Download citation
Download citation
link to html
The reaction of bi­phenyl-2,2′-diol with 1,1,2,2-tetrakis­(bromo­methyl)­cyclo­propane leads to two products, namely a propellane-type compound and a di­spiro-type compound. The molecular structure of 4,5;6,7-dibenzo-3,8,12-tri­oxa[8.3.1]­propellane has been determined previously by spectroscopic methods. The crystal structure of the di­spiro product, 2,7,12,17-tetraoxa-3,4:5,6:13,14:15,16-tetrabenzodi­spiro[8.1.8.0]­nona­decane, C31H26O4, revealed that the conformations of the nine-membered heterocyclic rings are due to interactions between the π-electron system of the bi­phenyl moiety and the lone electron pairs of the ether O atoms, the repulsion of the lone electron pairs of atoms O1...O2 and O3...O4, and steric interactions between H atoms in ortho positions. The conformations have C1 symmetry and can be described approximately as twist-boat.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270103001963/gg1148sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270103001963/gg1148Isup2.hkl
Contains datablock I

CCDC reference: 208019

Comment top

The reaction of biphenyl-2,2'-diol with 1,1,2,2-tetrakis(bromomethyl)cyclopropane (Scheme 1), leads to two products, namely the major product 4,5;6,7-dibenzo-3,8,12-trioxa[8.3.1]propellane, (II), the molecular structure of which has been determined by spectroscopic analyses (1H NMR, 13C NMR and MS) by Jamrozik & Szlachcic (2000), and 2,7,12,17-tetraoxa-3,4:5,6:13,14;15,16-tetrabenzodispiro[8.1.8.0]nonadecane, (I).

In this type of reaction, two products are usually possible, i.e. either dispiro-type or propellane-type compounds. The problem of dispiro–propellane isomerism was widely discussed by Ginsburg (1987). Because the isomers behave similarly in spectroscopic analyses like NMR, IR and MS, there are some difficulties in unravelling the correct structures of the products. In such cases the exact structure of the product can be established unambiguously through X-ray diffraction analysis whenever single crystals are available. In the reaction described above, after (II) was separated as a solid compound (m.p. = 543–544 K) and the results had been published, another compound, (I), was found in the mother liquor that remained after the crystallization of (II). Compound (I) had a slightly different melting point (545–546 K), and as (I) was obtained in a single-crystal form we were able to determine its crystal and molecular structure.

The structures of heterocyclic spirane, dispirane and propellane derivatives have been the subject of much interest in our laboratory for some time. Examples include spiro(2H-dibenzo[f,h]-3,4-dihydro-1,5-dioxacyclo-nonene-3,1'-cyclopropane) (Karle & Grochowski, 1979) (III), spiro(3,4-dihydro-2H-1,5-dioxadinaphtho[2,1 − f:1,2 − h]cyclononene-3,1'- cyclopropane) (Stadnicka, 1979) (IV), spiro(3,4-dihydro-2H-1,5-dioxadinaphtho[2,1 − f:1,2 − h]cyclononene-3,1'- cyclopentane) (Stadnicka & Lebioda, 1979) (V) (Scheme 2), as well as 2,7,12,17-tetraoxa-tetranaphtho(1,2 − f h f' h')-dispiro[8.0.8.1]nonadecane (Jamrozik, 1985), 2,3,2',3'-bis{8",11"-dioxa[4.3.3]propella-(3",4")}biphenyl (Grochowski et al., 1995), 4,8,12,16-tetrahydro-1H,3H,9H,11H-3a,16a:8a,11a- bis(methanoxymethano)dibenzo[fg,mn]octaleno[3,4 − c:9,10 − c']difuran (Jamrozik et al., 1996). The structure of (III) is particularly important, because (III) can be considered as one `half' of the dispirane molecule (I).

The overall shape of (I) is shown in Fig. 1 in two different projections to emphasize the complicated spatial atomic arrangement. Selected geometrical parameters of the molecule are given in Table 1. Both biphenyl moieties have torsion angles close to 60° [C11—C12—C22—C21 = 61.5 (2) and C31—C32—C42—C41 = 58.1 (2)°]. Similar torsion angles were observed in (III), (IV) and (V) (−58.3, 64.2 and 63.2°, respectively). The two medium-sized nine-membered heterocyclic rings of 4H-2,3-dihydro-1,5-dioxonine, which are connected to the cyclopropane ring through a common C atom, have an almost identical shape and conformation (Table 1) and are similar to those compared by Glass (1988) for (III) and (IV). ?The angle between the rings is 120° around an axis perpendicular to the cyclopropane ring, passing through its centre and facing in the same direction.? This arrangement suggests that if the cyclopropane ring contained a third identical moiety, attached to the free corner of the cyclopropane at C7, this moiety would have the same shape and position related by a pseudo threefold axis. The intramolecular contacts between the O atoms O1···O2 and O3···O4 [2.908 and 2.869 Å] are somewhat larger than the sum of the van der Waals radii and are close to the values observed in (III) (2.925 Å), (IV) (2.999 Å) and (V) (2.921 Å). The repulsion of the oxygen lone pairs and their coupling with the π-electron system of the biphenyl moiety, and also the steric interactions between its H atoms in ortho positions, have a strong influence on the specific conformation of the nine-membered rings in these types of compounds. The conformation has no analogues among the possible forms of 1,3-cyclononadienes considered by Zuccarello et al. (1971). However, Yavari et al. (1999), in their study of (Z,Z)-cyclonona-1,3-diene by AM1 SCF MO calculations, reported the existence of a similar form [twist-boat: TB(C1)] but with a relatively high strain energy. Using the description introduced for 1,3-cyclononadienes by Zuccarelo et al. (1971), the conformation can be approximately defined by Scheme 3, in which the observed torsion angles, defining the conformation of the nine-membered rings and given in Table 1, are represented by their signs (plus, minus or zero). It can be seen that the pseudo C2 symmetry of the nine-membered ring is disturbed by an apex at the cyclopropane C atom. As a result, the effective symmetry of the ring is only C1. Note that the conformation observed in the crystalline state, both in (I) and in (III), (IV) and (V), differs from that found with dynamic 1H and 13C NMR (Rys & Duddeck, 1995) for the derivatives of 7,8-dihydro-6H-dibenzo[f,h][1,5]dioxonine in CDCl3 solution, where the conformation appeared to be of the twist-chair type with an overall molecular symmetry of C2 in most cases. It is possible that the conformation of the 4H-2,3-dihydro-1,5-dioxonine ring in the close vicinity of the cyclopropane ring is affected by ??the latter's?? rigidity. The cyclopropane ring has a shape close to an ideal equilateral triangle. The average value of the endocyclic angles of the ring is 60 (1)°, and the average C—C distance is 1.516 (12) Å.

The packing in the structure projected onto (010) is presented in Fig. 2a and reveals a pseudo-hexagonal close packing of the molecules, with their specific overall shape. The intermolecular interactions are mainly of the van der Waals type, except for the only weak C—H···π(arene) hydrogen bond, which could be considered to be between C33—H33 and the centroid Cg of the aromatic ring {C21–C26} for the molecule at position ?? (symmetry code i = x + 1,y,z) shown in Fig. 2 b [D—H = 0.98 (2), H···Cgi = 2.69 (2), D···Cgi = 3.65 (1) Å and D—H···Cgi = 165 (1)°].

Experimental top

Compound (I) was found in the mother liquor long after the precipitation of the main product of the reaction between biphenyl-2,2'-diol and 1,1,2,2-tetrakis(bromomethyl)cyclopropane (Jamrozik & Szlachcic, 2000) and was subsequently crystallized from 2-propanol. Analysis: HRMS; calculated for C31H26O4: 462.1831; found: 462.1824.

Refinement top

All H atoms ?were located from a Fourier difference map and were? included in the refinement without constraints and with isotropic displacement factors. The range and the average value of the refined C—H distances were 0.94–1.05 Å and 0.98 (5) Å, respectively.

Computing details top

Data collection: Collect (Nonius BV, 1997-2000); cell refinement: HKL SCALEPACK (Otwinowski & Minor, 1997); data reduction: HKL DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1999); software used to prepare material for publication: SHELXL97 (Sheldrick, 1997).

Figures top
[Figure 1] Fig. 1. Views of (I) projected (a) on a plane perpendicular to the cyclopropane ring and (b) normal to the ring, with the atomic numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. (a) The packing in the crystal structure projected on (010) with H atoms removed for clarity. (b) The interaction between C33—H33 and the aromatic ring {C21–C26}.
2,7,12,17-tetraoxa-3,4;5,6;13,14;15,16-tetrabenzodispiro[8.1.8.0]nonadecane top
Crystal data top
C31H26O4F(000) = 976
Mr = 462.52Dx = 1.298 Mg m3
Monoclinic, P21/nMelting point: 545 K
Hall symbol: -P 2ynMo Kα radiation, λ = 0.71073 Å
a = 12.4954 (4) ÅCell parameters from 4265 reflections
b = 13.0617 (5) Åθ = 1.0–25.0°
c = 14.9097 (7) ŵ = 0.09 mm1
β = 103.4840 (13)°T = 293 K
V = 2366.35 (16) Å3Plate, colourless
Z = 40.25 × 0.16 × 0.06 mm
Data collection top
Nonius KappaCCD
diffractometer
3301 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.017
Horizontally mounted graphite crystal monochromatorθmax = 25.1°, θmin = 2.1°
Detector resolution: 9 pixels mm-1h = 014
ϕ and ω scans to fill Ewald spherek = 1514
7662 measured reflectionsl = 1717
4117 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: difference Fourier map
wR(F2) = 0.109All H-atom parameters refined
S = 0.92 w = 1/[σ2(Fo2) + (0.0628P)2 + 0.5467P]
where P = (Fo2 + 2Fc2)/3
4117 reflections(Δ/σ)max < 0.001
420 parametersΔρmax = 0.18 e Å3
0 restraintsΔρmin = 0.15 e Å3
Crystal data top
C31H26O4V = 2366.35 (16) Å3
Mr = 462.52Z = 4
Monoclinic, P21/nMo Kα radiation
a = 12.4954 (4) ŵ = 0.09 mm1
b = 13.0617 (5) ÅT = 293 K
c = 14.9097 (7) Å0.25 × 0.16 × 0.06 mm
β = 103.4840 (13)°
Data collection top
Nonius KappaCCD
diffractometer
3301 reflections with I > 2σ(I)
7662 measured reflectionsRint = 0.017
4117 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.109All H-atom parameters refined
S = 0.92Δρmax = 0.18 e Å3
4117 reflectionsΔρmin = 0.15 e Å3
420 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.09943 (9)0.20254 (8)0.15850 (8)0.0473 (3)
O20.08760 (9)0.33810 (8)0.31059 (8)0.0461 (3)
O30.45237 (9)0.39105 (8)0.35948 (8)0.0481 (3)
O40.49617 (9)0.36682 (8)0.18013 (8)0.0472 (3)
C10.20476 (14)0.24687 (12)0.15867 (13)0.0488 (4)
C20.20317 (13)0.31883 (14)0.31548 (12)0.0480 (4)
C30.38383 (14)0.46492 (12)0.30088 (13)0.0502 (4)
C40.38551 (14)0.40010 (13)0.14231 (12)0.0496 (4)
C50.31941 (13)0.41305 (11)0.21483 (12)0.0457 (4)
C60.22707 (13)0.33885 (11)0.22223 (11)0.0431 (4)
C70.20023 (14)0.44347 (12)0.18014 (14)0.0510 (4)
C110.00656 (14)0.25725 (11)0.11727 (11)0.0461 (4)
C120.07667 (14)0.26205 (12)0.16553 (12)0.0479 (4)
C130.17426 (17)0.31063 (15)0.12437 (15)0.0646 (5)
C140.1870 (2)0.35551 (17)0.03711 (18)0.0803 (7)
C150.1048 (2)0.34849 (17)0.00917 (16)0.0775 (6)
C160.00860 (19)0.29836 (15)0.02958 (13)0.0623 (5)
C210.02682 (12)0.25656 (11)0.33026 (11)0.0426 (4)
C220.05722 (13)0.21742 (11)0.26010 (11)0.0449 (4)
C230.12005 (15)0.13669 (13)0.28116 (14)0.0548 (4)
C240.09949 (17)0.09655 (14)0.36923 (15)0.0627 (5)
C250.01750 (17)0.13698 (15)0.43794 (15)0.0617 (5)
C260.04538 (15)0.21819 (14)0.41926 (12)0.0533 (4)
C310.56435 (13)0.40946 (12)0.38175 (11)0.0455 (4)
C320.63173 (13)0.33605 (12)0.35449 (11)0.0467 (4)
C330.74517 (15)0.34920 (15)0.38246 (13)0.0574 (4)
C340.78986 (17)0.43433 (16)0.43261 (14)0.0649 (5)
C350.72148 (17)0.50747 (16)0.45666 (13)0.0641 (5)
C360.60823 (16)0.49474 (14)0.43229 (12)0.0545 (4)
C410.51284 (13)0.26597 (11)0.20842 (11)0.0436 (4)
C420.58286 (13)0.24855 (11)0.29486 (11)0.0456 (4)
C430.60676 (16)0.14700 (13)0.32176 (15)0.0565 (4)
C440.56116 (17)0.06619 (14)0.26504 (16)0.0647 (5)
C450.49311 (16)0.08526 (14)0.18059 (15)0.0613 (5)
C460.46973 (15)0.18500 (13)0.15096 (14)0.0525 (4)
H110.2102 (14)0.2637 (13)0.0935 (13)0.055 (5)*
H120.2596 (15)0.1916 (15)0.1819 (13)0.058 (5)*
H130.2314 (16)0.3132 (14)0.1567 (13)0.060 (5)*
H140.253 (2)0.390 (2)0.0108 (19)0.105 (8)*
H150.110 (2)0.383 (2)0.073 (2)0.110 (8)*
H160.0500 (19)0.2917 (16)0.0034 (16)0.083 (7)*
H210.2226 (14)0.2450 (15)0.3351 (12)0.056 (5)*
H220.2455 (15)0.3648 (14)0.3633 (14)0.061 (5)*
H230.1774 (15)0.1102 (13)0.2333 (13)0.054 (5)*
H240.1447 (17)0.0384 (17)0.3816 (15)0.076 (6)*
H250.0023 (17)0.1080 (16)0.5028 (16)0.078 (6)*
H260.1039 (16)0.2509 (15)0.4689 (14)0.066 (6)*
H310.4315 (14)0.5189 (14)0.2847 (12)0.052 (5)*
H320.3367 (13)0.4943 (12)0.3371 (11)0.047 (4)*
H340.8689 (19)0.4435 (16)0.4519 (15)0.079 (6)*
H330.7932 (16)0.2986 (15)0.3628 (13)0.065 (5)*
H350.7511 (18)0.5659 (17)0.4902 (16)0.079 (6)*
H360.5582 (14)0.5435 (14)0.4478 (12)0.055 (5)*
H410.3458 (14)0.3566 (13)0.0906 (12)0.049 (5)*
H420.3928 (13)0.4688 (14)0.1164 (12)0.050 (4)*
H430.6551 (15)0.1340 (13)0.3800 (13)0.053 (5)*
H440.5773 (16)0.0017 (17)0.2839 (14)0.074 (6)*
H450.4606 (15)0.0298 (15)0.1392 (13)0.065 (5)*
H460.4247 (15)0.1985 (14)0.0910 (14)0.061 (5)*
H710.1724 (16)0.4946 (15)0.2195 (14)0.066 (5)*
H720.1705 (15)0.4463 (14)0.1114 (15)0.066 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0557 (6)0.0373 (6)0.0536 (7)0.0020 (5)0.0223 (5)0.0024 (5)
O20.0486 (6)0.0398 (6)0.0545 (7)0.0007 (5)0.0212 (5)0.0000 (5)
O30.0509 (6)0.0401 (6)0.0594 (7)0.0011 (5)0.0254 (5)0.0011 (5)
O40.0536 (6)0.0385 (6)0.0555 (7)0.0008 (5)0.0251 (5)0.0024 (5)
C10.0566 (10)0.0408 (9)0.0552 (10)0.0013 (7)0.0257 (8)0.0004 (7)
C20.0448 (9)0.0554 (10)0.0460 (9)0.0016 (7)0.0153 (7)0.0033 (8)
C30.0530 (9)0.0342 (8)0.0691 (11)0.0019 (7)0.0256 (8)0.0045 (7)
C40.0561 (10)0.0431 (9)0.0554 (10)0.0011 (7)0.0246 (8)0.0098 (8)
C50.0518 (9)0.0336 (8)0.0569 (10)0.0021 (6)0.0229 (7)0.0049 (6)
C60.0494 (9)0.0354 (8)0.0483 (9)0.0019 (6)0.0190 (7)0.0047 (6)
C70.0561 (10)0.0398 (9)0.0605 (11)0.0073 (7)0.0206 (8)0.0076 (8)
C110.0608 (10)0.0349 (8)0.0417 (8)0.0057 (7)0.0100 (7)0.0015 (6)
C120.0529 (9)0.0394 (8)0.0502 (9)0.0045 (7)0.0092 (7)0.0047 (7)
C130.0540 (11)0.0601 (11)0.0726 (13)0.0014 (9)0.0002 (10)0.0053 (9)
C140.0706 (14)0.0659 (13)0.0832 (16)0.0026 (11)0.0250 (13)0.0052 (11)
C150.0912 (17)0.0701 (13)0.0568 (13)0.0122 (12)0.0117 (12)0.0079 (10)
C160.0822 (14)0.0561 (11)0.0464 (10)0.0130 (10)0.0107 (10)0.0019 (8)
C210.0457 (8)0.0396 (8)0.0483 (9)0.0051 (6)0.0232 (7)0.0018 (6)
C220.0474 (8)0.0394 (8)0.0532 (9)0.0040 (7)0.0227 (7)0.0006 (7)
C230.0529 (10)0.0472 (9)0.0722 (12)0.0020 (8)0.0305 (9)0.0064 (8)
C240.0689 (12)0.0470 (10)0.0880 (15)0.0056 (9)0.0501 (12)0.0111 (9)
C250.0669 (12)0.0642 (11)0.0659 (12)0.0168 (9)0.0397 (10)0.0190 (10)
C260.0527 (10)0.0609 (10)0.0523 (10)0.0107 (8)0.0248 (8)0.0063 (8)
C310.0517 (9)0.0435 (8)0.0464 (9)0.0042 (7)0.0217 (7)0.0004 (7)
C320.0516 (9)0.0452 (9)0.0470 (9)0.0001 (7)0.0194 (7)0.0012 (7)
C330.0519 (10)0.0660 (11)0.0562 (11)0.0019 (9)0.0161 (8)0.0054 (9)
C340.0537 (11)0.0823 (14)0.0576 (11)0.0100 (10)0.0105 (9)0.0074 (10)
C350.0737 (13)0.0652 (12)0.0535 (11)0.0187 (10)0.0153 (9)0.0134 (9)
C360.0678 (11)0.0492 (10)0.0522 (10)0.0058 (8)0.0254 (8)0.0107 (8)
C410.0498 (9)0.0356 (8)0.0533 (9)0.0012 (6)0.0278 (7)0.0020 (7)
C420.0461 (9)0.0410 (8)0.0553 (10)0.0022 (6)0.0233 (7)0.0039 (7)
C430.0573 (10)0.0487 (10)0.0669 (12)0.0122 (8)0.0213 (9)0.0058 (8)
C440.0708 (12)0.0347 (9)0.0942 (16)0.0069 (8)0.0306 (11)0.0004 (9)
C450.0673 (12)0.0419 (10)0.0789 (14)0.0018 (8)0.0254 (10)0.0143 (9)
C460.0591 (10)0.0464 (9)0.0573 (11)0.0009 (8)0.0244 (9)0.0099 (8)
Geometric parameters (Å, º) top
O1—C11.4372 (19)C13—H130.951 (19)
O2—C21.4508 (19)C14—C151.367 (4)
O3—C31.442 (2)C14—H140.94 (3)
O4—C41.434 (2)C15—C161.372 (3)
O1—C111.3794 (19)C15—H151.05 (3)
O2—C211.3788 (18)C16—H160.98 (2)
O3—C311.3818 (19)C21—C261.386 (2)
O4—C411.3840 (18)C22—C231.393 (2)
C1—C61.515 (2)C23—C241.381 (3)
C2—C61.511 (2)C23—H230.950 (18)
C3—C51.507 (2)C24—C251.374 (3)
C4—C51.515 (2)C24—H240.99 (2)
C5—C71.511 (2)C25—C261.386 (3)
C5—C61.530 (2)C25—H251.01 (2)
C6—C71.508 (2)C26—H261.01 (2)
C11—C121.397 (2)C31—C361.384 (2)
C12—C221.492 (2)C32—C331.392 (2)
C21—C221.395 (2)C33—C341.383 (3)
C31—C321.397 (2)C33—H330.98 (2)
C32—C421.489 (2)C34—C351.383 (3)
C41—C421.397 (2)C34—H340.97 (2)
C1—H111.014 (18)C35—C361.386 (3)
C1—H120.999 (19)C35—H350.94 (2)
C2—H211.020 (19)C36—H360.958 (19)
C2—H220.99 (2)C41—C461.388 (2)
C3—H310.989 (18)C42—C431.398 (2)
C3—H320.967 (17)C43—C441.389 (3)
C4—H410.993 (18)C43—H430.951 (19)
C4—H420.990 (18)C44—C451.368 (3)
C7—H711.00 (2)C44—H440.94 (2)
C7—H721.01 (2)C45—C461.385 (3)
C11—C161.385 (2)C45—H450.98 (2)
C12—C131.385 (3)C46—H460.95 (2)
C13—C141.402 (3)
C1—O1—C11117.84 (12)C15—C14—H14120.5 (17)
C2—O2—C21116.51 (12)C13—C14—H14119.2 (17)
C3—O3—C31117.02 (12)C14—C15—C16120.4 (2)
C4—O4—C41118.12 (12)C14—C15—H15123.0 (14)
C3—C5—C4112.69 (14)C16—C15—H15116.5 (15)
C6—C5—C759.46 (10)C15—C16—C11119.7 (2)
C1—C6—C2113.03 (13)C15—C16—H16121.1 (13)
C6—C6—C759.63 (10)C11—C16—H16119.2 (13)
C5—C7—C660.91 (10)O2—C21—C26120.36 (15)
O1—C11—C12116.33 (14)C26—C21—C22120.92 (15)
O2—C21—C22118.64 (13)C23—C22—C21118.26 (16)
O3—C31—C32117.11 (14)C23—C22—C12122.16 (16)
O4—C41—C42116.97 (13)C21—C22—C12119.58 (14)
O1—C1—C6110.82 (13)C24—C23—C22120.79 (19)
O1—C1—H11110.6 (10)C24—C23—H23121.1 (11)
C6—C1—H11112.6 (10)C22—C23—H23118.2 (11)
O1—C1—H12105.3 (10)C25—C24—C23120.26 (18)
C6—C1—H12110.1 (10)C25—C24—H24121.0 (12)
H11—C1—H12107.1 (14)C23—C24—H24118.7 (12)
O2—C2—C6109.37 (13)C24—C25—C26120.21 (18)
O2—C2—H21110.2 (10)C24—C25—H25120.6 (12)
C6—C2—H21110.1 (10)C26—C25—H25119.2 (12)
O2—C2—H22106.9 (11)C21—C26—C25119.52 (18)
C6—C2—H22111.8 (11)C21—C26—H26118.8 (11)
H21—C2—H22108.4 (15)C25—C26—H26121.7 (11)
O3—C3—C5109.81 (12)O3—C31—C36121.41 (14)
O3—C3—H31108.6 (10)C36—C31—C32121.42 (16)
C5—C3—H31110.2 (10)C33—C32—C31117.95 (15)
O3—C3—H32106.2 (10)C33—C32—C42121.39 (14)
C5—C3—H32112.4 (10)C31—C32—C42120.62 (14)
H31—C3—H32109.5 (14)C34—C33—C32121.05 (18)
O4—C4—C5112.92 (14)C34—C33—H33120.3 (11)
O4—C4—H41113.2 (10)C32—C33—H33118.5 (11)
C5—C4—H41111.1 (10)C33—C34—C35119.97 (18)
O4—C4—H42105.1 (10)C33—C34—H34121.0 (13)
C5—C4—H42107.0 (10)C35—C34—H34119.1 (13)
H41—C4—H42106.9 (14)C34—C35—C36120.23 (18)
C3—C5—C7117.47 (14)C34—C35—H35120.6 (14)
C7—C5—C4116.28 (15)C36—C35—H35119.2 (14)
C3—C5—C6119.03 (14)C31—C36—C35119.32 (17)
C4—C5—C6121.76 (14)C31—C36—H36117.9 (11)
C7—C6—C2117.84 (14)C35—C36—H36122.7 (11)
C7—C6—C1117.87 (15)O4—C41—C46121.86 (15)
C2—C6—C5119.34 (14)C46—C41—C42120.96 (15)
C1—C6—C5119.26 (13)C41—C42—C43117.72 (15)
C6—C7—H71115.7 (11)C41—C42—C32120.48 (14)
C5—C7—H71115.0 (11)C43—C42—C32121.78 (16)
C6—C7—H72116.8 (11)C44—C43—C42121.10 (19)
C5—C7—H72117.3 (11)C44—C43—H43120.2 (11)
H71—C7—H72118.4 (15)C42—C43—H43118.7 (11)
O1—C11—C16122.50 (16)C45—C44—C43120.05 (18)
C16—C11—C12120.96 (17)C45—C44—H44119.5 (13)
C13—C12—C11118.46 (17)C43—C44—H44120.5 (13)
C13—C12—C22122.03 (17)C44—C45—C46120.31 (18)
C11—C12—C22119.49 (14)C44—C45—H45121.6 (11)
C12—C13—C14120.0 (2)C46—C45—H45118.1 (11)
C12—C13—H13118.6 (12)C41—C46—C45119.82 (19)
C14—C13—H13121.3 (11)C41—C46—H46119.8 (11)
C15—C14—C13120.3 (2)C45—C46—H46120.4 (11)
C11—O1—C1—C669.83 (17)C12—C13—C14—C152.3 (3)
C21—O2—C2—C6119.68 (15)C13—C14—C15—C160.6 (3)
C31—O3—C3—C5121.57 (14)C14—C15—C16—C111.9 (3)
C41—O4—C4—C573.82 (18)O1—C11—C16—C15177.36 (16)
O3—C3—C5—C482.14 (16)C12—C11—C16—C152.8 (3)
O4—C4—C5—C342.80 (18)C2—O2—C21—C2668.84 (18)
O2—C2—C6—C186.08 (17)O2—C21—C22—C23178.40 (13)
O1—C1—C6—C247.21 (19)C26—C21—C22—C231.8 (2)
C3—C5—C6—C20.4 (2)C26—C21—C22—C12178.60 (14)
C4—C5—C6—C13.2 (2)C13—C12—C22—C2363.5 (2)
C1—O1—C11—C12135.47 (14)C11—C12—C22—C23118.02 (17)
O1—C11—C12—C225.5 (2)C13—C12—C22—C21116.92 (18)
C2—O2—C21—C22114.57 (15)C21—C22—C23—C240.0 (2)
O2—C21—C22—C122.0 (2)C12—C22—C23—C24179.53 (15)
C11—C12—C22—C2161.5 (2)C22—C23—C24—C251.0 (3)
C3—O3—C31—C32119.37 (15)C23—C24—C25—C260.2 (3)
O3—C31—C32—C426.8 (2)O2—C21—C26—C25179.20 (14)
C4—O4—C41—C42133.13 (14)C22—C21—C26—C252.7 (2)
O4—C41—C42—C323.0 (2)C24—C25—C26—C211.7 (3)
C31—C32—C42—C4158.1 (2)C3—O3—C31—C3663.3 (2)
O3—C3—C5—C7138.55 (14)O3—C31—C32—C33175.11 (14)
O3—C3—C5—C670.05 (17)C36—C31—C32—C332.2 (2)
O4—C4—C5—C7177.38 (13)C36—C31—C32—C42175.87 (15)
O4—C4—C5—C6108.53 (17)C31—C32—C33—C342.5 (3)
O2—C2—C6—C756.9 (2)C42—C32—C33—C34175.58 (17)
O2—C2—C6—C5125.91 (14)C32—C33—C34—C350.8 (3)
O1—C1—C6—C795.80 (17)C33—C34—C35—C361.3 (3)
O1—C1—C6—C5164.75 (13)O3—C31—C36—C35177.00 (15)
C3—C5—C6—C7106.56 (16)C32—C31—C36—C350.2 (3)
C4—C5—C6—C7103.85 (17)C34—C35—C36—C311.6 (3)
C7—C5—C6—C2106.96 (17)C4—O4—C41—C4652.08 (19)
C4—C5—C6—C2149.20 (15)O4—C41—C42—C43175.59 (13)
C3—C5—C6—C1146.42 (15)C46—C41—C42—C430.8 (2)
C7—C5—C6—C1107.02 (17)C46—C41—C42—C32177.84 (14)
C2—C6—C7—C5109.44 (16)C33—C32—C42—C41119.92 (18)
C1—C6—C7—C5109.33 (16)C33—C32—C42—C4358.6 (2)
C3—C5—C7—C6109.17 (16)C31—C32—C42—C43123.37 (18)
C4—C5—C7—C6112.97 (16)C41—C42—C43—C440.9 (2)
C1—O1—C11—C1649.8 (2)C32—C42—C43—C44179.51 (16)
O1—C11—C12—C13176.02 (14)C42—C43—C44—C451.2 (3)
C16—C11—C12—C131.2 (2)C43—C44—C45—C460.3 (3)
C16—C11—C12—C22179.68 (15)O4—C41—C46—C45176.79 (15)
C11—C12—C13—C141.4 (3)C42—C41—C46—C452.2 (2)
C22—C12—C13—C14177.09 (17)C44—C45—C46—C412.0 (3)

Experimental details

Crystal data
Chemical formulaC31H26O4
Mr462.52
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)12.4954 (4), 13.0617 (5), 14.9097 (7)
β (°) 103.4840 (13)
V3)2366.35 (16)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.25 × 0.16 × 0.06
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
7662, 4117, 3301
Rint0.017
(sin θ/λ)max1)0.597
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.109, 0.92
No. of reflections4117
No. of parameters420
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.18, 0.15

Computer programs: Collect (Nonius BV, 1997-2000), HKL SCALEPACK (Otwinowski & Minor, 1997), HKL DENZO and SCALEPACK (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEP-3 (Farrugia, 1999).

Selected geometric parameters (Å, º) top
O1—C11.4372 (19)C4—C51.515 (2)
O2—C21.4508 (19)C5—C71.511 (2)
O3—C31.442 (2)C5—C61.530 (2)
O4—C41.434 (2)C6—C71.508 (2)
O1—C111.3794 (19)C11—C121.397 (2)
O2—C211.3788 (18)C12—C221.492 (2)
O3—C311.3818 (19)C21—C221.395 (2)
O4—C411.3840 (18)C31—C321.397 (2)
C1—C61.515 (2)C32—C421.489 (2)
C2—C61.511 (2)C41—C421.397 (2)
C3—C51.507 (2)
C1—O1—C11117.84 (12)C6—C6—C759.63 (10)
C2—O2—C21116.51 (12)C5—C7—C660.91 (10)
C3—O3—C31117.02 (12)O1—C11—C12116.33 (14)
C4—O4—C41118.12 (12)O2—C21—C22118.64 (13)
C3—C5—C4112.69 (14)O3—C31—C32117.11 (14)
C6—C5—C759.46 (10)O4—C41—C42116.97 (13)
C1—C6—C2113.03 (13)
C11—O1—C1—C669.83 (17)C1—O1—C11—C12135.47 (14)
C21—O2—C2—C6119.68 (15)O1—C11—C12—C225.5 (2)
C31—O3—C3—C5121.57 (14)C2—O2—C21—C22114.57 (15)
C41—O4—C4—C573.82 (18)O2—C21—C22—C122.0 (2)
O3—C3—C5—C482.14 (16)C11—C12—C22—C2161.5 (2)
O4—C4—C5—C342.80 (18)C3—O3—C31—C32119.37 (15)
O2—C2—C6—C186.08 (17)O3—C31—C32—C426.8 (2)
O1—C1—C6—C247.21 (19)C4—O4—C41—C42133.13 (14)
C3—C5—C6—C20.4 (2)O4—C41—C42—C323.0 (2)
C4—C5—C6—C13.2 (2)C31—C32—C42—C4158.1 (2)
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds