Download citation
Download citation
link to html
A series of five compounds containing the bicyclo­[3.3.0]octa-2,6-diene skeleton are described, namely tetra­methyl cis,cis-3,7-dihydroxy­bicyclo­[3.3.0]octa-2,6-diene-2,4-exo,6,8-exo-tetracarboxyl­ate, C16H18O10, (I), tetra­methyl cis,cis-3,7-di­hydr­oxy-1,5-dimethyl­bicyclo­[3.3.0]octa-2,6-diene-2,4-exo,6,8-exo-tetra­carboxyl­ate, C18H22O10, (II), tetra­methyl cis,cis-3,7-dimethoxybicyclo­[3.3.0]octa-2,6-diene-2,4-exo,6,8-exo-tetra­carboxyl­ate, C18H22O10, (III), tetra­methyl cis,cis-3,7-dimeth­oxy-1,5-dimethyl­bicyclo­[3.3.0]octa-2,6-diene-2,4-exo,6,8-exo-tetra­carboxylate, C20H26O10, (IV), and tetra­methyl cis,cis-3,7-diacetoxy­bicyclo­[3.3.0]octa-2,6-diene-2,4-exo,6,8-exo-tetra­carboxyl­ate, C20H22O12, (V). The bicyclic core is substituted in all cases at positions 2, 4, 6 and 8 with methoxy­carbonyl groups and additionally at positions 3 and 7 with hydroxy [in (I) and (II)], methoxy [in (III) and (IV)] or acet­oxy [in (V)] groups. The conformations of the methoxy­carbonyl groups at positions 2 and 4 are exo for all five compounds. Each C5 ring of the bicyclic skeleton is almost planar, but the rings are not coplanar, with dihedral angles of 54.93 (7), 69.85 (5), 64.07 (4), 80.74 (5) and 66.91 (7)° for (I)–(V), respectively, and the bicyclooctadiene system adopts a butterfly-like conformation. Strong intra­molecular hydrogen bonds exist between the –OH and C=O groups in (I) and (II), with O...O distances of 2.660 (2) and 2.672 (2) Å in (I), and 2.653 (2) and 2.635 (2) Å in (II). The mol­ecular packing is stabilized by weaker C—H...O(=C) inter­actions, leading to dimers in (I)–(III) and to a chain structure in (V). The structure series presented in this article shows how the geometry of the cycloocta-2,6-diene skeleton changes upon substitution in different positions and, consequently, how the packing is modified, although the intermolecular interactions are basically the same across the series.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270108004290/gg3136sup1.cif
Contains datablocks I, II, III, IV, V, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270108004290/gg3136Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270108004290/gg3136IIsup3.hkl
Contains datablock II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270108004290/gg3136IIIsup4.hkl
Contains datablock III

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270108004290/gg3136IVsup5.hkl
Contains datablock IV

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270108004290/gg3136Vsup6.hkl
Contains datablock V

CCDC references: 686430; 686431; 686432; 686433; 686434

Comment top

The Weiss reaction is a very general, versatile and simple route to bicyclo[3.3.0]octa-2,6-dienes, which starts from α-diketones reacting with 3-oxoglutarate esters. Although this is a widely used synthetic route, few of the bicyclic compounds derived from it, depicted in the scheme below, have been fully structurally characterized. The structure of the related red Vossen's salt C16H15O10Na, synthetized in 1910 (Vossen, 1910; Schroeter, 1922), was reported only in 2002 (Djaidi et al., 2002). The structures of the two possible epimers when R = H, R'1 = CH3 and R'2 = C2H5 have been reported (Williams et al., 1997). The structure of (I) has been previously described in a PhD thesis (Djaidi, 2006), although to the best of our knowledge and from the latest version of the Cambridge Structural Database (specify which version; Allen, 2002), it has been not published. From the synthetic viewpoint, this tetraester could be easily hydrolized and decarboxylated in acid media, leading to bicyclo[3.3.0]octa-3,7-diones (Bertz et al., 1982; Docken, 1981), a versatile starting point for the synthesis of a wide variety of compounds (Gupta et al., 1991).

The series of compounds (Figs. 1–5) are constructed from the central bicyclo[3.3.0]octa-2,6-diene core, with numbering for the nomenclature and the substitution as shown in the scheme. The structure contains two nonconjugated CC double bonds at positions 2 and 6 and four methoxycarbonyl groups at positions 2, 4, 6 and 8. As expected, from considering conjugation between the double bonds at positions 2 and 6 and the methoxycarbonyl groups at positions 2 and 4, these groups are coplanar with their anchoring carbon rings, with (C1/C3)—C2—C11—(O3/O4) and (C5/C7)—C6—C15—(O7/O8) torsion angles of less than 5°, except for (III) in which some of these angles are ca 15°. Given the planar nature of the methoxycarbonyl groups, two distinct orientations are possible for the methoxy groups at positions 2 and 6, either towards the `bridgehead' side, i.e. internal, or towards the hydroxy group (positions 3 and 7), i.e. external. Both (I) and (II) have internal methoxy groups at the 2- and 6-positions, similar to both epimers of C17H20O10 (Williams et al., 1997). In contrast, compounds with substituted hydroxy groups at positions 3 and 7 [(III), (IV) and (V)] have an alternate pattern, with one `internal' and one `external' methoxy group. This situation can be rationalized in terms of the tendency of the OH group to form a hydrogen bond with the methoxycarbonyl CO group in preference to a methoxy group. Strong intramolecular hydrogen bonds exist between the OH and CO groups (Desiraju, 2002), with O···O distances of 2.660 (2) and 2.672 (2) Å in (I), and 2.653 (2) and 2.635 (2) Å for (II).

Each one of the two fused five-membered carbon rings in the bicyclic core is almost planar, as indicated by the C—C—C—C torsion angles. As the rings are fused through sp3-like hybridized C atoms they are not coplanar and define dihedral angles of 54.93 (7), 69.85 (5), 64.07 (4), 80.74 (5) and 66.91 (7)° for (I)–(V), respectively, with the bicyclic core conformation best described as butterfly. The positions of the methoxy carbonyl groups on C atoms 4 and 8 are exo in all cases. Additionally, the groups located at C atoms 1 and 5 [H for (I), (III) and (V), and CH3 for (II) and (IV)] lie at opposite sides of the plane that bisects the carbon unit parallel to the C1—C5 bond, with C10—C5—C1—C9 torsion angles of 25.7 (2) and 25.0 (2)° for (II) and (IV), respectively. For compounds (I)–(IV), the groups connected to atoms O1 and O2 [H for (I) and (II), and CH3 for (III) and (IV)] are almost coplanar to their rings; according to the C—C—O—C torsion angle data the substituents are inclined at less than 15° for (III) and (IV). In (V), the acetyl group is perpendicular to each pentacyclic unit, with torsion angles close to 90°.

The endo H atoms H4 and H8 play an important role in determining the packing of the five compounds, since they define hydrogen bonds with CO or OH O atoms on adjacent molecules. In this way, molecules of (I) form dimers through the interaction of atoms H4 and H8 with the OH atom O2A, and of atom H8 with the CO atom O8A [symmetry code: (A) -x, -y + 2, -z; Fig. 6]. The butterfly wings of the two molecules in these dimers remain parallel, with a separation of ca3.1 Å. The interaction of atom H4 with the OH atom O1(-x + 1, -y, -z) in (II) and of atom H8 with the C O atom O4(-x + 1, -y + 1, -z + 2) in (III) leads in the same way to intermolecular dimers (Figs. 7 and 8), but with no parallelism between the butterfly wings. The interactions of atoms H4 and H8 with the CO atoms O6A and O10A, respectively, in addition to the interaction of atom O1 with H5A, leads to a chain structure for (V) [symmetry code: (A) x, -y + 3/2, -z - 1/2; Fig. 9]. The molecules are positioned in a concave-to-convex arrangement. As the molecules are not planar, the direction of each of the vicinal chains is opposite. This interaction between the endo bicyclic atoms H4 and H8 with other O atoms in the vicinal molecule is not present for (IV), where the packing just contains Cmethyl—H···O contacts.

Related literature top

For related literature, see: Allen (2002); Arndt (1943); Bertz et al. (1982); Bruker (1999); Desiraju (2002); Djaidi (2006); Djaidi et al. (2002); Docken (1981); Gupta et al. (1991); Schroeter (1922); Vossen (1910); Williams et al. (1997).

Experimental top

The synthesis of (I) followed the previously reported protocol of Bertz et al. (1982), slightly modified in order to avoid the formation of sticky byproducts: the Na+ salt (C16H16O10Na2; 26.86 g, 0.065 mol) was dissolved in the minimum amount of distilled water (ca 150 ml). Then, under vigorous stirring, 1 M acetic acid solution was added dropwise (ca 1 ml min-1); a white solid began to appear, which redissolved quickly (acid addition should be drop by drop, thus avoiding formation of the sticky product), with 128 ml of 1 M acetic acid added in total. The white solid formed was filtered off and redissolved in ethyl acetate, and the resulting solution was dried (MgSO4), filtered and concentrated under vacuum to obtain a white solid. Recrystallization in acetone gave colorless prismatic crystals in 98% yield [m.p. 383.1–383.8 K (literature 374–376 K; Bertz et al., 1982)].

The synthesis of (II) followed the same procedure described for (I) but starting from C18H20O10Na2. Recrystallization in acetone gave white [colorless according to CIF] crystals (m.p. 427.1–428.3 K, yield 83%).

Compound (I) (6.00 g, 0.016 mol) or compound (II) (6.0 g, 0.016 mol) was suspended in dry diethyl ether and then treated dropwise with excess diazomethane dissolved in diethyl ether [prepared from N-nitrosomethylurea and KOH as described by (Arndt, 1943)]. The excess diazomethane was allowed to react for 12 h until no more of the reactant (I) or (II) was visible by thin layer chromatography (aluminium foil, silica gel 60 F254, ethyl acetate–hexane 1:3). The solution was then evaporated under vacuum to obtain a light-yellow solid, which was redissolved in methanol (250 ml) and allowed to crystallize, yielding 4.87 g of white crystals of (III) (m.p. 411.9–413.2 K, 76.1% yield) or 1.87 g of white crystals [both colorless according to CIF] of (IV) (m.p. 440.7–442.3 K, 87.4%).

For the synthesis of (V), a mixture of acetic acid (40 ml) and acetic anhydride (10 ml, 0.085 mol) was added to (I) (15.38 g, 0.042 mol) and then refluxed [the solid compound (I) dissolves upon heating]. After 40 min, the heat was removed and distilled water (10 ml) was added to the reactor (in small portions with care). The mixture was allowed to cool to room temperature and then extracted with ethyl acetate (50 ml × 3). The extract was then dried with MgSO4. Evaporation under vacuum lead to 10.2 g of a white powdered solid, which was recrystallized in acetone to give X-ray quality colorless crystals of (V) (m.p. 369.7–371.2 K, 53.4%). When the procedure was applied to (II), no acetylated products were observed.

Refinement top

The hydroxy H atoms (where present) were located in a Fourier map and refined with isotropic parameters. For all other H atoms, the H-atom positions were calculated after each cycle of refinement with SHELXTL-NT (Bruker, 1999) using a riding model for each structure, with C—H distances in the range 0.96–1.00 Å. Uiso(H) values were set equal to 1.5Ueq of the parent C atom for methyl groups and 1.2Ueq(C) for other H atoms.

Computing details top

For all compounds, data collection: SMART-NT (Bruker, 2001); cell refinement: SAINT-NT (Bruker, 1999); data reduction: SAINT-NT (Bruker, 1999); program(s) used to solve structure: SHELXTL-NT (Bruker, 1999); program(s) used to refine structure: SHELXTL-NT (Bruker, 1999); molecular graphics: SHELXTL-NT (Bruker, 1999); software used to prepare material for publication: SHELXTL-NT (Bruker, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with the atomic numbering scheme. Displacement ellipsoids are shown at the 33% probability level and H atoms are shown as spheres of arbitrary radii.
[Figure 2] Fig. 2. The molecular structure of (II), with the atomic numbering scheme. Displacement ellipsoids are shown at the 33% probability level and H atoms are shown as spheres of arbitrary radii.
[Figure 3] Fig. 3. The molecular structure of (III), with the atomic numbering scheme. Displacement ellipsoids are shown at the 33% probability level and H atoms are shown as spheres of arbitrary radii.
[Figure 4] Fig. 4. The molecular structure of (IV), with the atomic numbering scheme. Displacement ellipsoids are shown at the 33% probability level and H atoms are shown as spheres of arbitrary radii.
[Figure 5] Fig. 5. The molecular structure of (V), with the atomic numbering scheme. Displacement ellipsoids are shown at the 33% probability level and H atoms are shown as spheres of arbitrary radii.
[Figure 6] Fig. 6. The molecular packing for (I) [symmetry code: (A) -x, -y + 2, -z]. C atoms are plotted as cross-hatched circles, O atoms as shaded circles and H atoms as circles. Some of the H atoms have been omitted for clarity.
[Figure 7] Fig. 7. The molecular packing for (II) [symmetry code: (A) -x + 1, -y, -z]. Atoms are represented as in Fig. 6. Some of the H atoms have been omitted for clarity.
[Figure 8] Fig. 8. The molecular packing for (III) [symmetry code: (A) -x + 1, -y + 1, -z + 2]. Atoms are represented as in Fig. 6. Some of the H atoms have been omitted for clarity.
[Figure 9] Fig. 9. The molecular packing for (V) [symmetry code: (A) x, -y + 3/2, -z - 1/2]. Atoms are represented as in Fig. 6. Some of the H atoms and some atoms not involved in the interactions shown have been omitted for clarity.
(I) tetramethyl cis,cis-3,7-dihydroxybicyclo[3.3.0]octa-2,6-diene- 2,4-exo,6,8-exo-tetracarboxylate top
Crystal data top
C16H18O10F(000) = 776
Mr = 370.30Dx = 1.437 Mg m3
Monoclinic, P21/nMelting point: 109.9-110.6 (literature: 101-103) K
Hall symbol: -P 2ynMo Kα radiation, λ = 0.71073 Å
a = 12.1198 (18) ÅCell parameters from 4350 reflections
b = 12.5461 (19) Åθ = 2.4–24.6°
c = 12.4089 (19) ŵ = 0.12 mm1
β = 114.896 (2)°T = 150 K
V = 1711.5 (4) Å3Polyhedron, colorless
Z = 40.55 × 0.21 × 0.13 mm
Data collection top
Siemens SMART CCD area-detector
diffractometer
3025 independent reflections
Radiation source: fine-focus sealed tube2583 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
ϕ and ω scansθmax = 25.0°, θmin = 2.0°
Absorption correction: part of the refinement model (ΔF)
(SADABS; Bruker, 1999)
h = 1414
Tmin = 0.935, Tmax = 0.984k = 1414
11440 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.104H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0542P)2 + 0.4889P]
where P = (Fo2 + 2Fc2)/3
3025 reflections(Δ/σ)max < 0.001
247 parametersΔρmax = 0.29 e Å3
0 restraintsΔρmin = 0.17 e Å3
Crystal data top
C16H18O10V = 1711.5 (4) Å3
Mr = 370.30Z = 4
Monoclinic, P21/nMo Kα radiation
a = 12.1198 (18) ŵ = 0.12 mm1
b = 12.5461 (19) ÅT = 150 K
c = 12.4089 (19) Å0.55 × 0.21 × 0.13 mm
β = 114.896 (2)°
Data collection top
Siemens SMART CCD area-detector
diffractometer
3025 independent reflections
Absorption correction: part of the refinement model (ΔF)
(SADABS; Bruker, 1999)
2583 reflections with I > 2σ(I)
Tmin = 0.935, Tmax = 0.984Rint = 0.028
11440 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.104H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.29 e Å3
3025 reflectionsΔρmin = 0.17 e Å3
247 parameters
Special details top

Experimental. 0.3 ° between frames and 20 secs exposure (per frame)

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Least-squares planes (x,y,z in crystal coordinates) and deviations from them (* indicates atom used to define plane)

- 5.3133 (0.0085) x + 9.3621 (0.0067) y - 3.3488 (0.0093) z = 6.4064 (0.0058)

* 0.0684 (0.0009) C1 * -0.0241 (0.0010) C2 * -0.0321 (0.0010) C3 * 0.0722 (0.0010) C4 * -0.0844 (0.0010) C5

Rms deviation of fitted atoms = 0.0611

0.6438 (0.0092) x + 1.7209 (0.0094) y - 11.4108 (0.0041) z = 0.1212 (0.0085)

Angle to previous plane (with approximate e.s.d.) = 54.93 (0.07)

* -0.0965 (0.0009) C1 * 0.0676 (0.0009) C5 * -0.0076 (0.0010) C6 * -0.0571 (0.0010) C7 * 0.0936 (0.0009) C8

Rms deviation of fitted atoms = 0.0721

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.08396 (12)0.67107 (10)0.15219 (10)0.0353 (3)
H10.021 (2)0.628 (2)0.166 (2)0.066 (7)*
C30.10211 (14)0.72085 (13)0.05023 (14)0.0271 (4)
C20.03770 (14)0.70816 (12)0.01409 (14)0.0257 (4)
C110.06461 (14)0.63584 (13)0.02446 (14)0.0282 (4)
O30.12524 (10)0.63914 (9)0.04394 (10)0.0333 (3)
C120.23401 (17)0.57417 (18)0.00448 (19)0.0489 (5)
H12A0.29540.60290.07010.073*
H12B0.26600.57480.06500.073*
H12C0.21420.50080.00820.073*
O40.09395 (11)0.57884 (10)0.11209 (11)0.0388 (3)
C10.08088 (13)0.78046 (12)0.12010 (13)0.0239 (3)
H1A0.10070.73840.19440.029*
C80.00569 (14)0.87491 (12)0.11280 (14)0.0243 (3)
H80.06810.88290.02910.029*
C170.06830 (15)0.86531 (13)0.19472 (15)0.0283 (4)
O90.18756 (11)0.88028 (12)0.13618 (12)0.0475 (4)
C180.2562 (2)0.8716 (2)0.2077 (2)0.0687 (7)
H18A0.23690.80390.25100.103*
H18B0.34350.87430.15580.103*
H18C0.23470.93090.26440.103*
O100.01788 (11)0.84805 (11)0.29918 (11)0.0410 (3)
C70.07960 (14)0.96797 (12)0.14486 (13)0.0243 (3)
O20.04152 (11)1.06242 (9)0.16719 (10)0.0302 (3)
H20.101 (2)1.1046 (17)0.1811 (19)0.050 (6)*
C60.18732 (14)0.94655 (12)0.14337 (13)0.0253 (4)
C150.27344 (14)1.03093 (13)0.15769 (13)0.0268 (4)
O70.37033 (10)0.99862 (9)0.14229 (10)0.0318 (3)
C160.45486 (16)1.08030 (15)0.14306 (17)0.0400 (5)
H16A0.40961.14130.09570.060*
H16B0.50851.05160.10900.060*
H16C0.50381.10330.22500.060*
O80.25581 (10)1.12375 (9)0.17749 (10)0.0332 (3)
C50.19878 (14)0.83101 (12)0.12000 (14)0.0248 (3)
H50.27240.80000.18580.030*
C40.19947 (15)0.80432 (13)0.00252 (14)0.0277 (4)
H40.17290.86880.05460.033*
C130.32245 (15)0.76896 (13)0.00656 (15)0.0312 (4)
O50.35769 (10)0.67789 (10)0.06738 (11)0.0368 (3)
C140.47507 (17)0.63754 (17)0.08232 (18)0.0442 (5)
H14A0.48060.63910.00580.066*
H14B0.48470.56410.11170.066*
H14C0.53950.68210.13960.066*
O60.38111 (14)0.81581 (11)0.03460 (15)0.0553 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0374 (7)0.0412 (7)0.0309 (7)0.0030 (6)0.0178 (6)0.0086 (5)
C30.0293 (8)0.0265 (8)0.0246 (8)0.0037 (7)0.0106 (7)0.0001 (7)
C20.0261 (8)0.0246 (8)0.0258 (8)0.0014 (6)0.0103 (7)0.0010 (6)
C110.0261 (8)0.0286 (8)0.0279 (9)0.0013 (7)0.0095 (7)0.0016 (7)
O30.0278 (6)0.0372 (7)0.0357 (7)0.0074 (5)0.0141 (5)0.0008 (5)
C120.0317 (10)0.0584 (13)0.0553 (13)0.0152 (9)0.0170 (9)0.0002 (10)
O40.0369 (7)0.0390 (7)0.0349 (7)0.0060 (6)0.0097 (6)0.0087 (6)
C10.0246 (8)0.0230 (8)0.0247 (8)0.0006 (6)0.0109 (7)0.0014 (6)
C80.0244 (8)0.0259 (8)0.0230 (8)0.0005 (6)0.0105 (7)0.0011 (6)
C170.0303 (9)0.0267 (8)0.0305 (9)0.0003 (7)0.0153 (7)0.0008 (7)
O90.0307 (7)0.0768 (10)0.0416 (8)0.0106 (6)0.0217 (6)0.0087 (7)
C180.0403 (12)0.120 (2)0.0616 (15)0.0090 (13)0.0369 (11)0.0088 (14)
O100.0396 (7)0.0585 (9)0.0292 (7)0.0015 (6)0.0185 (6)0.0032 (6)
C70.0295 (8)0.0238 (8)0.0200 (8)0.0016 (6)0.0108 (7)0.0017 (6)
O20.0341 (7)0.0250 (6)0.0341 (7)0.0010 (5)0.0169 (5)0.0020 (5)
C60.0265 (8)0.0264 (8)0.0225 (8)0.0011 (6)0.0098 (7)0.0003 (6)
C150.0273 (8)0.0302 (9)0.0215 (8)0.0021 (7)0.0089 (7)0.0004 (7)
O70.0311 (6)0.0305 (6)0.0385 (7)0.0069 (5)0.0193 (5)0.0038 (5)
C160.0380 (10)0.0398 (11)0.0487 (11)0.0128 (8)0.0247 (9)0.0047 (9)
O80.0353 (7)0.0267 (7)0.0372 (7)0.0050 (5)0.0150 (6)0.0067 (5)
C50.0237 (8)0.0258 (8)0.0261 (8)0.0005 (6)0.0115 (7)0.0005 (6)
C40.0325 (9)0.0250 (8)0.0296 (9)0.0007 (7)0.0169 (7)0.0018 (7)
C130.0349 (9)0.0298 (9)0.0347 (9)0.0038 (7)0.0202 (8)0.0039 (7)
O50.0305 (7)0.0409 (7)0.0444 (7)0.0069 (5)0.0210 (6)0.0067 (6)
C140.0330 (10)0.0571 (13)0.0479 (11)0.0107 (9)0.0222 (9)0.0005 (9)
O60.0634 (9)0.0426 (8)0.0884 (11)0.0010 (7)0.0599 (9)0.0089 (7)
Geometric parameters (Å, º) top
C1—C21.499 (2)O9—C181.454 (2)
C1—C81.560 (2)C18—H18A0.9800
C1—C51.564 (2)C18—H18B0.9800
C2—C31.340 (2)C18—H18C0.9800
C3—C41.500 (2)C7—O21.3422 (19)
C4—C51.560 (2)O2—H20.85 (2)
C5—C61.496 (2)C6—C151.444 (2)
C6—C71.341 (2)C15—O81.227 (2)
C7—C81.498 (2)C15—O71.330 (2)
O1—C31.3435 (19)O7—C161.446 (2)
O1—H10.89 (2)C16—H16A0.9800
C2—C111.446 (2)C16—H16B0.9800
C11—O41.223 (2)C16—H16C0.9800
C11—O31.337 (2)C5—H51.0000
O3—C121.449 (2)C4—C131.513 (2)
C12—H12A0.9800C4—H41.0000
C12—H12B0.9800C13—O61.191 (2)
C12—H12C0.9800C13—O51.336 (2)
C1—H1A1.0000O5—C141.447 (2)
C8—C171.508 (2)C14—H14A0.9800
C8—H81.0000C14—H14B0.9800
C17—O101.197 (2)C14—H14C0.9800
C17—O91.330 (2)O1—O26.465 (2)
C3—O1—H1104.8 (16)C6—C7—O2126.96 (15)
C2—C3—O1126.88 (15)C6—C7—C8114.03 (14)
C2—C3—C4113.97 (14)O2—C7—C8118.96 (13)
O1—C3—C4119.07 (14)C7—O2—H2104.6 (14)
C3—C2—C11120.72 (14)C7—C6—C15120.59 (15)
C3—C2—C1112.03 (14)C7—C6—C5111.55 (14)
C11—C2—C1127.16 (14)C15—C6—C5127.79 (14)
O4—C11—O3123.43 (15)O8—C15—O7123.83 (15)
O4—C11—C2123.31 (15)O8—C15—C6122.84 (15)
O3—C11—C2113.24 (14)O7—C15—C6113.27 (14)
C11—O3—C12115.66 (14)C15—O7—C16116.67 (13)
O3—C12—H12A109.5O7—C16—H16A109.5
O3—C12—H12B109.5O7—C16—H16B109.5
H12A—C12—H12B109.5H16A—C16—H16B109.5
O3—C12—H12C109.5O7—C16—H16C109.5
H12A—C12—H12C109.5H16A—C16—H16C109.5
H12B—C12—H12C109.5H16B—C16—H16C109.5
C2—C1—C8115.52 (12)C6—C5—C4115.84 (13)
C2—C1—C5103.07 (12)C6—C5—C1103.49 (12)
C8—C1—C5106.52 (12)C4—C5—C1107.07 (12)
C2—C1—H1A110.5C6—C5—H5110.0
C8—C1—H1A110.5C4—C5—H5110.0
C5—C1—H1A110.5C1—C5—H5110.0
C7—C8—C17111.73 (13)C3—C4—C13114.28 (13)
C7—C8—C1101.81 (12)C3—C4—C5102.03 (12)
C17—C8—C1114.66 (12)C13—C4—C5113.55 (13)
C7—C8—H8109.5C3—C4—H4108.9
C17—C8—H8109.5C13—C4—H4108.9
C1—C8—H8109.5C5—C4—H4108.9
O10—C17—O9123.99 (15)O6—C13—O5123.90 (16)
O10—C17—C8124.89 (15)O6—C13—C4124.80 (16)
O9—C17—C8111.12 (14)O5—C13—C4111.30 (13)
C17—O9—C18115.22 (15)C13—O5—C14115.77 (14)
O9—C18—H18A109.5O5—C14—H14A109.5
O9—C18—H18B109.5O5—C14—H14B109.5
H18A—C18—H18B109.5H14A—C14—H14B109.5
O9—C18—H18C109.5O5—C14—H14C109.5
H18A—C18—H18C109.5H14A—C14—H14C109.5
H18B—C18—H18C109.5H14B—C14—H14C109.5
C1—C2—C3—C40.85 (19)C7—C8—C17—O9115.38 (15)
C1—C5—C4—C313.02 (15)C1—C8—C17—O9129.45 (15)
C2—C3—C4—C58.92 (18)O10—C17—O9—C181.5 (3)
C3—C4—C5—C6127.85 (14)C8—C17—O9—C18179.49 (18)
C4—C5—C6—C7111.08 (15)C17—C8—C7—C6136.16 (14)
C5—C6—C7—C85.02 (19)C17—C8—C7—O246.24 (18)
C6—C7—C8—C113.33 (17)C1—C8—C7—O2169.07 (13)
C7—C8—C5—C1163.03 (16)O2—C7—C6—C155.1 (2)
C1—C2—C11—O31.6 (2)C8—C7—C6—C15172.25 (13)
C1—C2—C11—O4179.69 (15)O2—C7—C6—C5177.61 (14)
C3—C2—C11—O3174.64 (14)O8—C15—O7—C163.4 (2)
C3—C2—C11—O44.1 (2)C6—C15—O7—C16173.86 (13)
C5—C6—C15—O73.1 (2)C15—C6—C5—C465.9 (2)
C5—C6—C15—O8179.52 (15)C7—C6—C5—C15.76 (17)
C7—C6—C15—O7173.64 (14)C15—C6—C5—C1177.21 (14)
C7—C6—C15—O83.7 (2)C2—C1—C5—C6135.61 (12)
O1—C3—C2—C110.8 (3)C8—C1—C5—C613.59 (15)
C4—C3—C2—C11175.89 (14)C2—C1—C5—C412.76 (15)
O1—C3—C2—C1177.57 (14)C8—C1—C5—C4109.27 (13)
O4—C11—O3—C123.2 (2)C2—C3—C4—C13131.89 (15)
C2—C11—O3—C12175.60 (14)O1—C3—C4—C1351.1 (2)
C3—C2—C1—C8108.09 (15)O1—C3—C4—C5174.08 (13)
C11—C2—C1—C868.4 (2)C6—C5—C4—C13108.69 (16)
C3—C2—C1—C57.65 (17)C1—C5—C4—C13136.49 (13)
C11—C2—C1—C5175.87 (15)C3—C4—C13—O6127.25 (19)
C2—C1—C8—C7129.63 (13)C5—C4—C13—O6116.27 (19)
C2—C1—C8—C17109.56 (15)C3—C4—C13—O552.93 (18)
C5—C1—C8—C17136.67 (13)C5—C4—C13—O563.55 (18)
C7—C8—C17—O1063.6 (2)O6—C13—O5—C140.4 (3)
C1—C8—C17—O1051.6 (2)C4—C13—O5—C14179.39 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O40.89 (2)1.89 (2)2.6720 (18)146 (2)
O2—H2···O80.85 (2)1.91 (2)2.6597 (17)146 (2)
C8—H8···O8i1.002.623.602 (2)169
C4—H4···O2i1.002.533.237 (2)128
Symmetry code: (i) x, y+2, z.
(II) tetramethyl cis,cis-3,7-dihydroxy-1,5-dimethylbicyclo[3.3.0]octa-2,6-diene- 2,4-exo,6,8-exo-tetracarboxylate top
Crystal data top
C18H22O10Z = 2
Mr = 398.36F(000) = 420
Triclinic, P1Dx = 1.441 Mg m3
Hall symbol: -P 1Melting point = 153.9–155.1 K
a = 9.3037 (6) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.2495 (7) ÅCell parameters from 3771 reflections
c = 10.6378 (7) Åθ = 2.4–25.0°
α = 95.155 (1)°µ = 0.12 mm1
β = 103.114 (1)°T = 150 K
γ = 109.208 (1)°Plate, colorless
V = 917.90 (11) Å30.55 × 0.42 × 0.39 mm
Data collection top
Siemens SMART CCD area-detector
diffractometer
3209 independent reflections
Radiation source: fine-focus sealed tube2900 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.011
ϕ and ω scansθmax = 25.0°, θmin = 2.0°
Absorption correction: part of the refinement model (ΔF)
(SADABS; Bruker, 1999)
h = 1011
Tmin = 0.938, Tmax = 0.955k = 1212
5494 measured reflectionsl = 1212
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.095H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0517P)2 + 0.2879P]
where P = (Fo2 + 2Fc2)/3
3209 reflections(Δ/σ)max < 0.001
267 parametersΔρmax = 0.26 e Å3
0 restraintsΔρmin = 0.19 e Å3
Crystal data top
C18H22O10γ = 109.208 (1)°
Mr = 398.36V = 917.90 (11) Å3
Triclinic, P1Z = 2
a = 9.3037 (6) ÅMo Kα radiation
b = 10.2495 (7) ŵ = 0.12 mm1
c = 10.6378 (7) ÅT = 150 K
α = 95.155 (1)°0.55 × 0.42 × 0.39 mm
β = 103.114 (1)°
Data collection top
Siemens SMART CCD area-detector
diffractometer
3209 independent reflections
Absorption correction: part of the refinement model (ΔF)
(SADABS; Bruker, 1999)
2900 reflections with I > 2σ(I)
Tmin = 0.938, Tmax = 0.955Rint = 0.011
5494 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.095H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.26 e Å3
3209 reflectionsΔρmin = 0.19 e Å3
267 parameters
Special details top

Experimental. 0.3 ° between frames and 10 secs exposure (per frame)

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Least-squares planes (x,y,z in crystal coordinates) and deviations from them (* indicates atom used to define plane)

6.0204 (0.0048) x + 2.2059 (0.0067) y + 3.8463 (0.0066) z = 5.3360 (0.0033)

* 0.1125 (0.0008) C1 * -0.0563 (0.0009) C2 * -0.0291 (0.0009) C3 * 0.0998 (0.0008) C4 * -0.1270 (0.0008) C5

Rms deviation of fitted atoms = 0.0925

- 2.9505 (0.0059) x + 10.0137 (0.0016) y + 1.2263 (0.0070) z = 2.3261 (0.0044)

Angle to previous plane (with approximate e.s.d.) = 69.85 (0.05)

* -0.1342 (0.0008) C1 * 0.1123 (0.0008) C5 * -0.0474 (0.0009) C6 * -0.0429 (0.0009) C7 * 0.1121 (0.0008) C8

Rms deviation of fitted atoms = 0.0972

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.47110 (13)0.03840 (11)0.64565 (11)0.0343 (3)
H10.444 (3)0.097 (2)0.700 (2)0.059 (6)*
C30.42416 (16)0.06705 (14)0.67737 (14)0.0245 (3)
C20.35393 (16)0.08153 (14)0.77191 (13)0.0223 (3)
C110.32632 (16)0.02376 (14)0.85577 (14)0.0252 (3)
O30.26444 (12)0.00529 (10)0.95135 (10)0.0283 (2)
C120.2378 (2)0.09603 (17)1.03841 (16)0.0357 (4)
H12A0.33030.11981.06560.054*
H12B0.14910.17910.99320.054*
H12C0.21640.05621.11410.054*
O40.35934 (13)0.12941 (11)0.84071 (11)0.0339 (3)
C10.32496 (16)0.21882 (14)0.78241 (13)0.0211 (3)
C90.43802 (16)0.32010 (15)0.90647 (13)0.0257 (3)
H9A0.54520.33620.90490.039*
H9B0.41920.28020.98210.039*
H9C0.42070.40750.91030.039*
C80.14584 (16)0.19194 (14)0.77181 (13)0.0220 (3)
H80.09930.10400.80190.026*
C170.12153 (16)0.31047 (15)0.85034 (13)0.0236 (3)
O50.12808 (11)0.41840 (10)0.78764 (9)0.0270 (2)
O60.10362 (13)0.30880 (12)0.95871 (10)0.0345 (3)
C180.1098 (2)0.53684 (16)0.85877 (16)0.0350 (4)
H18A0.18390.56550.94410.052*
H18B0.00410.51000.86780.052*
H18C0.12920.61340.81140.052*
C70.07620 (16)0.17361 (14)0.62748 (13)0.0221 (3)
O20.08155 (11)0.12242 (10)0.58052 (11)0.0283 (2)
H20.098 (2)0.122 (2)0.494 (2)0.052 (6)*
C60.18437 (16)0.21328 (14)0.56018 (13)0.0222 (3)
C150.13283 (17)0.20624 (14)0.41931 (14)0.0256 (3)
O70.25047 (12)0.24851 (11)0.36285 (9)0.0307 (3)
C160.2043 (2)0.24296 (18)0.22255 (15)0.0393 (4)
H16A0.16160.31480.20410.059*
H16B0.12550.15270.18110.059*
H16C0.29500.25770.18930.059*
O80.00707 (12)0.16525 (11)0.35739 (10)0.0334 (3)
C50.35250 (15)0.26790 (14)0.64888 (13)0.0213 (3)
C100.42970 (16)0.42702 (14)0.65991 (14)0.0250 (3)
H10A0.36750.47270.69320.038*
H10B0.43570.44870.57490.038*
H10C0.53430.45940.71860.038*
C40.45074 (16)0.18468 (14)0.60182 (13)0.0234 (3)
H40.40690.14730.50760.028*
C130.62584 (16)0.27294 (14)0.63150 (14)0.0250 (3)
O90.65751 (11)0.32465 (10)0.52558 (10)0.0293 (2)
C140.81879 (18)0.41577 (17)0.54256 (17)0.0358 (4)
H14A0.88910.36900.57690.054*
H14B0.84210.50040.60260.054*
H14C0.83250.43860.45940.054*
O100.72156 (12)0.29710 (12)0.73569 (11)0.0357 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0460 (7)0.0266 (6)0.0402 (6)0.0193 (5)0.0207 (5)0.0081 (5)
C30.0245 (7)0.0214 (7)0.0262 (7)0.0078 (6)0.0051 (6)0.0026 (6)
C20.0223 (7)0.0207 (7)0.0222 (7)0.0067 (5)0.0043 (5)0.0038 (5)
C110.0220 (7)0.0243 (7)0.0276 (7)0.0076 (6)0.0044 (6)0.0052 (6)
O30.0343 (6)0.0283 (5)0.0263 (5)0.0124 (4)0.0115 (4)0.0117 (4)
C120.0420 (9)0.0356 (9)0.0348 (9)0.0135 (7)0.0166 (7)0.0185 (7)
O40.0394 (6)0.0266 (6)0.0435 (6)0.0163 (5)0.0168 (5)0.0145 (5)
C10.0225 (7)0.0196 (7)0.0207 (7)0.0070 (5)0.0055 (5)0.0047 (5)
C90.0273 (7)0.0261 (7)0.0209 (7)0.0082 (6)0.0040 (6)0.0026 (6)
C80.0233 (7)0.0205 (7)0.0214 (7)0.0065 (5)0.0059 (5)0.0051 (5)
C170.0202 (7)0.0272 (7)0.0225 (7)0.0080 (6)0.0050 (5)0.0041 (6)
O50.0327 (6)0.0237 (5)0.0276 (5)0.0125 (4)0.0103 (4)0.0046 (4)
O60.0419 (6)0.0432 (6)0.0248 (6)0.0199 (5)0.0140 (5)0.0076 (5)
C180.0405 (9)0.0268 (8)0.0382 (9)0.0156 (7)0.0093 (7)0.0014 (7)
C70.0229 (7)0.0173 (6)0.0231 (7)0.0066 (5)0.0025 (5)0.0016 (5)
O20.0215 (5)0.0303 (6)0.0282 (6)0.0063 (4)0.0029 (4)0.0031 (4)
C60.0251 (7)0.0196 (7)0.0204 (7)0.0078 (5)0.0041 (6)0.0028 (5)
C150.0311 (8)0.0207 (7)0.0225 (7)0.0084 (6)0.0040 (6)0.0038 (6)
O70.0341 (6)0.0372 (6)0.0194 (5)0.0102 (5)0.0073 (4)0.0085 (4)
C160.0522 (10)0.0440 (10)0.0198 (8)0.0142 (8)0.0097 (7)0.0078 (7)
O80.0302 (6)0.0371 (6)0.0248 (5)0.0082 (5)0.0018 (4)0.0044 (4)
C50.0231 (7)0.0219 (7)0.0179 (7)0.0071 (6)0.0051 (5)0.0039 (5)
C100.0262 (7)0.0222 (7)0.0266 (7)0.0076 (6)0.0078 (6)0.0063 (6)
C40.0258 (7)0.0236 (7)0.0204 (7)0.0084 (6)0.0065 (6)0.0035 (5)
C130.0270 (7)0.0241 (7)0.0270 (8)0.0114 (6)0.0095 (6)0.0059 (6)
O90.0262 (5)0.0321 (6)0.0306 (6)0.0081 (4)0.0107 (4)0.0119 (4)
C140.0274 (8)0.0380 (9)0.0452 (9)0.0104 (7)0.0141 (7)0.0179 (7)
O100.0265 (6)0.0464 (7)0.0316 (6)0.0101 (5)0.0054 (5)0.0117 (5)
Geometric parameters (Å, º) top
C1—C21.5166 (19)O5—C181.4508 (17)
C1—C81.5725 (18)C18—H18A0.9600
C1—C51.5954 (18)C18—H18B0.9600
C2—C31.340 (2)C18—H18C0.9600
C3—C41.4928 (19)C7—O21.3388 (16)
C4—C51.5676 (19)O2—H20.89 (2)
C5—C61.5198 (18)C6—C151.4534 (19)
C6—C71.342 (2)C15—O81.2272 (17)
C7—C81.4929 (19)C15—O71.3339 (18)
O1—C31.3359 (17)O7—C161.4467 (17)
O1—H10.89 (2)C16—H16A0.9600
C2—C111.4563 (19)C16—H16B0.9600
C11—O41.2258 (17)C16—H16C0.9600
C11—O31.3335 (18)C5—C101.5317 (18)
O3—C121.4509 (17)C10—H10A0.9600
C12—H12A0.9600C10—H10B0.9600
C12—H12B0.9600C10—H10C0.9600
C12—H12C0.9600C4—C131.5224 (19)
C1—C91.5268 (19)C4—H40.9800
C9—H9A0.9600C13—O101.2002 (17)
C9—H9B0.9600C13—O91.3388 (17)
C9—H9C0.9600O9—C141.4425 (18)
C8—C171.5197 (19)C14—H14A0.9600
C8—H80.9800C14—H14B0.9600
C17—O61.2024 (17)C14—H14C0.9600
C17—O51.3338 (17)O1—O25.814 (2)
C3—O1—H1104.8 (14)O2—C7—C6127.85 (13)
O1—C3—C2127.35 (13)O2—C7—C8118.33 (12)
O1—C3—C4118.52 (13)C6—C7—C8113.81 (12)
C2—C3—C4114.12 (12)C7—O2—H2103.9 (13)
C3—C2—C11119.53 (13)C7—C6—C15119.60 (13)
C3—C2—C1112.03 (12)C7—C6—C5112.24 (12)
C11—C2—C1128.25 (12)C15—C6—C5128.10 (12)
O4—C11—O3122.82 (13)O8—C15—O7122.73 (13)
O4—C11—C2122.69 (13)O8—C15—C6122.92 (14)
O3—C11—C2114.48 (12)O7—C15—C6114.36 (12)
C11—O3—C12116.09 (12)C15—O7—C16116.14 (12)
O3—C12—H12A109.5O7—C16—H16A109.5
O3—C12—H12B109.5O7—C16—H16B109.5
H12A—C12—H12B109.5H16A—C16—H16B109.5
O3—C12—H12C109.5O7—C16—H16C109.5
H12A—C12—H12C109.5H16A—C16—H16C109.5
H12B—C12—H12C109.5H16B—C16—H16C109.5
C2—C1—C9110.38 (11)C6—C5—C10111.05 (11)
C2—C1—C8110.83 (10)C6—C5—C4110.38 (10)
C9—C1—C8113.42 (11)C10—C5—C4113.12 (11)
C2—C1—C5101.62 (10)C6—C5—C1101.56 (10)
C9—C1—C5114.48 (11)C10—C5—C1114.39 (11)
C8—C1—C5105.42 (10)C4—C5—C1105.64 (10)
C1—C9—H9A109.5C5—C10—H10A109.5
C1—C9—H9B109.5C5—C10—H10B109.5
H9A—C9—H9B109.5H10A—C10—H10B109.5
C1—C9—H9C109.5C5—C10—H10C109.5
H9A—C9—H9C109.5H10A—C10—H10C109.5
H9B—C9—H9C109.5H10B—C10—H10C109.5
C7—C8—C17113.20 (11)C3—C4—C13111.43 (11)
C7—C8—C1102.45 (11)C3—C4—C5102.49 (11)
C17—C8—C1113.08 (11)C13—C4—C5112.91 (11)
C7—C8—H8109.3C3—C4—H4109.9
C17—C8—H8109.3C13—C4—H4109.9
C1—C8—H8109.3C5—C4—H4109.9
O6—C17—O5123.86 (13)O10—C13—O9124.44 (13)
O6—C17—C8123.62 (13)O10—C13—C4125.32 (13)
O5—C17—C8112.48 (11)O9—C13—C4110.20 (11)
C17—O5—C18115.30 (11)C13—O9—C14115.75 (11)
O5—C18—H18A109.5O9—C14—H14A109.5
O5—C18—H18B109.5O9—C14—H14B109.5
H18A—C18—H18B109.5H14A—C14—H14B109.5
O5—C18—H18C109.5O9—C14—H14C109.5
H18A—C18—H18C109.5H14A—C14—H14C109.5
H18B—C18—H18C109.5H14B—C14—H14C109.5
C1—C2—C3—C42.47 (17)O6—C17—O5—C180.81 (19)
C1—C5—C4—C318.44 (13)C8—C17—O5—C18178.50 (11)
C2—C3—C4—C510.61 (15)C17—C8—C7—O270.42 (15)
C3—C4—C5—C690.58 (12)C1—C8—C7—O2167.48 (11)
C4—C5—C6—C7124.75 (12)C17—C8—C7—C6109.04 (14)
C5—C6—C7—C80.16 (17)O2—C7—C6—C151.8 (2)
C6—C7—C8—C113.05 (15)C8—C7—C6—C15177.60 (11)
C7—C8—C5—C1158.65 (13)O2—C7—C6—C5179.24 (12)
C1—C2—C11—O31.6 (2)O8—C15—O7—C160.3 (2)
C1—C2—C11—O4177.43 (13)C6—C15—O7—C16179.91 (12)
C3—C2—C11—O3176.19 (12)C7—C6—C5—C10108.96 (13)
C3—C2—C11—O42.9 (2)C15—C6—C5—C1068.20 (17)
C5—C6—C15—O72.9 (2)C15—C6—C5—C458.08 (17)
C5—C6—C15—O8176.92 (13)C7—C6—C5—C113.07 (14)
C7—C6—C15—O7179.87 (12)C15—C6—C5—C1169.77 (13)
C7—C6—C15—O80.1 (2)C2—C1—C5—C695.62 (11)
C9—C1—C5—C1025.72 (16)C9—C1—C5—C6145.41 (11)
O1—C3—C2—C112.0 (2)C8—C1—C5—C620.06 (12)
O1—C3—C2—C1177.41 (13)C2—C1—C5—C10144.69 (11)
C4—C3—C2—C11177.87 (11)C8—C1—C5—C1099.63 (13)
O4—C11—O3—C120.09 (19)C2—C1—C5—C419.62 (12)
C2—C11—O3—C12178.95 (11)C9—C1—C5—C499.35 (13)
C3—C2—C1—C9107.78 (13)C8—C1—C5—C4135.30 (10)
C11—C2—C1—C967.13 (17)O1—C3—C4—C1369.49 (16)
C3—C2—C1—C8125.71 (12)C2—C3—C4—C13110.40 (14)
C11—C2—C1—C859.39 (17)O1—C3—C4—C5169.50 (12)
C3—C2—C1—C514.07 (14)C10—C5—C4—C3144.29 (11)
C11—C2—C1—C5171.02 (12)C6—C5—C4—C13149.43 (11)
C2—C1—C8—C789.09 (12)C10—C5—C4—C1324.31 (15)
C9—C1—C8—C7146.10 (11)C1—C5—C4—C13101.55 (12)
C2—C1—C8—C17148.74 (11)C3—C4—C13—O1034.2 (2)
C9—C1—C8—C1723.92 (15)C5—C4—C13—O1080.53 (17)
C5—C1—C8—C17102.08 (12)C3—C4—C13—O9148.10 (12)
C7—C8—C17—O6147.02 (14)C5—C4—C13—O997.19 (13)
C1—C8—C17—O697.04 (16)O10—C13—O9—C140.4 (2)
C7—C8—C17—O535.28 (16)C4—C13—O9—C14177.32 (12)
C1—C8—C17—O580.66 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O40.89 (2)1.85 (2)2.6354 (16)146 (2)
O2—H2···O80.89 (2)1.86 (2)2.6533 (15)146.8 (18)
C4—H4···O1i0.982.563.2533 (18)128
Symmetry code: (i) x+1, y, z+1.
(III) tetramethyl cis,cis-3,7-dimethoxybicyclo[3.3.0]octa-2,6-diene- 2,4-exo,6,8-exo-tetracarboxylate top
Crystal data top
C18H22O10F(000) = 840
Mr = 398.36Dx = 1.444 Mg m3
Monoclinic, P21/nMelting point = 138.7–140 K
Hall symbol: -P 2ynMo Kα radiation, λ = 0.71073 Å
a = 13.4118 (4) ÅCell parameters from 5768 reflections
b = 8.3693 (3) Åθ = 2.4–25.0°
c = 17.4894 (6) ŵ = 0.12 mm1
β = 111.049 (1)°T = 150 K
V = 1832.15 (11) Å3Plate, colorless
Z = 40.48 × 0.43 × 0.42 mm
Data collection top
Siemens SMART CCD area-detector
diffractometer
3200 independent reflections
Radiation source: fine-focus sealed tube2987 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.011
ϕ and ω scansθmax = 25.0°, θmin = 2.4°
Absorption correction: part of the refinement model (ΔF)
(SADABS; Bruker, 1999)
h = 1215
Tmin = 0.923, Tmax = 0.930k = 98
8916 measured reflectionsl = 2020
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.095H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0586P)2 + 0.5767P]
where P = (Fo2 + 2Fc2)/3
3200 reflections(Δ/σ)max = 0.001
259 parametersΔρmax = 0.23 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
C18H22O10V = 1832.15 (11) Å3
Mr = 398.36Z = 4
Monoclinic, P21/nMo Kα radiation
a = 13.4118 (4) ŵ = 0.12 mm1
b = 8.3693 (3) ÅT = 150 K
c = 17.4894 (6) Å0.48 × 0.43 × 0.42 mm
β = 111.049 (1)°
Data collection top
Siemens SMART CCD area-detector
diffractometer
3200 independent reflections
Absorption correction: part of the refinement model (ΔF)
(SADABS; Bruker, 1999)
2987 reflections with I > 2σ(I)
Tmin = 0.923, Tmax = 0.930Rint = 0.011
8916 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.095H-atom parameters constrained
S = 1.04Δρmax = 0.23 e Å3
3200 reflectionsΔρmin = 0.22 e Å3
259 parameters
Special details top

Experimental. 0.3 ° between frames and 5 secs exposure (per frame)

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Least-squares planes (x,y,z in crystal coordinates) and deviations from them (* indicates atom used to define plane)

5.0507 (0.0076) x + 6.9880 (0.0028) y + 4.1842 (0.0104) z = 8.4589 (0.0077)

* -0.0739 (0.0007) C1 * 0.0265 (0.0008) C2 * 0.0331 (0.0008) C3 * -0.0767 (0.0008) C4 * 0.0909 (0.0008) C5

Rms deviation of fitted atoms = 0.0654

2.8683 (0.0079) x - 7.1206 (0.0027) y + 6.4915 (0.0098) z = 7.1480 (0.0092)

Angle to previous plane (with approximate e.s.d.) = 64.07 (0.04)

* -0.0883 (0.0007) C1 * 0.0654 (0.0007) C5 * -0.0139 (0.0008) C6 * -0.0447 (0.0008) C7 * 0.0814 (0.0007) C8

Rms deviation of fitted atoms = 0.0646

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.52621 (7)0.37842 (11)0.78155 (5)0.0273 (2)
C30.58527 (10)0.28676 (14)0.84417 (7)0.0207 (3)
C20.56213 (10)0.26186 (14)0.91209 (7)0.0200 (3)
C10.64240 (10)0.15354 (15)0.97211 (7)0.0200 (3)
H10.60980.04790.97620.024*
C80.69694 (10)0.23027 (15)1.05832 (7)0.0206 (3)
H80.65360.32201.06590.025*
C70.80264 (9)0.28838 (15)1.05593 (7)0.0201 (3)
C60.82297 (10)0.23274 (15)0.99065 (7)0.0204 (3)
C50.73180 (10)0.13450 (15)0.93539 (7)0.0201 (3)
H50.75330.01990.93620.024*
C40.68487 (10)0.19815 (15)0.84569 (7)0.0212 (3)
H40.73620.27390.83520.025*
O20.86934 (7)0.38144 (11)1.11422 (5)0.0258 (2)
C110.46832 (10)0.32464 (15)0.92628 (7)0.0218 (3)
C120.36928 (11)0.30590 (17)1.01419 (9)0.0311 (3)
H12A0.38680.41431.03610.047*
H12B0.36170.23581.05660.047*
H12C0.30200.30780.96700.047*
C170.71197 (10)0.10518 (16)1.12471 (7)0.0234 (3)
C180.80666 (12)0.12839 (17)1.18459 (9)0.0331 (3)
H18A0.84050.08151.23920.050*
H18B0.85490.20721.17500.050*
H18C0.73980.18091.18110.050*
C150.92350 (10)0.23535 (16)0.97540 (7)0.0225 (3)
C161.10344 (11)0.31702 (19)1.02083 (9)0.0336 (3)
H16A1.12400.20611.01620.050*
H16B1.15730.36731.06840.050*
H16C1.09840.37580.97110.050*
C130.66100 (10)0.05941 (16)0.78566 (7)0.0240 (3)
C140.58366 (13)0.19767 (19)0.75791 (10)0.0412 (4)
H14A0.54960.17220.69960.062*
H14B0.53680.26790.77470.062*
H14C0.65190.25180.76730.062*
C190.55477 (11)0.39131 (17)0.70966 (8)0.0274 (3)
H19A0.62800.43180.72540.041*
H19B0.50560.46510.67050.041*
H19C0.55010.28580.68430.041*
C200.84494 (11)0.41427 (17)1.18655 (8)0.0273 (3)
H20A0.77350.46151.17060.041*
H20B0.89780.48911.22180.041*
H20C0.84700.31451.21640.041*
O30.45349 (7)0.24690 (11)0.98900 (6)0.0267 (2)
O40.41053 (8)0.43152 (12)0.88894 (6)0.0325 (2)
O90.78408 (7)0.00385 (11)1.12332 (6)0.0284 (2)
O100.66433 (9)0.10221 (13)1.17097 (6)0.0394 (3)
O71.00120 (7)0.31978 (12)1.03082 (5)0.0273 (2)
O80.93557 (7)0.16363 (12)0.91925 (6)0.0315 (2)
O50.60255 (8)0.05148 (12)0.80537 (6)0.0308 (2)
O60.69332 (8)0.04627 (13)0.73003 (6)0.0334 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0286 (5)0.0331 (5)0.0216 (5)0.0084 (4)0.0108 (4)0.0082 (4)
C30.0206 (6)0.0195 (6)0.0210 (6)0.0003 (5)0.0060 (5)0.0004 (5)
C20.0200 (6)0.0191 (6)0.0209 (6)0.0004 (5)0.0073 (5)0.0003 (5)
C10.0203 (6)0.0203 (6)0.0204 (6)0.0008 (5)0.0084 (5)0.0007 (5)
C80.0213 (6)0.0224 (6)0.0194 (6)0.0023 (5)0.0089 (5)0.0010 (5)
C70.0213 (6)0.0203 (6)0.0184 (6)0.0018 (5)0.0068 (5)0.0020 (5)
C60.0204 (6)0.0215 (6)0.0193 (6)0.0018 (5)0.0070 (5)0.0015 (5)
C50.0208 (6)0.0207 (6)0.0192 (6)0.0021 (5)0.0078 (5)0.0000 (5)
C40.0206 (6)0.0247 (6)0.0188 (6)0.0005 (5)0.0077 (5)0.0006 (5)
O20.0259 (5)0.0316 (5)0.0221 (5)0.0053 (4)0.0113 (4)0.0074 (4)
C110.0204 (6)0.0223 (6)0.0217 (6)0.0014 (5)0.0064 (5)0.0018 (5)
C120.0324 (7)0.0324 (7)0.0374 (8)0.0007 (6)0.0232 (6)0.0031 (6)
C170.0231 (6)0.0274 (7)0.0201 (6)0.0006 (5)0.0081 (5)0.0007 (5)
C180.0343 (8)0.0297 (7)0.0330 (7)0.0039 (6)0.0094 (6)0.0112 (6)
C150.0231 (6)0.0253 (7)0.0191 (6)0.0036 (5)0.0076 (5)0.0030 (5)
C160.0215 (7)0.0449 (9)0.0372 (8)0.0014 (6)0.0138 (6)0.0002 (7)
C130.0197 (6)0.0308 (7)0.0199 (6)0.0055 (5)0.0050 (5)0.0005 (5)
C140.0389 (8)0.0361 (8)0.0472 (9)0.0077 (7)0.0139 (7)0.0196 (7)
C190.0291 (7)0.0327 (7)0.0214 (6)0.0003 (6)0.0102 (5)0.0051 (5)
C200.0273 (7)0.0349 (7)0.0201 (6)0.0009 (6)0.0091 (5)0.0069 (5)
O30.0266 (5)0.0283 (5)0.0305 (5)0.0031 (4)0.0167 (4)0.0032 (4)
O40.0298 (5)0.0354 (6)0.0349 (5)0.0125 (4)0.0146 (4)0.0096 (4)
O90.0301 (5)0.0280 (5)0.0292 (5)0.0061 (4)0.0131 (4)0.0092 (4)
O100.0474 (6)0.0452 (6)0.0367 (6)0.0101 (5)0.0285 (5)0.0138 (5)
O70.0208 (5)0.0365 (5)0.0263 (5)0.0032 (4)0.0107 (4)0.0032 (4)
O80.0271 (5)0.0439 (6)0.0262 (5)0.0027 (4)0.0129 (4)0.0070 (4)
O50.0311 (5)0.0307 (5)0.0320 (5)0.0063 (4)0.0132 (4)0.0106 (4)
O60.0371 (5)0.0411 (6)0.0259 (5)0.0037 (4)0.0162 (4)0.0052 (4)
Geometric parameters (Å, º) top
C1—C21.5069 (17)C12—H12C0.9800
C1—C81.5584 (17)C17—O101.1978 (16)
C1—C51.5583 (17)C17—O91.3362 (16)
C2—C31.3476 (17)C18—O91.4469 (16)
C3—C41.5197 (17)C18—H18A0.9800
C4—C51.5595 (16)C18—H18B0.9800
C5—C61.5021 (17)C18—H18C0.9800
C6—C71.3485 (17)C15—O81.2105 (16)
C7—C81.5134 (17)C15—O71.3413 (16)
O1—C31.3387 (15)C16—O71.4433 (15)
O1—C191.4439 (15)C16—H16A0.9800
C2—C111.4646 (17)C16—H16B0.9800
C1—H11.0000C16—H16C0.9800
C8—C171.5222 (17)C13—O61.2040 (16)
C8—H81.0000C13—O51.3375 (17)
C7—O21.3383 (15)C14—O51.4489 (17)
C6—C151.4655 (17)C14—H14A0.9800
C5—H51.0000C14—H14B0.9800
C4—C131.5204 (17)C14—H14C0.9800
C4—H41.0000C19—H19A0.9800
O2—C201.4423 (15)C19—H19B0.9800
C11—O41.2099 (15)C19—H19C0.9800
C11—O31.3501 (16)C20—H20A0.9800
C12—O31.4390 (15)C20—H20B0.9800
C12—H12A0.9800C20—H20C0.9800
C12—H12B0.9800O1—O25.983 (1)
C3—O1—C19119.41 (10)H12A—C12—H12C109.5
C7—O2—C20118.61 (10)H12B—C12—H12C109.5
O1—C3—C2123.63 (11)O10—C17—O9124.29 (12)
O1—C3—C4123.51 (11)O10—C17—C8124.95 (12)
C2—C3—C4112.85 (11)O9—C17—C8110.75 (10)
C3—C2—C11125.29 (11)O9—C18—H18A109.5
C3—C2—C1111.96 (11)O9—C18—H18B109.5
C11—C2—C1122.69 (10)H18A—C18—H18B109.5
C2—C1—C8113.31 (10)O9—C18—H18C109.5
C2—C1—C5103.74 (9)H18A—C18—H18C109.5
C8—C1—C5106.12 (9)H18B—C18—H18C109.5
C2—C1—H1111.1O8—C15—O7123.50 (11)
C8—C1—H1111.1O8—C15—C6122.69 (12)
C5—C1—H1111.1O7—C15—C6113.78 (10)
C7—C8—C17111.92 (10)O7—C16—H16A109.5
C7—C8—C1102.97 (9)O7—C16—H16B109.5
C17—C8—C1110.01 (10)H16A—C16—H16B109.5
C7—C8—H8110.6O7—C16—H16C109.5
C17—C8—H8110.6H16A—C16—H16C109.5
C1—C8—H8110.6H16B—C16—H16C109.5
O2—C7—C6124.25 (11)O6—C13—O5124.02 (12)
O2—C7—C8122.85 (10)O6—C13—C4125.46 (12)
C6—C7—C8112.87 (11)O5—C13—C4110.45 (10)
C7—C6—C15128.90 (12)O5—C14—H14A109.5
C7—C6—C5111.61 (11)O5—C14—H14B109.5
C15—C6—C5118.73 (11)H14A—C14—H14B109.5
C6—C5—C1104.35 (10)O5—C14—H14C109.5
C6—C5—C4113.67 (10)H14A—C14—H14C109.5
C1—C5—C4106.70 (9)H14B—C14—H14C109.5
C6—C5—H5110.6O1—C19—H19A109.5
C1—C5—H5110.6O1—C19—H19B109.5
C4—C5—H5110.6H19A—C19—H19B109.5
C3—C4—C13113.26 (10)O1—C19—H19C109.5
C3—C4—C5102.65 (9)H19A—C19—H19C109.5
C13—C4—C5110.04 (10)H19B—C19—H19C109.5
C3—C4—H4110.2O2—C20—H20A109.5
C13—C4—H4110.2O2—C20—H20B109.5
C5—C4—H4110.2H20A—C20—H20B109.5
O4—C11—O3122.83 (12)O2—C20—H20C109.5
O4—C11—C2126.63 (12)H20A—C20—H20C109.5
O3—C11—C2110.55 (10)H20B—C20—H20C109.5
O3—C12—H12A109.5C11—O3—C12116.37 (10)
O3—C12—H12B109.5C17—O9—C18116.03 (10)
H12A—C12—H12B109.5C15—O7—C16115.43 (10)
O3—C12—H12C109.5C13—O5—C14115.87 (11)
C1—C2—C3—C40.61 (15)C17—C8—C7—C6107.12 (12)
C2—C3—C4—C59.33 (14)O2—C7—C6—C1511.5 (2)
C3—C4—C5—C6100.54 (11)C8—C7—C6—C15166.71 (12)
C3—C4—C5—C113.92 (12)O2—C7—C6—C5178.82 (11)
C4—C5—C6—C7122.27 (11)C7—C6—C5—C16.42 (13)
C5—C6—C7—C83.01 (15)C15—C6—C5—C1177.30 (10)
C6—C7—C8—C111.00 (13)C15—C6—C5—C466.85 (14)
C7—C8—C1—C514.14 (12)C2—C1—C5—C6106.85 (11)
C4—C3—O1—C192.28 (17)C8—C1—C5—C612.79 (12)
C8—C7—O2—C206.61 (17)C2—C1—C5—C413.77 (12)
C1—C2—C11—O4166.75 (12)C8—C1—C5—C4133.41 (10)
C1—C2—C11—O312.78 (16)O1—C3—C4—C1370.06 (15)
C3—C2—C11—O3164.30 (12)C2—C3—C4—C13109.27 (12)
C3—C2—C11—O416.2 (2)O1—C3—C4—C5171.34 (11)
C5—C6—C15—O7176.66 (10)C6—C5—C4—C13138.62 (11)
C5—C6—C15—O81.25 (19)C1—C5—C4—C13106.92 (11)
C7—C6—C15—O77.57 (19)C7—C8—C17—O10135.64 (14)
C7—C6—C15—O8170.33 (13)C1—C8—C17—O10110.53 (14)
C2—C3—O1—C19176.97 (12)C7—C8—C17—O945.82 (14)
C6—C7—O2—C20171.39 (12)C1—C8—C17—O968.01 (13)
O1—C3—C2—C112.6 (2)C3—C4—C13—O6119.69 (13)
C4—C3—C2—C11176.74 (11)C5—C4—C13—O6126.07 (13)
O1—C3—C2—C1179.94 (11)C3—C4—C13—O563.23 (14)
C3—C2—C1—C8123.06 (11)C5—C4—C13—O551.00 (13)
C11—C2—C1—C859.51 (15)O4—C11—O3—C124.72 (18)
C3—C2—C1—C58.45 (14)C2—C11—O3—C12174.83 (10)
C11—C2—C1—C5174.12 (11)O10—C17—O9—C182.33 (19)
C2—C1—C8—C799.04 (11)C8—C17—O9—C18179.12 (11)
C2—C1—C8—C17141.51 (10)O8—C15—O7—C161.57 (18)
C5—C1—C8—C17105.30 (11)C6—C15—O7—C16176.31 (11)
C17—C8—C7—O271.09 (15)O6—C13—O5—C143.27 (18)
C1—C8—C7—O2170.79 (10)C4—C13—O5—C14173.85 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8···O4i1.002.473.4489 (15)166
Symmetry code: (i) x+1, y+1, z+2.
(IV) tetramethyl cis,cis-3,7-dimethoxy-1,5-dimethylbicyclo[3.3.0]octa-2,6-diene- 2,4-exo,6,8-exo-tetracarboxylate top
Crystal data top
C20H26O10F(000) = 904
Mr = 426.41Dx = 1.391 Mg m3
Monoclinic, P21/nMelting point = 167.5–169.1 K
Hall symbol: -P 2ynMo Kα radiation, λ = 0.71073 Å
a = 11.6352 (4) ÅCell parameters from 4847 reflections
b = 13.3095 (4) Åθ = 2.2–24.9°
c = 13.2262 (4) ŵ = 0.11 mm1
β = 96.369 (1)°T = 150 K
V = 2035.55 (11) Å3Paralellepiped, colorless
Z = 40.60 × 0.29 × 0.14 mm
Data collection top
Siemens SMART CCD area-detector
diffractometer
3594 independent reflections
Radiation source: fine-focus sealed tube3089 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
ϕ and ω scansθmax = 25.0°, θmin = 2.2°
Absorption correction: part of the refinement model (ΔF)
(SADABS; Bruker, 1999)
h = 1313
Tmin = 0.936, Tmax = 0.985k = 1515
12490 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.112H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0702P)2 + 0.5233P]
where P = (Fo2 + 2Fc2)/3
3594 reflections(Δ/σ)max < 0.001
279 parametersΔρmax = 0.29 e Å3
0 restraintsΔρmin = 0.18 e Å3
Crystal data top
C20H26O10V = 2035.55 (11) Å3
Mr = 426.41Z = 4
Monoclinic, P21/nMo Kα radiation
a = 11.6352 (4) ŵ = 0.11 mm1
b = 13.3095 (4) ÅT = 150 K
c = 13.2262 (4) Å0.60 × 0.29 × 0.14 mm
β = 96.369 (1)°
Data collection top
Siemens SMART CCD area-detector
diffractometer
3594 independent reflections
Absorption correction: part of the refinement model (ΔF)
(SADABS; Bruker, 1999)
3089 reflections with I > 2σ(I)
Tmin = 0.936, Tmax = 0.985Rint = 0.024
12490 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.112H-atom parameters constrained
S = 1.01Δρmax = 0.29 e Å3
3594 reflectionsΔρmin = 0.18 e Å3
279 parameters
Special details top

Experimental. 0.3 ° between frames and ten second by frame

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Least-squares planes (x,y,z in crystal coordinates) and deviations from them (* indicates atom used to define plane)

- 6.9178 (0.0060) x + 9.9782 (0.0047) y + 4.6920 (0.0078) z = 1.9998 (0.0032)

* 0.0752 (0.0009) C5 * -0.0428 (0.0010) C6 * -0.0567 (0.0010) C7 * 0.0849 (0.0009) C8 * -0.0606 (0.0006) C9

Rms deviation of fitted atoms = 0.0657

6.8819 (0.0068) x + 10.2854 (0.0061) y - 3.8927 (0.0092) z = 1.3324 (0.0034)

Angle to previous plane (with approximate e.s.d.) = 80.74 (0.04)

* -0.1163 (0.0009) C1 * 0.0505 (0.0009) C2 * 0.0404 (0.0009) C3 * -0.1117 (0.0009) C4 * 0.1371 (0.0009) C5

Rms deviation of fitted atoms = 0.0990

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.11773 (12)0.17048 (11)0.34618 (11)0.0208 (3)
C90.09502 (14)0.07178 (12)0.40074 (12)0.0269 (4)
H9A0.11130.08120.47440.040*
H9B0.14530.01900.37850.040*
H9C0.01390.05220.38410.040*
C20.03514 (12)0.25226 (11)0.37341 (11)0.0203 (3)
C110.03992 (12)0.28833 (11)0.47906 (11)0.0228 (3)
O30.04106 (10)0.35730 (9)0.49344 (8)0.0294 (3)
O40.10901 (10)0.25862 (10)0.54745 (8)0.0353 (3)
C120.04631 (15)0.38749 (14)0.59769 (12)0.0338 (4)
H12A0.03960.32810.64170.051*
H12B0.12030.42100.60360.051*
H12C0.01730.43390.61850.051*
C30.04447 (12)0.27484 (11)0.29494 (11)0.0195 (3)
O10.12785 (9)0.34373 (8)0.29795 (8)0.0243 (3)
C190.22187 (14)0.34648 (13)0.21715 (12)0.0303 (4)
H19A0.19070.34570.15130.045*
H19B0.26720.40790.22300.045*
H19C0.27160.28770.22230.045*
C40.02964 (12)0.21438 (11)0.20048 (11)0.0199 (3)
H40.03030.25970.14010.024*
C130.12315 (13)0.13469 (11)0.18155 (11)0.0229 (3)
O50.14560 (9)0.11484 (8)0.08236 (8)0.0271 (3)
O60.16929 (10)0.09271 (9)0.24686 (8)0.0333 (3)
C140.22564 (15)0.03314 (14)0.05613 (13)0.0354 (4)
H14A0.18690.03110.07270.053*
H14B0.25180.03550.01690.053*
H14C0.29240.03970.09480.053*
C50.09320 (12)0.16616 (11)0.22630 (11)0.0201 (3)
C100.10202 (14)0.06080 (12)0.18091 (12)0.0263 (4)
H10A0.08550.06440.10670.039*
H10B0.04590.01620.20820.039*
H10C0.18030.03450.19880.039*
C60.18625 (12)0.23470 (11)0.19259 (11)0.0200 (3)
C150.18578 (12)0.26095 (11)0.08470 (11)0.0219 (3)
O70.26643 (9)0.32846 (8)0.06696 (8)0.0269 (3)
O80.11922 (10)0.22563 (10)0.01750 (8)0.0370 (3)
C160.27092 (15)0.35358 (13)0.03885 (11)0.0308 (4)
H16A0.27410.29170.07860.046*
H16B0.34000.39410.04560.046*
H16C0.20170.39190.06410.046*
C70.26911 (12)0.25479 (11)0.26904 (11)0.0200 (3)
O20.36325 (9)0.31099 (8)0.25969 (8)0.0261 (3)
C200.45815 (14)0.30572 (13)0.33904 (13)0.0300 (4)
H20A0.43110.32420.40410.045*
H20B0.51920.35220.32370.045*
H20C0.48880.23710.34340.045*
C80.24663 (12)0.20688 (11)0.36799 (11)0.0216 (3)
H80.25170.25940.42230.026*
C170.33117 (13)0.12264 (12)0.40054 (11)0.0241 (3)
O90.36350 (9)0.07278 (8)0.32022 (8)0.0264 (3)
O100.36554 (10)0.10318 (10)0.48696 (8)0.0373 (3)
C180.44581 (15)0.00747 (13)0.34336 (14)0.0340 (4)
H18A0.52100.02100.36940.051*
H18B0.45380.04620.28150.051*
H18C0.41850.05170.39490.051*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0224 (8)0.0214 (8)0.0186 (8)0.0026 (6)0.0018 (6)0.0012 (6)
C90.0310 (9)0.0257 (8)0.0248 (8)0.0033 (7)0.0060 (7)0.0056 (6)
C20.0214 (7)0.0210 (7)0.0187 (8)0.0003 (6)0.0034 (6)0.0009 (6)
C110.0210 (8)0.0256 (8)0.0223 (8)0.0006 (6)0.0041 (6)0.0002 (6)
O30.0342 (6)0.0347 (6)0.0191 (6)0.0114 (5)0.0016 (5)0.0040 (5)
O40.0337 (7)0.0529 (8)0.0181 (6)0.0147 (6)0.0031 (5)0.0035 (5)
C120.0350 (9)0.0454 (10)0.0212 (8)0.0076 (8)0.0045 (7)0.0086 (7)
C30.0196 (7)0.0192 (7)0.0203 (8)0.0012 (6)0.0045 (6)0.0007 (6)
O10.0227 (5)0.0276 (6)0.0217 (6)0.0070 (4)0.0013 (4)0.0029 (4)
C190.0248 (8)0.0391 (10)0.0256 (9)0.0080 (7)0.0025 (6)0.0023 (7)
C40.0192 (7)0.0228 (8)0.0179 (7)0.0004 (6)0.0032 (6)0.0006 (6)
C130.0210 (7)0.0261 (8)0.0217 (8)0.0010 (6)0.0026 (6)0.0034 (6)
O50.0245 (6)0.0337 (6)0.0225 (6)0.0060 (5)0.0005 (4)0.0064 (5)
O60.0375 (7)0.0365 (7)0.0269 (6)0.0134 (5)0.0084 (5)0.0029 (5)
C140.0309 (9)0.0383 (10)0.0360 (10)0.0094 (8)0.0005 (7)0.0135 (8)
C50.0213 (7)0.0218 (8)0.0173 (7)0.0010 (6)0.0021 (6)0.0002 (6)
C100.0276 (8)0.0241 (8)0.0272 (8)0.0010 (6)0.0034 (6)0.0047 (6)
C60.0194 (7)0.0208 (7)0.0199 (8)0.0032 (6)0.0028 (6)0.0004 (6)
C150.0175 (7)0.0269 (8)0.0213 (8)0.0029 (6)0.0020 (6)0.0007 (6)
O70.0303 (6)0.0326 (6)0.0183 (5)0.0064 (5)0.0047 (4)0.0030 (4)
O80.0310 (6)0.0594 (8)0.0194 (6)0.0145 (6)0.0027 (5)0.0021 (5)
C160.0366 (9)0.0379 (10)0.0189 (8)0.0011 (8)0.0073 (7)0.0045 (7)
C70.0188 (7)0.0198 (8)0.0212 (8)0.0029 (6)0.0021 (6)0.0008 (6)
O20.0211 (5)0.0306 (6)0.0252 (6)0.0047 (5)0.0041 (4)0.0041 (5)
C200.0238 (8)0.0309 (9)0.0330 (9)0.0012 (7)0.0067 (7)0.0014 (7)
C80.0216 (8)0.0236 (8)0.0194 (7)0.0041 (6)0.0012 (6)0.0006 (6)
C170.0214 (8)0.0287 (8)0.0221 (8)0.0020 (6)0.0023 (6)0.0026 (6)
O90.0283 (6)0.0263 (6)0.0242 (6)0.0092 (5)0.0015 (4)0.0013 (4)
O100.0393 (7)0.0507 (8)0.0214 (6)0.0178 (6)0.0008 (5)0.0077 (5)
C180.0327 (9)0.0278 (9)0.0416 (10)0.0124 (7)0.0039 (7)0.0031 (7)
Geometric parameters (Å, º) top
C1—C21.521 (2)O5—C141.4485 (19)
C1—C81.572 (2)C14—H14A0.9800
C1—C51.581 (2)C14—H14B0.9800
C2—C31.346 (2)C14—H14C0.9800
C3—C41.512 (2)C5—C101.533 (2)
C4—C51.569 (2)C10—H10A0.9800
C5—C61.520 (2)C10—H10B0.9800
C6—C71.344 (2)C10—H10C0.9800
C7—C81.505 (2)C6—C151.469 (2)
C1—C91.536 (2)C15—O81.2075 (19)
C9—H9A0.9800C15—O71.3385 (18)
C9—H9B0.9800O7—C161.4453 (18)
C9—H9C0.9800C16—H16A0.9800
C2—C111.473 (2)C16—H16B0.9800
C11—O41.2081 (18)C16—H16C0.9800
C11—O31.3440 (18)C7—O21.3434 (18)
O3—C121.4440 (18)O2—C201.4382 (19)
C12—H12A0.9800C20—H20A0.9800
C12—H12B0.9800C20—H20B0.9800
C12—H12C0.9800C20—H20C0.9800
C3—O11.3386 (18)C8—C171.522 (2)
O1—C191.4425 (18)C8—H81.0000
C19—H19A0.9800C17—O101.1967 (18)
C19—H19B0.9800C17—O91.3413 (18)
C19—H19C0.9800O9—C181.4446 (18)
C4—C131.520 (2)C18—H18A0.9800
C4—H41.0000C18—H18B0.9800
C13—O61.2039 (19)C18—H18C0.9800
C13—O51.3353 (18)O1—O25.808 (2)
C3—O1—C19119.20 (11)H14B—C14—H14C109.5
C7—O2—C20118.26 (12)C6—C5—C10110.69 (12)
C2—C1—C9110.77 (12)C6—C5—C4110.60 (11)
C2—C1—C8110.54 (12)C10—C5—C4112.81 (12)
C9—C1—C8112.81 (12)C6—C5—C1102.55 (11)
C2—C1—C5102.42 (11)C10—C5—C1114.43 (12)
C9—C1—C5114.76 (12)C4—C5—C1105.19 (11)
C8—C1—C5104.93 (11)C5—C10—H10A109.5
C1—C9—H9A109.5C5—C10—H10B109.5
C1—C9—H9B109.5H10A—C10—H10B109.5
H9A—C9—H9B109.5C5—C10—H10C109.5
C1—C9—H9C109.5H10A—C10—H10C109.5
H9A—C9—H9C109.5H10B—C10—H10C109.5
H9B—C9—H9C109.5C7—C6—C15127.49 (14)
C3—C2—C11127.52 (13)C7—C6—C5111.93 (13)
C3—C2—C1112.08 (12)C15—C6—C5120.13 (12)
C11—C2—C1119.97 (12)O8—C15—O7122.49 (14)
O4—C11—O3122.43 (14)O8—C15—C6123.75 (14)
O4—C11—C2123.76 (14)O7—C15—C6113.77 (12)
O3—C11—C2113.81 (12)C15—O7—C16115.24 (12)
C11—O3—C12115.45 (12)O7—C16—H16A109.5
O3—C12—H12A109.5O7—C16—H16B109.5
O3—C12—H12B109.5H16A—C16—H16B109.5
H12A—C12—H12B109.5O7—C16—H16C109.5
O3—C12—H12C109.5H16A—C16—H16C109.5
H12A—C12—H12C109.5H16B—C16—H16C109.5
H12B—C12—H12C109.5O2—C7—C6124.44 (13)
O1—C3—C2124.68 (13)O2—C7—C8122.57 (12)
O1—C3—C4122.59 (12)C6—C7—C8112.99 (13)
C2—C3—C4112.73 (13)O2—C20—H20A109.5
O1—C19—H19A109.5O2—C20—H20B109.5
O1—C19—H19B109.5H20A—C20—H20B109.5
H19A—C19—H19B109.5O2—C20—H20C109.5
O1—C19—H19C109.5H20A—C20—H20C109.5
H19A—C19—H19C109.5H20B—C20—H20C109.5
H19B—C19—H19C109.5C7—C8—C17112.90 (12)
C3—C4—C13111.24 (12)C7—C8—C1103.03 (11)
C3—C4—C5102.86 (11)C17—C8—C1113.48 (12)
C13—C4—C5111.62 (12)C7—C8—H8109.1
C3—C4—H4110.3C17—C8—H8109.1
C13—C4—H4110.3C1—C8—H8109.1
C5—C4—H4110.3O10—C17—O9123.79 (14)
O6—C13—O5123.97 (14)O10—C17—C8124.52 (14)
O6—C13—C4125.01 (13)O9—C17—C8111.69 (12)
O5—C13—C4111.00 (12)C17—O9—C18115.82 (12)
C13—O5—C14115.75 (12)O9—C18—H18A109.5
O5—C14—H14A109.5O9—C18—H18B109.5
O5—C14—H14B109.5H18A—C18—H18B109.5
H14A—C14—H14B109.5O9—C18—H18C109.5
O5—C14—H14C109.5H18A—C18—H18C109.5
H14A—C14—H14C109.5H18B—C18—H18C109.5
C1—C2—C3—C40.89 (17)O6—C13—O5—C143.8 (2)
C2—C3—C4—C512.71 (16)C4—C13—O5—C14174.39 (12)
C3—C4—C5—C689.69 (13)C13—C4—C5—C6150.97 (12)
C3—C4—C5—C120.35 (14)C3—C4—C5—C10145.74 (12)
C4—C5—C6—C7126.03 (13)C13—C4—C5—C1026.39 (17)
C5—C6—C7—C81.57 (17)C13—C4—C5—C199.00 (13)
C6—C7—C8—C111.98 (16)C2—C1—C5—C694.96 (13)
C7—C8—C1—C519.80 (14)C9—C1—C5—C6144.94 (12)
C1—C2—C11—O42.1 (2)C8—C1—C5—C620.54 (14)
C1—C2—C11—O3177.17 (12)C2—C1—C5—C10145.13 (12)
C3—C2—C11—O35.4 (2)C8—C1—C5—C1099.37 (14)
C3—C2—C11—O4173.92 (15)C2—C1—C5—C420.75 (14)
C5—C6—C15—O7174.57 (12)C9—C1—C5—C499.34 (14)
C5—C6—C15—O85.3 (2)C8—C1—C5—C4136.26 (12)
C7—C6—C15—O713.8 (2)C10—C5—C6—C7108.20 (14)
C7—C6—C15—O8166.27 (16)C1—C5—C6—C714.28 (15)
C9—C1—C5—C1025.03 (18)C10—C5—C6—C1564.61 (17)
C2—C3—O1—C19167.08 (14)C4—C5—C6—C1561.16 (17)
C4—C3—O1—C1913.6 (2)C1—C5—C6—C15172.91 (12)
C6—C7—O2—C20164.46 (14)O8—C15—O7—C162.1 (2)
C8—C7—O2—C2015.1 (2)C6—C15—O7—C16178.05 (12)
C9—C1—C2—C3108.88 (14)C15—C6—C7—O25.9 (2)
C8—C1—C2—C3125.31 (13)C5—C6—C7—O2178.01 (13)
C5—C1—C2—C313.95 (16)C15—C6—C7—C8173.72 (14)
C9—C1—C2—C1164.11 (17)O2—C7—C8—C1768.77 (18)
C8—C1—C2—C1161.70 (17)C6—C7—C8—C17110.82 (14)
C5—C1—C2—C11173.06 (12)O2—C7—C8—C1168.43 (13)
O4—C11—O3—C124.9 (2)C2—C1—C8—C789.93 (13)
C2—C11—O3—C12174.36 (13)C9—C1—C8—C7145.42 (12)
C11—C2—C3—O17.4 (2)C2—C1—C8—C17147.66 (12)
C1—C2—C3—O1179.74 (13)C9—C1—C8—C1723.02 (17)
C11—C2—C3—C4173.23 (14)C5—C1—C8—C17102.61 (13)
O1—C3—C4—C1373.72 (17)C7—C8—C17—O10146.12 (16)
C2—C3—C4—C13106.90 (14)C1—C8—C17—O1097.12 (18)
O1—C3—C4—C5166.67 (12)C7—C8—C17—O933.45 (17)
C3—C4—C13—O631.0 (2)C1—C8—C17—O983.31 (15)
C5—C4—C13—O683.25 (18)O10—C17—O9—C180.8 (2)
C3—C4—C13—O5150.79 (12)C8—C17—O9—C18178.74 (12)
C5—C4—C13—O594.96 (14)
(V) tetramethyl cis,cis-3,7-diacetoxybicyclo[3.3.0]octa-2,6-diene- 2,4-exo,6,8-exo-tetracarboxylate top
Crystal data top
C20H22O12F(000) = 952
Mr = 454.38Dx = 1.414 Mg m3
Monoclinic, P21/cMelting point = 96.5–98 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 10.0095 (5) ÅCell parameters from 1758 reflections
b = 20.9263 (12) Åθ = 2.3–20.4°
c = 10.1881 (6) ŵ = 0.12 mm1
β = 90.507 (1)°T = 150 K
V = 2133.9 (2) Å3Needle, colorless
Z = 40.34 × 0.12 × 0.12 mm
Data collection top
Siemens SMART CCD area-detector
diffractometer
3766 independent reflections
Radiation source: fine-focus sealed tube2596 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.057
ϕ and ω scansθmax = 25.0°, θmin = 2.0°
Absorption correction: part of the refinement model (ΔF)
(SADABS; Bruker, 1999)
h = 1111
Tmin = 0.983, Tmax = 0.986k = 2424
13188 measured reflectionsl = 1212
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.146H-atom parameters constrained
S = 0.91 w = 1/[σ2(Fo2) + (0.0848P)2 + 0.784P]
where P = (Fo2 + 2Fc2)/3
3766 reflections(Δ/σ)max < 0.001
295 parametersΔρmax = 0.29 e Å3
0 restraintsΔρmin = 0.24 e Å3
Crystal data top
C20H22O12V = 2133.9 (2) Å3
Mr = 454.38Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.0095 (5) ŵ = 0.12 mm1
b = 20.9263 (12) ÅT = 150 K
c = 10.1881 (6) Å0.34 × 0.12 × 0.12 mm
β = 90.507 (1)°
Data collection top
Siemens SMART CCD area-detector
diffractometer
3766 independent reflections
Absorption correction: part of the refinement model (ΔF)
(SADABS; Bruker, 1999)
2596 reflections with I > 2σ(I)
Tmin = 0.983, Tmax = 0.986Rint = 0.057
13188 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0500 restraints
wR(F2) = 0.146H-atom parameters constrained
S = 0.91Δρmax = 0.29 e Å3
3766 reflectionsΔρmin = 0.24 e Å3
295 parameters
Special details top

Experimental. 0.3 ° between frames and 10 secs exposure (per frame)

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Least-squares planes (x,y,z in crystal coordinates) and deviations from them (* indicates atom used to define plane)

- 3.1667 (0.0115) x + 9.8588 (0.0222) y - 8.3598 (0.0072) z = 1.1924 (0.0197)

* -0.0830 (0.0015) C1 * 0.0215 (0.0016) C2 * 0.0508 (0.0016) C3 * -0.0987 (0.0015) C4 * 0.1093 (0.0015) C5

Rms deviation of fitted atoms = 0.0795

- 1.7064 (0.0119) x + 10.8406 (0.0211) y + 8.5547 (0.0066) z = 12.7057 (0.0143)

Angle to previous plane (with approximate e.s.d.) = 66.91 (0.07)

* -0.1024 (0.0015) C1 * 0.0771 (0.0015) C5 * -0.0188 (0.0016) C6 * -0.0488 (0.0016) C7 * 0.0930 (0.0015) C8

Rms deviation of fitted atoms = 0.0746

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O20.15575 (18)0.85543 (8)0.40805 (16)0.0306 (5)
C200.1299 (3)0.91663 (13)0.4463 (3)0.0312 (6)
C220.0648 (3)0.95339 (14)0.3381 (3)0.0414 (7)
H22A0.03160.94520.33820.062*
H22B0.10210.94000.25380.062*
H22C0.08120.99910.35110.062*
O120.1556 (2)0.93594 (9)0.5538 (2)0.0462 (6)
C70.2361 (3)0.81891 (11)0.4889 (2)0.0262 (6)
C80.1749 (2)0.76420 (12)0.5626 (2)0.0250 (6)
H80.11960.73700.50250.030*
C170.0911 (3)0.79030 (12)0.6735 (3)0.0277 (6)
O90.03126 (19)0.80652 (9)0.62967 (19)0.0389 (5)
O100.1274 (2)0.79682 (9)0.78471 (18)0.0388 (5)
C180.1188 (3)0.83376 (16)0.7268 (4)0.0545 (9)
H18A0.12380.80500.80250.082*
H18B0.20820.83940.68860.082*
H18C0.08360.87530.75510.082*
C10.3001 (2)0.72736 (11)0.6114 (2)0.0236 (6)
H10.28970.71250.70400.028*
C20.3360 (3)0.67297 (11)0.5211 (2)0.0254 (6)
C110.2395 (3)0.62091 (12)0.4948 (3)0.0279 (6)
O30.28008 (19)0.58035 (8)0.40244 (19)0.0367 (5)
O40.13562 (19)0.61543 (9)0.55187 (18)0.0370 (5)
C120.1862 (3)0.53105 (14)0.3670 (3)0.0429 (8)
H12A0.16860.50410.44370.064*
H12B0.22350.50480.29660.064*
H12C0.10250.55060.33670.064*
C30.4595 (3)0.67887 (11)0.4778 (2)0.0250 (6)
O10.52291 (18)0.63928 (8)0.38826 (16)0.0295 (4)
C190.5716 (3)0.58197 (12)0.4343 (3)0.0300 (6)
C210.6164 (3)0.54100 (14)0.3237 (3)0.0443 (8)
H21A0.68790.51250.35440.066*
H21B0.64990.56810.25270.066*
H21C0.54110.51540.29130.066*
O110.5754 (2)0.56952 (9)0.54858 (19)0.0376 (5)
C40.5345 (3)0.73495 (12)0.5334 (2)0.0262 (6)
H40.57880.76000.46250.031*
C130.6356 (3)0.71023 (12)0.6318 (3)0.0306 (6)
O50.74851 (19)0.69360 (9)0.5718 (2)0.0413 (5)
O60.6175 (2)0.70481 (10)0.74725 (18)0.0425 (5)
C140.8453 (3)0.66068 (15)0.6540 (4)0.0552 (9)
H14A0.86590.68690.73130.083*
H14B0.92720.65330.60420.083*
H14C0.80830.61960.68220.083*
C50.4211 (2)0.77394 (11)0.5975 (2)0.0248 (6)
H50.44960.79140.68470.030*
C60.3667 (3)0.82604 (11)0.5094 (2)0.0257 (6)
C150.4454 (3)0.87939 (12)0.4548 (3)0.0313 (6)
O70.57131 (19)0.87919 (8)0.50149 (18)0.0353 (5)
O80.4035 (2)0.91879 (9)0.3791 (2)0.0479 (6)
C160.6560 (3)0.92856 (14)0.4484 (3)0.0507 (9)
H16A0.65280.92680.35230.076*
H16B0.74810.92190.47880.076*
H16C0.62460.97050.47800.076*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O20.0401 (11)0.0230 (10)0.0286 (10)0.0079 (8)0.0044 (8)0.0009 (8)
C200.0315 (16)0.0314 (15)0.0308 (15)0.0058 (12)0.0038 (12)0.0022 (12)
C220.0485 (19)0.0337 (16)0.0418 (17)0.0103 (14)0.0026 (14)0.0028 (13)
O120.0612 (15)0.0409 (12)0.0365 (12)0.0187 (10)0.0087 (10)0.0100 (9)
C70.0365 (16)0.0209 (13)0.0212 (13)0.0062 (11)0.0009 (11)0.0016 (10)
C80.0278 (14)0.0234 (13)0.0237 (13)0.0010 (11)0.0012 (11)0.0027 (10)
C170.0328 (16)0.0211 (13)0.0293 (15)0.0000 (11)0.0037 (12)0.0009 (11)
O90.0292 (11)0.0416 (12)0.0458 (12)0.0068 (9)0.0004 (9)0.0102 (9)
O100.0465 (13)0.0443 (13)0.0256 (10)0.0078 (9)0.0022 (9)0.0041 (9)
C180.0367 (19)0.053 (2)0.074 (2)0.0098 (15)0.0127 (17)0.0180 (18)
C10.0293 (14)0.0221 (13)0.0195 (12)0.0015 (11)0.0012 (10)0.0019 (10)
C20.0293 (15)0.0230 (14)0.0240 (13)0.0041 (11)0.0018 (11)0.0018 (10)
C110.0309 (15)0.0228 (13)0.0299 (14)0.0067 (11)0.0028 (12)0.0006 (11)
O30.0376 (11)0.0269 (10)0.0455 (12)0.0001 (9)0.0024 (9)0.0130 (9)
O40.0404 (12)0.0309 (11)0.0398 (11)0.0067 (9)0.0066 (10)0.0012 (9)
C120.0465 (19)0.0299 (16)0.0523 (19)0.0013 (14)0.0103 (15)0.0127 (14)
C30.0360 (16)0.0191 (13)0.0200 (13)0.0062 (11)0.0016 (11)0.0015 (10)
O10.0382 (11)0.0255 (10)0.0250 (9)0.0069 (8)0.0059 (8)0.0018 (7)
C190.0297 (15)0.0248 (14)0.0357 (16)0.0021 (11)0.0056 (12)0.0023 (12)
C210.056 (2)0.0320 (16)0.0453 (18)0.0079 (14)0.0160 (15)0.0030 (14)
O110.0467 (13)0.0299 (11)0.0362 (12)0.0089 (9)0.0002 (9)0.0039 (9)
C40.0328 (15)0.0233 (13)0.0226 (13)0.0003 (11)0.0028 (11)0.0037 (11)
C130.0288 (15)0.0253 (14)0.0376 (17)0.0033 (11)0.0001 (12)0.0016 (12)
O50.0273 (11)0.0380 (12)0.0585 (13)0.0041 (9)0.0055 (10)0.0100 (10)
O60.0507 (14)0.0471 (13)0.0295 (11)0.0109 (10)0.0072 (10)0.0024 (9)
C140.0300 (17)0.046 (2)0.089 (3)0.0104 (15)0.0042 (17)0.0166 (18)
C50.0312 (14)0.0211 (13)0.0222 (13)0.0017 (11)0.0017 (11)0.0018 (10)
C60.0332 (16)0.0191 (13)0.0249 (13)0.0046 (11)0.0015 (11)0.0010 (10)
C150.0379 (17)0.0239 (14)0.0322 (15)0.0042 (12)0.0085 (13)0.0016 (12)
O70.0388 (12)0.0264 (10)0.0407 (11)0.0077 (8)0.0053 (9)0.0001 (8)
O80.0510 (14)0.0338 (12)0.0592 (14)0.0042 (10)0.0076 (11)0.0218 (11)
C160.050 (2)0.0415 (18)0.061 (2)0.0147 (15)0.0181 (17)0.0004 (16)
Geometric parameters (Å, º) top
C1—C21.509 (3)O5—C141.449 (3)
C1—C81.549 (3)C6—C151.478 (4)
C1—C51.562 (3)C15—O81.202 (3)
C2—C31.322 (4)C15—O71.343 (3)
C3—C41.501 (3)O7—C161.445 (3)
C4—C51.547 (3)C22—H22A0.9800
C5—C61.511 (3)C22—H22B0.9800
C6—C71.330 (4)C22—H22C0.9800
C7—C81.503 (3)C8—H81.0000
O2—C201.364 (3)C18—H18A0.9800
O2—C71.378 (3)C18—H18B0.9800
C20—O121.193 (3)C18—H18C0.9800
C20—C221.490 (4)C1—H11.0000
C8—C171.515 (3)C12—H12A0.9800
C17—O101.195 (3)C12—H12B0.9800
C17—O91.344 (3)C12—H12C0.9800
O9—C181.444 (3)C21—H21A0.9800
C2—C111.479 (4)C21—H21B0.9800
C11—O41.201 (3)C21—H21C0.9800
C11—O31.333 (3)C4—H41.0000
O3—C121.439 (3)C14—H14A0.9800
C3—O11.390 (3)C14—H14B0.9800
O1—C191.376 (3)C14—H14C0.9800
C19—O111.193 (3)C5—H51.0000
C19—C211.488 (4)C16—H16A0.9800
C4—C131.509 (4)C16—H16B0.9800
C13—O61.197 (3)C16—H16C0.9800
C13—O51.336 (3)O2—O15.832 (2)
C19—O1—C3117.26 (19)C20—C22—H22A109.5
C20—O2—C7117.4 (2)C20—C22—H22B109.5
O12—C20—O2122.7 (2)H22A—C22—H22B109.5
O12—C20—C22126.4 (3)C20—C22—H22C109.5
O2—C20—C22110.8 (2)H22A—C22—H22C109.5
C6—C7—O2126.8 (2)H22B—C22—H22C109.5
C6—C7—C8114.3 (2)C7—C8—H8110.8
O2—C7—C8118.9 (2)C17—C8—H8110.8
C7—C8—C17109.2 (2)C1—C8—H8110.8
C7—C8—C1102.0 (2)O9—C18—H18A109.5
C17—C8—C1113.1 (2)O9—C18—H18B109.5
O10—C17—O9123.7 (2)H18A—C18—H18B109.5
O10—C17—C8125.7 (2)O9—C18—H18C109.5
O9—C17—C8110.6 (2)H18A—C18—H18C109.5
C17—O9—C18115.4 (2)H18B—C18—H18C109.5
C2—C1—C8112.1 (2)C2—C1—H1111.5
C2—C1—C5103.08 (19)C8—C1—H1111.5
C8—C1—C5106.62 (19)C5—C1—H1111.5
C3—C2—C11128.3 (2)O3—C12—H12A109.5
C3—C2—C1111.2 (2)O3—C12—H12B109.5
C11—C2—C1120.5 (2)H12A—C12—H12B109.5
O4—C11—O3123.5 (2)O3—C12—H12C109.5
O4—C11—C2123.3 (2)H12A—C12—H12C109.5
O3—C11—C2113.2 (2)H12B—C12—H12C109.5
C11—O3—C12115.5 (2)C19—C21—H21A109.5
C2—C3—O1126.7 (2)C19—C21—H21B109.5
C2—C3—C4114.4 (2)H21A—C21—H21B109.5
O1—C3—C4118.9 (2)C19—C21—H21C109.5
O11—C19—O1122.1 (2)H21A—C21—H21C109.5
O11—C19—C21127.3 (2)H21B—C21—H21C109.5
O1—C19—C21110.6 (2)C3—C4—H4111.1
C3—C4—C13108.2 (2)C13—C4—H4111.1
C3—C4—C5101.9 (2)C5—C4—H4111.1
C13—C4—C5113.0 (2)O5—C14—H14A109.5
O6—C13—O5124.1 (3)O5—C14—H14B109.5
O6—C13—C4125.3 (3)H14A—C14—H14B109.5
O5—C13—C4110.5 (2)O5—C14—H14C109.5
C13—O5—C14115.0 (2)H14A—C14—H14C109.5
C6—C5—C4113.1 (2)H14B—C14—H14C109.5
C6—C5—C1103.2 (2)C6—C5—H5111.3
C4—C5—C1106.35 (19)C4—C5—H5111.3
C7—C6—C15123.5 (2)C1—C5—H5111.3
C7—C6—C5111.2 (2)O7—C16—H16A109.5
C15—C6—C5125.3 (2)O7—C16—H16B109.5
O8—C15—O7123.4 (3)H16A—C16—H16B109.5
O8—C15—C6125.1 (3)O7—C16—H16C109.5
O7—C15—C6111.5 (2)H16A—C16—H16C109.5
C15—O7—C16114.6 (2)H16B—C16—H16C109.5
C1—C2—C3—C43.1 (3)C17—C8—C1—C2147.1 (2)
C2—C3—C4—C513.2 (3)C17—C8—C1—C5100.8 (2)
C3—C4—C5—C695.3 (2)C8—C1—C2—C3122.7 (2)
C3—C4—C5—C117.3 (2)C5—C1—C2—C38.4 (3)
C4—C5—C6—C7122.2 (2)C8—C1—C2—C1159.3 (3)
C5—C6—C7—C83.1 (3)C5—C1—C2—C11173.6 (2)
C6—C7—C8—C112.5 (3)O4—C11—O3—C124.5 (4)
C7—C8—C1—C516.3 (2)C2—C11—O3—C12176.2 (2)
C1—C2—C11—O3173.1 (2)C11—C2—C3—O15.5 (4)
C1—C2—C11—O47.6 (4)C1—C2—C3—O1176.6 (2)
C3—C2—C11—O39.2 (4)C11—C2—C3—C4174.8 (2)
C3—C2—C11—O4170.1 (3)C3—O1—C19—O119.3 (4)
C5—C6—C15—O75.0 (3)C3—O1—C19—C21170.9 (2)
C5—C6—C15—O8175.8 (3)C2—C3—C4—C13106.2 (3)
C7—C6—C15—O7173.4 (2)O1—C3—C4—C1374.1 (3)
C7—C6—C15—O85.9 (4)O1—C3—C4—C5166.5 (2)
C2—C3—O1—C1978.7 (3)C3—C4—C13—O692.7 (3)
C4—C3—O1—C19101.6 (3)C5—C4—C13—O619.3 (4)
C6—C7—O2—C2070.4 (3)C3—C4—C13—O585.9 (2)
C8—C7—O2—C20110.4 (3)C5—C4—C13—O5162.1 (2)
O8—C15—O7—C163.1 (4)O6—C13—O5—C147.1 (4)
C6—C15—O7—C16177.6 (2)C4—C13—O5—C14171.5 (2)
C7—O2—C20—O1212.1 (4)C13—C4—C5—C6148.8 (2)
C7—O2—C20—C22169.0 (2)C13—C4—C5—C198.6 (2)
C6—C7—C8—C17107.4 (3)C2—C1—C5—C6103.3 (2)
O2—C7—C8—C1773.3 (3)C8—C1—C5—C614.9 (2)
O2—C7—C8—C1166.8 (2)C2—C1—C5—C416.0 (2)
C7—C8—C17—O1095.5 (3)C8—C1—C5—C4134.2 (2)
C1—C8—C17—O1017.2 (4)O2—C7—C6—C155.4 (4)
C7—C8—C17—O983.5 (3)C8—C7—C6—C15175.4 (2)
C1—C8—C17—O9163.7 (2)O2—C7—C6—C5176.1 (2)
O10—C17—O9—C180.7 (4)C1—C5—C6—C77.7 (3)
C8—C17—O9—C18178.3 (2)C4—C5—C6—C1559.3 (3)
C7—C8—C1—C295.8 (2)C1—C5—C6—C15173.8 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···O6i1.002.353.290 (3)156
C8—H8···O10i1.002.333.138 (3)137
C5—H5···O1ii1.002.633.614 (3)168
Symmetry codes: (i) x, y+3/2, z1/2; (ii) x, y+3/2, z+1/2.

Experimental details

(I)(II)(III)(IV)
Crystal data
Chemical formulaC16H18O10C18H22O10C18H22O10C20H26O10
Mr370.30398.36398.36426.41
Crystal system, space groupMonoclinic, P21/nTriclinic, P1Monoclinic, P21/nMonoclinic, P21/n
Temperature (K)150150150150
a, b, c (Å)12.1198 (18), 12.5461 (19), 12.4089 (19)9.3037 (6), 10.2495 (7), 10.6378 (7)13.4118 (4), 8.3693 (3), 17.4894 (6)11.6352 (4), 13.3095 (4), 13.2262 (4)
α, β, γ (°)90, 114.896 (2), 9095.155 (1), 103.114 (1), 109.208 (1)90, 111.049 (1), 9090, 96.369 (1), 90
V3)1711.5 (4)917.90 (11)1832.15 (11)2035.55 (11)
Z4244
Radiation typeMo KαMo KαMo KαMo Kα
µ (mm1)0.120.120.120.11
Crystal size (mm)0.55 × 0.21 × 0.130.55 × 0.42 × 0.390.48 × 0.43 × 0.420.60 × 0.29 × 0.14
Data collection
DiffractometerSiemens SMART CCD area-detector
diffractometer
Siemens SMART CCD area-detector
diffractometer
Siemens SMART CCD area-detector
diffractometer
Siemens SMART CCD area-detector
diffractometer
Absorption correctionPart of the refinement model (ΔF)
(SADABS; Bruker, 1999)
Part of the refinement model (ΔF)
(SADABS; Bruker, 1999)
Part of the refinement model (ΔF)
(SADABS; Bruker, 1999)
Part of the refinement model (ΔF)
(SADABS; Bruker, 1999)
Tmin, Tmax0.935, 0.9840.938, 0.9550.923, 0.9300.936, 0.985
No. of measured, independent and
observed [I > 2σ(I)] reflections
11440, 3025, 2583 5494, 3209, 2900 8916, 3200, 2987 12490, 3594, 3089
Rint0.0280.0110.0110.024
(sin θ/λ)max1)0.5960.5950.5950.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.104, 1.04 0.035, 0.095, 1.03 0.035, 0.095, 1.04 0.040, 0.112, 1.01
No. of reflections3025320932003594
No. of parameters247267259279
H-atom treatmentH atoms treated by a mixture of independent and constrained refinementH atoms treated by a mixture of independent and constrained refinementH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.29, 0.170.26, 0.190.23, 0.220.29, 0.18


(V)
Crystal data
Chemical formulaC20H22O12
Mr454.38
Crystal system, space groupMonoclinic, P21/c
Temperature (K)150
a, b, c (Å)10.0095 (5), 20.9263 (12), 10.1881 (6)
α, β, γ (°)90, 90.507 (1), 90
V3)2133.9 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.12
Crystal size (mm)0.34 × 0.12 × 0.12
Data collection
DiffractometerSiemens SMART CCD area-detector
diffractometer
Absorption correctionPart of the refinement model (ΔF)
(SADABS; Bruker, 1999)
Tmin, Tmax0.983, 0.986
No. of measured, independent and
observed [I > 2σ(I)] reflections
13188, 3766, 2596
Rint0.057
(sin θ/λ)max1)0.596
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.146, 0.91
No. of reflections3766
No. of parameters295
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.29, 0.24

Computer programs: SMART-NT (Bruker, 2001), SAINT-NT (Bruker, 1999), SHELXTL-NT (Bruker, 1999).

Selected torsion angles (º) for (I) top
C1—C2—C3—C40.85 (19)C3—C2—C11—O3174.64 (14)
C2—C3—C4—C58.92 (18)C3—C2—C11—O44.1 (2)
C5—C6—C7—C85.02 (19)C5—C6—C15—O73.1 (2)
C6—C7—C8—C113.33 (17)C5—C6—C15—O8179.52 (15)
C1—C2—C11—O31.6 (2)C7—C6—C15—O7173.64 (14)
C1—C2—C11—O4179.69 (15)C7—C6—C15—O83.7 (2)
Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O40.89 (2)1.89 (2)2.6720 (18)146 (2)
O2—H2···O80.85 (2)1.91 (2)2.6597 (17)146 (2)
C8—H8···O8i1.002.623.602 (2)169
C4—H4···O2i1.002.533.237 (2)128
Symmetry code: (i) x, y+2, z.
Selected torsion angles (º) for (II) top
C1—C2—C3—C42.47 (17)C3—C2—C11—O42.9 (2)
C2—C3—C4—C510.61 (15)C5—C6—C15—O72.9 (2)
C5—C6—C7—C80.16 (17)C5—C6—C15—O8176.92 (13)
C6—C7—C8—C113.05 (15)C7—C6—C15—O7179.87 (12)
C1—C2—C11—O31.6 (2)C7—C6—C15—O80.1 (2)
C1—C2—C11—O4177.43 (13)C9—C1—C5—C1025.72 (16)
C3—C2—C11—O3176.19 (12)
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O40.89 (2)1.85 (2)2.6354 (16)146 (2)
O2—H2···O80.89 (2)1.86 (2)2.6533 (15)146.8 (18)
C4—H4···O1i0.982.563.2533 (18)128
Symmetry code: (i) x+1, y, z+1.
Selected torsion angles (º) for (III) top
C1—C2—C3—C40.61 (15)C3—C2—C11—O416.2 (2)
C2—C3—C4—C59.33 (14)C5—C6—C15—O7176.66 (10)
C5—C6—C7—C83.01 (15)C5—C6—C15—O81.25 (19)
C6—C7—C8—C111.00 (13)C7—C6—C15—O77.57 (19)
C1—C2—C11—O4166.75 (12)C7—C6—C15—O8170.33 (13)
C1—C2—C11—O312.78 (16)C2—C3—O1—C19176.97 (12)
C3—C2—C11—O3164.30 (12)C6—C7—O2—C20171.39 (12)
Hydrogen-bond geometry (Å, º) for (III) top
D—H···AD—HH···AD···AD—H···A
C8—H8···O4i1.002.473.4489 (15)166
Symmetry code: (i) x+1, y+1, z+2.
Selected torsion angles (º) for (IV) top
C1—C2—C3—C40.89 (17)C5—C6—C15—O7174.57 (12)
C2—C3—C4—C512.71 (16)C5—C6—C15—O85.3 (2)
C5—C6—C7—C81.57 (17)C7—C6—C15—O713.8 (2)
C6—C7—C8—C111.98 (16)C7—C6—C15—O8166.27 (16)
C1—C2—C11—O42.1 (2)C9—C1—C5—C1025.03 (18)
C1—C2—C11—O3177.17 (12)C2—C3—O1—C19167.08 (14)
C3—C2—C11—O35.4 (2)C6—C7—O2—C20164.46 (14)
C3—C2—C11—O4173.92 (15)
Selected torsion angles (º) for (V) top
C1—C2—C3—C43.1 (3)C3—C2—C11—O4170.1 (3)
C2—C3—C4—C513.2 (3)C5—C6—C15—O75.0 (3)
C5—C6—C7—C83.1 (3)C5—C6—C15—O8175.8 (3)
C6—C7—C8—C112.5 (3)C7—C6—C15—O7173.4 (2)
C1—C2—C11—O3173.1 (2)C7—C6—C15—O85.9 (4)
C1—C2—C11—O47.6 (4)C2—C3—O1—C1978.7 (3)
C3—C2—C11—O39.2 (4)C6—C7—O2—C2070.4 (3)
Hydrogen-bond geometry (Å, º) for (V) top
D—H···AD—HH···AD···AD—H···A
C4—H4···O6i1.002.353.290 (3)156
C8—H8···O10i1.002.333.138 (3)137
C5—H5···O1ii1.002.633.614 (3)168
Symmetry codes: (i) x, y+3/2, z1/2; (ii) x, y+3/2, z+1/2.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds