0252 (13)0.0023 (11)0.0053 (11)0.0014 (10)
C5A0.0327 (15)0.0359 (15)0.0240 (13)0.0009 (12)0.0058 (11)0.0009 (11)
C6A0.0289 (14)0.0463 (16)0.0199 (13)0.0009 (12)0.0065 (11)0.0018 (11)
C7A0.0314 (15)0.0444 (16)0.0215 (13)0.0034 (12)0.0056 (11)0.0113 (11)
C8A0.0308 (14)0.0308 (14)0.0277 (14)0.0042 (11)0.0040 (11)0.0053 (11)
C9A0.0230 (13)0.0339 (14)0.0175 (12)0.0020 (11)0.0046 (10)0.0016 (10)
C10A0.0216 (13)0.0291 (13)0.0233 (13)0.0012 (10)0.0035 (10)0.0012 (10)
C21A0.0290 (14)0.0260 (13)0.0200 (12)0.0066 (11)0.0054 (10)0.0011 (10)
O21B0.0674 (15)0.0452 (12)0.0237 (10)0.0302 (11)0.0112 (9)0.0122 (9)
O22B0.0542 (13)0.0334 (11)0.0260 (10)0.0192 (9)0.0095 (9)0.0042 (8)
N1B0.0269 (12)0.0231 (11)0.0241 (11)0.0065 (9)0.0074 (9)0.0064 (9)
C2B0.0223 (13)0.0323 (14)0.0234 (13)0.0086 (11)0.0092 (10)0.0082 (10)
C3B0.0292 (14)0.0289 (14)0.0319 (14)0.0108 (11)0.0117 (11)0.0117 (11)
C4B0.0314 (15)0.0287 (14)0.0314 (14)0.0098 (11)0.0124 (11)0.0035 (11)
C5B0.0371 (15)0.0250 (13)0.0306 (14)0.0067 (11)0.0089 (11)0.0017 (11)
C6B0.0357 (15)0.0328 (14)0.0234 (13)0.0078 (12)0.0073 (11)0.0003 (11)
C7B0.0324 (15)0.0296 (14)0.0252 (13)0.0071 (11)0.0065 (11)0.0065 (11)
C8B0.0307 (14)0.0230 (13)0.0285 (14)0.0064 (11)0.0066 (11)0.0036 (10)
C9B0.0223 (13)0.0267 (13)0.0239 (13)0.0058 (10)0.0083 (10)0.0044 (10)
C10B0.0250 (13)0.0217 (12)0.0302 (14)0.0072 (10)0.0091 (10)0.0041 (10)
C21B0.0300 (14)0.0321 (14)0.0243 (13)0.0121 (11)0.0109 (11)0.0062 (11)
Cl40.0399 (4)0.0388 (4)0.0273 (4)0.0104 (3)0.0014 (3)0.0034 (3)
Cl50.0460 (4)0.0428 (4)0.0167 (3)0.0154 (3)0.0103 (3)0.0018 (3)
O110.0414 (12)0.0330 (10)0.0267 (10)0.0184 (9)0.0004 (9)0.0097 (8)
O120.0363 (11)0.0366 (10)0.0276 (10)0.0198 (9)0.0039 (8)0.0060 (8)
O210.0536 (12)0.0333 (10)0.0209 (9)0.0191 (9)0.0141 (8)0.0070 (8)
O220.0367 (10)0.0319 (10)0.0254 (9)0.0156 (8)0.0093 (8)0.0006 (8)
C10.0326 (14)0.0194 (12)0.0196 (12)0.0095 (10)0.0092 (10)0.0027 (9)
C20.0325 (14)0.0203 (12)0.0198 (12)0.0092 (10)0.0098 (10)0.0031 (9)
C30.0280 (14)0.0305 (14)0.0262 (13)0.0110 (11)0.0103 (11)0.0004 (10)
C40.0385 (15)0.0231 (13)0.0202 (13)0.0067 (11)0.0033 (11)0.0010 (10)
C50.0393 (15)0.0220 (12)0.0178 (12)0.0102 (11)0.0122 (11)0.0009 (9)
C60.0304 (14)0.0245 (13)0.0212 (12)0.0090 (11)0.0104 (10)0.0007 (10)
C110.0315 (14)0.0216 (12)0.0189 (12)0.0072 (11)0.0125 (10)0.0021 (10)
C210.0238 (13)0.0251 (13)0.0241 (13)0.0072 (10)0.0099 (10)0.0003 (10)
O1W0.0384 (14)0.091 (2)0.0241 (12)0.0167 (13)0.0112 (10)0.0041 (13)
Geometric parameters (Å, º) top
Cl4—C41.735 (3)C4A—H4A0.9500
Cl5—C51.732 (2)C5A—H5A0.9500
O21A—C21A1.259 (3)C6A—H6A0.9500
O22A—C21A1.238 (3)C7A—H7A0.9500
O21A—H21A0.90 (4)C8A—H8A0.9500
O21B—C21B1.239 (3)C2B—C21B1.534 (4)
O22B—C21B1.235 (4)C2B—C3B1.393 (4)
O11—C111.318 (3)C3B—C4B1.364 (4)
O12—C111.202 (3)C4B—C10B1.413 (4)
O21—C211.297 (3)C5B—C6B1.354 (4)
O22—C211.220 (3)C5B—C10B1.415 (4)
O11—H110.85 (4)C6B—C7B1.418 (4)
O1W—H2W0.92 (4)C7B—C8B1.364 (4)
O1W—H1W0.98 (4)C8B—C9B1.397 (3)
N1A—C2A1.331 (3)C9B—C10B1.420 (3)
N1A—C9A1.381 (3)C3B—H3B0.9500
N1A—H1A0.96 (4)C4B—H4B0.9500
N1B—C2B1.334 (3)C5B—H5B0.9500
N1B—C9B1.375 (3)C6B—H6B0.9500
N1B—H1B0.99 (3)C7B—H7B0.9500
C2A—C3A1.398 (3)C8B—H8B0.9500
C2A—C21A1.517 (3)C1—C21.398 (4)
C3A—C4A1.373 (4)C1—C111.496 (4)
C4A—C10A1.407 (4)C1—C61.399 (3)
C5A—C6A1.355 (4)C2—C31.384 (4)
C5A—C10A1.420 (3)C2—C211.507 (3)
C6A—C7A1.401 (4)C3—C41.390 (3)
C7A—C8A1.376 (4)C4—C51.374 (4)
C8A—C9A1.405 (4)C5—C61.381 (4)
C9A—C10A1.416 (4)C3—H30.9500
C3A—H3A0.9500C6—H60.9500
C21A—O21A—H21A111 (3)C7B—C8B—C9B118.7 (2)
C11—O11—H11107 (3)N1B—C9B—C10B117.7 (2)
H1W—O1W—H2W112 (4)C8B—C9B—C10B121.6 (2)
C2A—N1A—C9A123.3 (2)N1B—C9B—C8B120.8 (2)
C9A—N1A—H1A113 (2)C4B—C10B—C9B118.7 (2)
C2A—N1A—H1A124 (2)C4B—C10B—C5B123.7 (2)
C2B—N1B—C9B123.3 (2)C5B—C10B—C9B117.6 (2)
C9B—N1B—H1B114.8 (18)O21B—C21B—C2B114.3 (2)
C2B—N1B—H1B121.7 (18)O22B—C21B—C2B116.3 (2)
N1A—C2A—C21A116.71 (18)O21B—C21B—O22B129.4 (2)
N1A—C2A—C3A120.2 (2)C4B—C3B—H3B120.00
C3A—C2A—C21A123.1 (2)C2B—C3B—H3B120.00
C2A—C3A—C4A119.1 (2)C3B—C4B—H4B120.00
C3A—C4A—C10A121.0 (3)C10B—C4B—H4B120.00
C6A—C5A—C10A120.2 (3)C10B—C5B—H5B120.00
C5A—C6A—C7A121.0 (2)C6B—C5B—H5B120.00
C6A—C7A—C8A121.4 (3)C5B—C6B—H6B120.00
C7A—C8A—C9A117.9 (3)C7B—C6B—H6B120.00
N1A—C9A—C10A117.9 (2)C8B—C7B—H7B119.00
C8A—C9A—C10A121.6 (2)C6B—C7B—H7B119.00
N1A—C9A—C8A120.5 (2)C9B—C8B—H8B121.00
C4A—C10A—C5A123.6 (3)C7B—C8B—H8B121.00
C5A—C10A—C9A117.9 (2)C2—C1—C11123.2 (2)
C4A—C10A—C9A118.6 (2)C2—C1—C6119.0 (2)
O22A—C21A—C2A116.8 (2)C6—C1—C11117.8 (2)
O21A—C21A—O22A128.2 (2)C1—C2—C21121.8 (2)
O21A—C21A—C2A114.99 (19)C3—C2—C21117.9 (2)
C4A—C3A—H3A120.00C1—C2—C3120.3 (2)
C2A—C3A—H3A121.00C2—C3—C4119.8 (3)
C3A—C4A—H4A120.00Cl4—C4—C5120.98 (18)
C10A—C4A—H4A119.00C3—C4—C5120.3 (2)
C10A—C5A—H5A120.00Cl4—C4—C3118.8 (2)
C6A—C5A—H5A120.00Cl5—C5—C6118.3 (2)
C7A—C6A—H6A119.00C4—C5—C6120.4 (2)
C5A—C6A—H6A120.00Cl5—C5—C4121.2 (2)
C6A—C7A—H7A119.00C1—C6—C5120.2 (3)
C8A—C7A—H7A119.00O12—C11—C1122.4 (2)
C9A—C8A—H8A121.00O11—C11—O12125.0 (2)
C7A—C8A—H8A121.00O11—C11—C1112.6 (2)
N1B—C2B—C21B116.4 (2)O22—C21—C2121.5 (2)
C3B—C2B—C21B123.4 (2)O21—C21—O22124.8 (2)
N1B—C2B—C3B120.1 (2)O21—C21—C2113.66 (19)
C2B—C3B—C4B119.6 (3)C2—C3—H3120.00
C3B—C4B—C10B120.5 (3)C4—C3—H3120.00
C6B—C5B—C10B120.7 (3)C1—C6—H6120.00
C5B—C6B—C7B120.4 (2)C5—C6—H6120.00
C6B—C7B—C8B121.1 (2)
C9A—N1A—C2A—C3A0.8 (4)C3B—C4B—C10B—C9B1.3 (4)
C9A—N1A—C2A—C21A178.0 (2)C10B—C5B—C6B—C7B0.2 (4)
C2A—N1A—C9A—C8A178.7 (2)C6B—C5B—C10B—C4B179.2 (3)
C2A—N1A—C9A—C10A0.5 (3)C6B—C5B—C10B—C9B0.7 (4)
C2B—N1B—C9B—C8B178.3 (2)C5B—C6B—C7B—C8B0.1 (4)
C2B—N1B—C9B—C10B2.1 (3)C6B—C7B—C8B—C9B0.1 (4)
C9B—N1B—C2B—C3B0.1 (4)C7B—C8B—C9B—N1B179.0 (2)
C9B—N1B—C2B—C21B178.3 (2)C7B—C8B—C9B—C10B0.6 (4)
C3A—C2A—C21A—O21A1.0 (4)N1B—C9B—C10B—C4B1.5 (3)
N1A—C2A—C21A—O21A177.7 (2)N1B—C9B—C10B—C5B178.7 (2)
N1A—C2A—C21A—O22A1.6 (3)C8B—C9B—C10B—C4B178.9 (2)
N1A—C2A—C3A—C4A0.4 (4)C8B—C9B—C10B—C5B0.9 (3)
C21A—C2A—C3A—C4A178.3 (2)C6—C1—C2—C30.2 (3)
C3A—C2A—C21A—O22A179.7 (2)C6—C1—C2—C21178.17 (19)
C2A—C3A—C4A—C10A0.3 (4)C11—C1—C2—C3179.12 (19)
C3A—C4A—C10A—C9A0.6 (4)C11—C1—C2—C212.9 (3)
C3A—C4A—C10A—C5A179.6 (3)C2—C1—C6—C50.1 (3)
C6A—C5A—C10A—C4A179.5 (3)C11—C1—C6—C5178.89 (19)
C6A—C5A—C10A—C9A0.7 (4)C2—C1—C11—O1138.2 (3)
C10A—C5A—C6A—C7A0.3 (4)C2—C1—C11—O12143.8 (2)
C5A—C6A—C7A—C8A0.1 (5)C6—C1—C11—O11140.8 (2)
C6A—C7A—C8A—C9A0.2 (4)C6—C1—C11—O1237.2 (3)
C7A—C8A—C9A—N1A179.7 (2)C1—C2—C3—C40.7 (3)
C7A—C8A—C9A—C10A0.6 (4)C21—C2—C3—C4178.72 (18)
N1A—C9A—C10A—C5A179.9 (2)C1—C2—C21—O2155.7 (3)
C8A—C9A—C10A—C4A179.4 (2)C1—C2—C21—O22125.4 (2)
C8A—C9A—C10A—C5A0.8 (4)C3—C2—C21—O21122.4 (2)
N1A—C9A—C10A—C4A0.2 (3)C3—C2—C21—O2256.5 (3)
N1B—C2B—C3B—C4B3.0 (4)C2—C3—C4—Cl4179.22 (16)
C21B—C2B—C3B—C4B175.3 (3)C2—C3—C4—C50.8 (3)
N1B—C2B—C21B—O21B173.8 (2)Cl4—C4—C5—Cl51.9 (3)
N1B—C2B—C21B—O22B7.5 (4)Cl4—C4—C5—C6179.50 (16)
C3B—C2B—C21B—O21B7.9 (4)C3—C4—C5—Cl5178.05 (16)
C3B—C2B—C21B—O22B170.9 (3)C3—C4—C5—C60.6 (3)
C2B—C3B—C4B—C10B3.5 (4)Cl5—C5—C6—C1178.56 (16)
C3B—C4B—C10B—C5B178.5 (3)C4—C5—C6—C10.1 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O11—H11···O1Wi0.85 (4)1.70 (4)2.510 (3)159 (4)
O21A—H21A···O21ii0.90 (4)1.64 (4)2.531 (2)179 (5)
N1A—H1A···O22B0.96 (4)1.84 (4)2.788 (3)168 (3)
N1B—H1B···O22A0.99 (3)1.80 (3)2.756 (3)163 (3)
O1W—H1W···O220.98 (4)1.92 (4)2.771 (3)143 (4)
O1W—H2W···O21B0.92 (4)1.71 (4)2.625 (3)169 (4)
C3—H3···O12iii0.952.413.239 (3)146
C5B—H5B···O11iv0.952.603.441 (4)148
C7A—H7A···O12iii0.952.513.435 (3)163
C8A—H8A···O22B0.952.513.234 (3)133
C8B—H8B···O22A0.952.503.190 (3)130
C8B—H8B···O21ii0.952.433.204 (3)138
Symmetry codes: (i) x1, y, z; (ii) x+1, y, z+1; (iii) x+1, y, z; (iv) x+1, y+1, z+1.

Experimental details

(I)(II)(III)
Crystal data
Chemical formulaC9H8NO+·C8H3Cl2O4C9H9N2+·C8H3Cl2O4C10H8NO2+·C8H3Cl2O4·C10H7NO2·H2O
Mr380.17379.19599.36
Crystal system, space groupOrthorhombic, P212121Orthorhombic, P212121Triclinic, P1
Temperature (K)130130130
a, b, c (Å)6.8915 (3), 7.2887 (2), 30.8009 (8)7.2003 (6), 7.3039 (6), 29.438 (3)7.1893 (9), 10.1172 (13), 19.520 (3)
α, β, γ (°)90, 90, 9090, 90, 9087.558 (2), 88.577 (2), 83.996 (2)
V3)1547.13 (9)1548.2 (2)1410.4 (3)
Z442
Radiation typeCu KαMo KαMo Kα
µ (mm1)4.060.450.29
Crystal size (mm)0.61 × 0.56 × 0.200.45 × 0.40 × 0.100.40 × 0.30 × 0.25
Data collection
DiffractometerOxford Diffraction Xcalibur KM4 CCD area-detector
diffractometer
Bruker CCD area-detector
diffractometer
Bruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Multi-scan
(SADABS; Sheldrick, 1996)
Multi-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.112, 0.4430.842, 0.9560.865, 0.931
No. of measured, independent and
observed [I > 2σ(I)] reflections
4879, 2506, 2437 9645, 3529, 3425 6939, 4878, 3980
Rint0.0350.0220.094
(sin θ/λ)max1)0.6220.6510.594
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.099, 1.06 0.029, 0.073, 1.08 0.059, 0.160, 1.03
No. of reflections250635294878
No. of parameters239242390
H-atom treatmentH atoms treated by a mixture of independent and constrained refinementH atoms treated by a mixture of independent and constrained refinementH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.40, 0.260.31, 0.220.67, 0.51
Absolute structureFlack (1983), with 662 Friedel pairsFlack H D (1983), Acta Cryst. A39, 876-881?
Absolute structure parameter0.035 (15)0.04 (5)?

Computer programs: CrysAlis CCD (Oxford Diffraction, 2007), SMART (Bruker, 2000), CrysAlis RED (Oxford Diffraction, 2007), SAINT (Bruker, 1999), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
N1A—H1A···O120.95 (3)2.01 (3)2.830 (3)145 (3)
O8A—H8A···O22i0.84 (4)1.78 (4)2.607 (2)171 (4)
O12—H12···O210.96 (4)1.44 (4)2.389 (2)173 (4)
Symmetry code: (i) x+2, y+1/2, z+3/2.
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
O21—H12···O121.01 (3)1.39 (3)2.3922 (18)174 (3)
N1A—H1A···O110.87 (2)1.91 (2)2.7002 (19)152 (2)
N8A—H81A···O120.80 (2)2.21 (2)3.0116 (19)176 (3)
N8A—H82A···O21i0.86 (2)2.53 (2)3.314 (2)152.2 (18)
N8A—H82A···O22i0.86 (2)2.40 (2)3.189 (2)153.8 (18)
Symmetry code: (i) x+2, y+1/2, z+3/2.
Hydrogen-bond geometry (Å, º) for (III) top
D—H···AD—HH···AD···AD—H···A
O11—H11···O1Wi0.85 (4)1.70 (4)2.510 (3)159 (4)
O21A—H21A···O21ii0.90 (4)1.64 (4)2.531 (2)179 (5)
N1A—H1A···O22B0.96 (4)1.84 (4)2.788 (3)168 (3)
N1B—H1B···O22A0.99 (3)1.80 (3)2.756 (3)163 (3)
O1W—H1W···O220.98 (4)1.92 (4)2.771 (3)143 (4)
O1W—H2W···O21B0.92 (4)1.71 (4)2.625 (3)169 (4)
Symmetry codes: (i) x1, y, z; (ii) x+1, y, z+1.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds