Download citation
Download citation
link to html
The CoII atom in bis(5-amino­tetra­zole-1-acetato)tetra­aqua­cobalt(II), [Co(C3H4N5O2)2(H2O)4], (I), is octa­hedrally coordinated by six O atoms from two 5-amino­tetra­zole-1-acetate (atza) ligands and four water mol­ecules. The mol­ecule has a crystallographic centre of symmetry located at the CoII atom. The mol­ecules of (I) are inter­linked by hydrogen-bond inter­actions, forming a two-dimensional supra­molecular network structure in the ac plane. The CdII atom in catena-poly[[cadmium(II)]-bis­(μ-5-amino­tetra­zole-1-acetato], [Cd(C3H4N5O2)2]n, (II), lies on a twofold axis and is coordinated by two N atoms and four O atoms from four atza ligands to form a distorted octa­hedral coordination environment. The CdII centres are connected through tridentate atza bridging ligands to form a two-dimensional layered structure extending along the ab plane, which is further linked into a three-dimensional structure through hydrogen-bond inter­actions.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270107051098/gz3110sup1.cif
Contains datablocks I, II, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270107051098/gz3110Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270107051098/gz3110IIsup3.hkl
Contains datablock II

CCDC references: 677088; 677089

Comment top

Coordination compounds containing a tetrazole group have been the subject of intense research effort in recent years, owing to their unique structures and their potential applications in advanced materials (Ye et al., 2006; Xiong et al., 2002; Stagni et al., 2006; Mautner et al., 2004; Jiang et al., 2004). Among numerous organic ligands containing a tetrazole group, 5-substituted tetrazolates [e.g. 5-methyl-, 5-ethyl-, 5-(2-pyridyl)-, 5-(3-pyridyl)- and 5-(4-pyridyl)tetrazolate] and 1-substituted tetrazoles [e.g. 1-acetato-, 1-phenyl-, 1-(2-chloroethyl)-, 1-methyl- and 1-ethyltetrazole] have already been studied, and a number of complexes containing these ligands have been reported (He et al., 2005; Wu et al., 2006, 2005; Xue et al., 2002; Qu et al., 2003; Zhao et al., 2004; Wang et al., 2005; Palazzi et al., 2002). However, adducts of another class of 1,5-disubstituted tetrazoles have only been the subject of limited study with metal ions, and few coordination complexes with 1,5-disubstituted tetrazole ligands have been reported to date (Zhilin et al., 2002; Gaponik et al., 2005). Inspired by the pioneering work of Demko & Sharpless (2002, 2001), we have recently studied [2 + 3] cycloaddition reactions of dicyandiamide with NaN3 and ZnCl2 as Lewis acids in aqueous solution to give 5-aminotetrazole (Hatz), and 5-aminotetrazole-1-acetic acid (Hatza) was obtained by the reaction of Hatz with chloroacetic acid in methanolic potassium hydroxide solution. Of interest to us is the coordination ability of the Hatza or the atza- ligands through the N and O electron-donating atoms, which allows it to serve as either a multidentate or a bridging ligand in supramolecular assemblies. To our knowledge, there is no synthetic and structural information on any complex of the Hatza or atza- ligands. In this context, we carried out the reactions of Hatza with CoCl2·6H2O and CdCl2·6H2O, and isolated two new coordination complexes, [Co(atza)2(H2O)4], (I), [Cd(atza)2]n, (II), respectively. Here, we report the crystal structures of complexes (I) and (II).

The asymmetric unit of (I) contains half of the [Co(atza)2(H2O)4] molecule. As shown in Fig. 1, atom Co1 lies on an inversion centre and is coordinated by four O atoms [O1, O1i, O3 and O3i; symmetry code: (i) -x, -y + 1, -z + 2] from two atza- ligands and two aqua ligands, located in the equatorial plane, and two O atoms (O4 and O4i) from two aqua ligands in the apical sites, thereby forming a slightly distorted CoO6 octahedral coordination geometry. The Co—O(carboxlate) distance [2.0768 (13) Å] is close to the values observed in [CoL2(H2O)4] [2.0653 (12) Å; L is 4-hydroxypyridine-2,6-dicarboxylate; Cui et al., 2006] and [CoL2(H2O)4] [2.0663 (14) Å; L is 2-(methylthio)nicotinate; Miklos et al., 2006]. The Co—O(H2O) distances [2.0828 (15) and 2.1451 (14) Å] are in the range observed in [CoL2(H2O)4] [2.0764 (13)–2.1266 (13) Å; L is 4-hydroxypyridine-2,6-dicarboxylate; Cui et al., 2006] and [CoL2(H2O)4] [2.086 (16)–2.1846 (15) Å; L is 2-(methylthio)nicotinate; Miklos et al., 2006]. The cisoid angles of [CoO6] are in the range 87.52 (5)–92.18 (5)°, close to 90°. The atza- anion in (I) acts only as a monodentate ligand via its one carboxylate O atom.

In complex (I), six intermolecular hydrogen-bond interactions exist between water molecules and carboxylate O atoms [O4—H4A···O2i and O3—H3B···O2iii; symmetry code: (iii) x - 1, y, z], between water molecules and tetrazole N atoms [O3—H3A···N4ii and O4—H4B···N2iv; symmetry codes: (ii) -x + 1, -y + 1, -z + 1; (iv) -x + 1, -y, -z + 2], between an amino group and a tetrazole N atom [N5—H5A···N3iii], and between an amino group and a carboxylate O atom [N5—H5B···O2ii]. Thus, the molecules of complex (I) are interlinked by these intermolecular hydrogen bonds, forming a two-dimensional supramolecular network structure in the ac plane (Fig. 2).

The asymmetric unit of (II) contains one-half of a CdII atom and one atza- ligand. As shown in Fig. 3, atom Cd1 resides on a twofold axis and is coordinated by two N atoms [N4i and N4ii; symmetry codes: (i) -x + 1/2, y - 1/2, -z + 1/2; (ii) x + 1/2, y - 1/2, z] and four O atoms [O1, O1iii, O2 and O2iii; symmetry code: (iii) -x + 1, y, -z + 1/2] from four atza- ligands. Two carboxylate groups chelate atom Cd1, with an O1—Cd1—O2 angle of 53.51 (5)°, leading to a severely distorted octahedral coordination geometry. The Cd—N(tetrazole) bond distance [2.2300 (16) Å] is shorter than those observed in [Cd3(OH)2Cl2L2] [2.362 (12) Å; L is 5-(4-pyridyl)tetrazolate; Xue et al., 2002], [CdL(H2O)]n [2.3245 (18)–2.372 (2) Å; L is 4-(tetrazolyl)benzenecarboxylate; Wang et al., 2005] and [Cd(L)4(H2O)2](dipicrate)·2H2O [2.334 (3) and 2.325 (2) Å; L is 5-amino-1,2,3,4-tetrazolyl; Zhang et al., 2001]. The Cd—O(carboxlate) bond lengths [2.2692 (15) and 2.6037 (14) Å] are in the range observed in [CdL(H2O)]n [2.219 (2) and 2.478 (2) Å; L is 4-(tetrazolyl)benzenecarboxylate; Wang et al., 2005], {[Cd(L)2H2O]0.5(3pa)}n [2.336 (8)–2.574 (7) Å; L is isonicotinate and 3pa is 1,4-di-3-pyridyl-2,3-diaza-1,3-butadiene; Granifo & Baggio, 2007] and [CdL2(H2O)2]n [2.255 (4)–2.724 (5) Å; L is nicotinate; Zhang et al., 2004].

Each atza- ligand in (II) acts as a tridentate ligand, chelating one CdII atom through its carboxylate O atoms while simultaneously binding to a second CdII atom through its tetrazole N atom, to form a two-dimensional neutral (4,4) network extending along the ab plane (Fig. 4). The network contains a rhombus grid (28-membered rings), with a CdII atom at each corner and an atza- ligand at each edge connecting two CdII atoms. The edge lengths are equal, with a value of 8.5977 (18) Å. The diagonal lengths of the rhombus grid are 10.625 (13) and 13.520 (4) Å, and the angles of the rhombus are 76.326 (2) and 103.67 (2)°. The rhombus grid sheets are stacked together in an offset fashion along the c direction, in an ···ABAB···sequence (Fig. 5).

Within the two-dimensional layer, one hydrogen-bond interaction is formed between an amino group and a carboxylate O atom [N5—H5B···O2v; symmetry code: (v) -x + 1/2, y + 1/2, -z + 1/2]. Adjacent two-dimensional layers are further connected by two hydrogen-bonding interactions between an amino group, a methylene group and a carboxylate O atom [N5—H5A···O1iv and C2—H2B···O1iv; symmetry code: (iv) -x + 1, -y + 1, -z + 1], forming a three-dimensional supramolecular structure (Fig. 5).

In conclusion, under the same experimental conditions, the reaction of atza- with CoII and CdII ions gives two compounds with distinctly different structures. In compound (I), atza- acts as a monodentate ligand to coordinate the CoII ion, while in (II), atza- acts as a tridentate bridging ligand to coordinate the CdII ion. Further work is to be undertaken, to react atza- with other metal ions to study its coordination modes.

Related literature top

For related literature, see: Cui et al. (2006); Demko & Sharpless (2001, 2002); Gaponik et al. (2005); Granifo & Baggio (2007); He et al. (2005); Jiang et al. (2004); Mautner et al. (2004); Miklos et al. (2006); Palazzi et al. (2002); Qu et al. (2003); Stagni et al. (2006); Wang et al. (2005); Wu et al. (2005, 2006); Xiong et al. (2002); Xue et al. (2002); Ye et al. (2006); Zhang et al. (2001, 2004); Zhao et al. (2004); Zhilin et al. (2002).

Experimental top

The Hatza ligand (0.0143 g, 0.1 mmol) was dissolved in distilled water (3 ml). The pH of the solution was adjusted to 5.0 using KOH solution, and a solution of CoCl2·6H2O (Quantity?) in distilled water (2 ml) was added. The mixture was stirred at room temperature for 3 h and then filtered. Slow evaporation of the solvent gave rise to pink crystals of (I) (yield 80%). Analysis, found: C 17.48, H 3.85, N 33.67%; calculated for C6H16CoN10O8: C 17.36, H 3.88, N 33.74%. Spectroscopic analysis: IR (KBr, ν, cm-1): 1655 (m), 1609 (s), 1582 (s), 1485 (m), 1435 (m), 1393 (s), 1327 (m), 1296 (w), 1134 (w), 1065 (w), 1015 (w), 949 (w), 829 (s), 768 (m), 737 (w), 694 (m), 577 (w).

Compound (II) was prepared similarly to (I), except that CdCl2·6H2O (0.0291 g, 0.1 mmol) was used instead of CoCl2·6H2O (yield 78%). Analysis, found: C 18.24, H 2.05, N 35.45%; calculated for C6H8CdN10O4: C 18.17, H 2.03, N 35.32%. Spectroscopic analysis: IR (KBr, ν, cm-1): 1657 (s), 1634 (s), 1611 (s), 1591 (s), 1526 (w), 1495 (m), 1439 (m), 1404 (s), 1323 (m), 1292 (w), 1271 (w), 1134 (w), 1103 (m), 1074 (w), 1016 (w), 953 (m), 826 (m), 758 (w), 698 (m).

Refinement top

Carbon-bound and nitrogen-bound H atoms were positioned geometrically (C—H = 0.99 Å and N—H = 0.88 Å), and were included in the refinement in the riding-model approximation, with Uiso(H) = 1.2Ueq(C). Water H atoms were located in a difference Fourier map and were refined with a distance restraint of O—H = 0.84(s.u.?) Å.

Computing details top

For both compounds, data collection: CrystalClear (Rigaku/MSC, 2001); cell refinement: CrystalClear (Rigaku/MSC, 2001); data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXL97 (Sheldrick, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 1997).

Figures top
[Figure 1] Fig. 1. A view of the molecule of complex (I), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii. [Symmetry code: (i) -x, -y + 1, -z + 2.]
[Figure 2] Fig. 2. A ce l l packing diagram for (I).
[Figure 3] Fig. 3. The coordination environment of the CdII atom of complex (II), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii. [Symmetry codes: (i) -x + 1/2, y - 1/2, -z + 1/2; (ii) x + 1/2, y - 1/2, z; (iii) -x + 1, y, -z + 1/2.]
[Figure 4] Fig. 4. A view of the two-dimensional network of (II).
[Figure 5] Fig. 5. The three-dimensional network of (II) formed by hydrogen-bonding interactions (dashed lines).
(I) tetraaquabis(5-aminotetrazole-1-acetato-κO)cobalt(II) top
Crystal data top
[Co(C3H4N5O2)2(H2O)4]Z = 1
Mr = 415.22F(000) = 213
Triclinic, P1Dx = 1.919 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71070 Å
a = 6.0869 (9) ÅCell parameters from 1498 reflections
b = 6.5376 (9) Åθ = 3.3–25.3°
c = 9.4896 (15) ŵ = 1.27 mm1
α = 79.302 (8)°T = 193 K
β = 83.344 (9)°Block, pink
γ = 76.137 (8)°0.41 × 0.37 × 0.18 mm
V = 359.24 (9) Å3
Data collection top
Rigaku Mercury
diffractometer
1296 independent reflections
Radiation source: fine-focus sealed tube1245 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
Detector resolution: 7.31 pixels mm-1θmax = 25.3°, θmin = 3.3°
ω scansh = 67
Absorption correction: multi-scan
(Jacobson, 1998)
k = 77
Tmin = 0.598, Tmax = 0.804l = 1110
3493 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.026Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.070H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0402P)2 + 0.186P]
where P = (Fo2 + 2Fc2)/3
1296 reflections(Δ/σ)max < 0.001
140 parametersΔρmax = 0.36 e Å3
4 restraintsΔρmin = 0.47 e Å3
Crystal data top
[Co(C3H4N5O2)2(H2O)4]γ = 76.137 (8)°
Mr = 415.22V = 359.24 (9) Å3
Triclinic, P1Z = 1
a = 6.0869 (9) ÅMo Kα radiation
b = 6.5376 (9) ŵ = 1.27 mm1
c = 9.4896 (15) ÅT = 193 K
α = 79.302 (8)°0.41 × 0.37 × 0.18 mm
β = 83.344 (9)°
Data collection top
Rigaku Mercury
diffractometer
1296 independent reflections
Absorption correction: multi-scan
(Jacobson, 1998)
1245 reflections with I > 2σ(I)
Tmin = 0.598, Tmax = 0.804Rint = 0.023
3493 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0264 restraints
wR(F2) = 0.070H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.36 e Å3
1296 reflectionsΔρmin = 0.47 e Å3
140 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.00000.50001.00000.01211 (15)
O10.2683 (2)0.2690 (2)0.93114 (15)0.0159 (3)
O20.4852 (2)0.4694 (2)0.79098 (14)0.0152 (3)
O30.1190 (2)0.5946 (2)0.79551 (15)0.0172 (3)
H3A0.044 (4)0.616 (5)0.7198 (19)0.045 (9)*
H3B0.226 (3)0.545 (4)0.788 (3)0.039 (8)*
O40.1938 (2)0.2584 (2)1.05466 (15)0.0174 (3)
N10.7515 (3)0.1282 (2)0.68353 (17)0.0128 (3)
N20.9695 (3)0.1123 (3)0.71483 (18)0.0158 (4)
N31.0709 (3)0.1911 (3)0.59781 (19)0.0174 (4)
N40.9293 (3)0.2608 (3)0.48850 (18)0.0156 (4)
N50.5412 (3)0.2520 (3)0.4768 (2)0.0185 (4)
H5A0.421 (5)0.226 (4)0.525 (3)0.027 (7)*
H5B0.527 (4)0.339 (4)0.400 (3)0.021 (6)*
C10.4323 (3)0.2944 (3)0.84181 (19)0.0126 (4)
C20.5738 (3)0.0898 (3)0.7934 (2)0.0147 (4)
H2A0.64290.00740.87760.018*
H2B0.47290.01750.75580.018*
C30.7301 (3)0.2188 (3)0.5449 (2)0.0129 (4)
H4A0.305 (4)0.323 (5)1.110 (3)0.050 (9)*
H4B0.111 (5)0.142 (4)1.102 (3)0.050 (9)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.0106 (2)0.0124 (2)0.0118 (2)0.00248 (14)0.00215 (14)0.00009 (14)
O10.0140 (7)0.0148 (7)0.0156 (7)0.0019 (6)0.0051 (6)0.0009 (5)
O20.0151 (7)0.0140 (7)0.0145 (7)0.0039 (6)0.0017 (5)0.0020 (5)
O30.0167 (8)0.0230 (8)0.0126 (7)0.0090 (6)0.0013 (6)0.0001 (6)
O40.0166 (8)0.0179 (8)0.0181 (8)0.0072 (6)0.0022 (6)0.0016 (6)
N10.0113 (8)0.0137 (8)0.0121 (8)0.0022 (6)0.0017 (6)0.0009 (6)
N20.0113 (8)0.0172 (8)0.0181 (9)0.0019 (7)0.0012 (7)0.0040 (7)
N30.0140 (8)0.0182 (9)0.0199 (9)0.0044 (7)0.0025 (7)0.0038 (7)
N40.0146 (8)0.0161 (9)0.0159 (9)0.0051 (7)0.0023 (7)0.0021 (7)
N50.0145 (9)0.0227 (10)0.0156 (9)0.0057 (7)0.0010 (7)0.0059 (8)
C10.0101 (9)0.0167 (10)0.0092 (9)0.0019 (7)0.0030 (7)0.0021 (7)
C20.0148 (10)0.0138 (9)0.0124 (10)0.0033 (8)0.0056 (8)0.0022 (8)
C30.0154 (10)0.0091 (9)0.0126 (9)0.0026 (7)0.0033 (7)0.0009 (7)
Geometric parameters (Å, º) top
Co1—O12.0768 (13)N1—C31.346 (3)
Co1—O1i2.0768 (13)N1—N21.368 (2)
Co1—O32.0828 (15)N1—C21.446 (2)
Co1—O3i2.0828 (15)N2—N31.289 (2)
Co1—O4i2.1451 (14)N3—N41.368 (2)
Co1—O42.1451 (14)N4—C31.336 (2)
O1—C11.254 (2)N5—C31.337 (3)
O2—C11.257 (2)N5—H5A0.86 (3)
O3—H3A0.811 (10)N5—H5B0.83 (3)
O3—H3B0.812 (10)C1—C21.525 (3)
O4—H4A0.881 (18)C2—H2A0.9900
O4—H4B0.881 (18)C2—H2B0.9900
O1—Co1—O1i180.0C3—N1—N2108.43 (16)
O1—Co1—O392.50 (6)C3—N1—C2128.05 (17)
O1i—Co1—O387.50 (6)N2—N1—C2122.49 (16)
O1—Co1—O3i87.50 (6)N3—N2—N1105.95 (16)
O1i—Co1—O3i92.50 (6)N2—N3—N4111.95 (16)
O3—Co1—O3i180.0C3—N4—N3105.21 (16)
O1—Co1—O4i92.10 (6)C3—N5—H5A119.0 (18)
O1i—Co1—O4i87.90 (6)C3—N5—H5B118.8 (17)
O3—Co1—O4i87.69 (6)H5A—N5—H5B118 (2)
O3i—Co1—O4i92.31 (6)O1—C1—O2125.89 (17)
O1—Co1—O487.90 (6)O1—C1—C2114.70 (16)
O1i—Co1—O492.10 (6)O2—C1—C2119.41 (16)
O3—Co1—O492.31 (6)N1—C2—C1112.80 (15)
O3i—Co1—O487.69 (6)N1—C2—H2A109.0
O4i—Co1—O4180.0C1—C2—H2A109.0
C1—O1—Co1128.40 (12)N1—C2—H2B109.0
Co1—O3—H3A127 (2)C1—C2—H2B109.0
Co1—O3—H3B112 (2)H2A—C2—H2B107.8
H3A—O3—H3B113 (3)N4—C3—N5126.99 (18)
Co1—O4—H4A100 (2)N4—C3—N1108.46 (17)
Co1—O4—H4B110 (2)N5—C3—N1124.51 (18)
H4A—O4—H4B112 (3)
O3—Co1—O1—C163.76 (16)C3—N1—C2—C171.5 (2)
O3i—Co1—O1—C1116.24 (16)N2—N1—C2—C195.6 (2)
O4i—Co1—O1—C124.02 (16)O1—C1—C2—N1176.15 (16)
O4—Co1—O1—C1155.98 (16)O2—C1—C2—N13.5 (3)
C3—N1—N2—N30.0 (2)N3—N4—C3—N5177.42 (18)
C2—N1—N2—N3169.32 (16)N3—N4—C3—N10.4 (2)
N1—N2—N3—N40.3 (2)N2—N1—C3—N40.2 (2)
N2—N3—N4—C30.5 (2)C2—N1—C3—N4168.27 (17)
Co1—O1—C1—O211.3 (3)N2—N1—C3—N5177.66 (18)
Co1—O1—C1—C2168.34 (12)C2—N1—C3—N513.8 (3)
Symmetry code: (i) x, y+1, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4A···O2i0.88 (2)1.86 (2)2.704 (2)161 (3)
N5—H5B···O2ii0.83 (3)2.00 (3)2.835 (2)175 (2)
N5—H5A···N3iii0.86 (3)2.21 (3)3.047 (3)166 (2)
O4—H4B···N2iv0.88 (2)2.26 (2)3.108 (2)161 (3)
O3—H3B···O2iii0.81 (1)1.93 (1)2.731 (2)169 (3)
O3—H3A···N4ii0.81 (1)2.10 (1)2.889 (2)164 (3)
Symmetry codes: (i) x, y+1, z+2; (ii) x+1, y+1, z+1; (iii) x1, y, z; (iv) x+1, y, z+2.
(II) catena-poly[[cadmium(II)]bis(µ-5-aminotetrazole-1-acetato-κ3N4:O,O')] top
Crystal data top
[Cd(C3H4N5O2)2]F(000) = 776
Mr = 396.62Dx = 2.147 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71070 Å
Hall symbol: -C 2ycCell parameters from 2668 reflections
a = 13.520 (4) Åθ = 3.1–25.3°
b = 10.625 (3) ŵ = 1.82 mm1
c = 8.877 (3) ÅT = 193 K
β = 105.808 (5)°Block, colourless
V = 1227.0 (6) Å30.47 × 0.38 × 0.37 mm
Z = 4
Data collection top
Rigaku Mercury
diffractometer
1124 independent reflections
Radiation source: fine-focus sealed tube1097 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
Detector resolution: 7.31 pixels mm-1θmax = 25.3°, θmin = 3.1°
ω scansh = 1614
Absorption correction: multi-scan
(Jacobson, 1998)
k = 1212
Tmin = 0.439, Tmax = 0.512l = 910
5638 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.016H-atom parameters constrained
wR(F2) = 0.044 w = 1/[σ2(Fo2) + (0.0301P)2 + 1.2198P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.001
1124 reflectionsΔρmax = 0.45 e Å3
98 parametersΔρmin = 0.44 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0077 (6)
Crystal data top
[Cd(C3H4N5O2)2]V = 1227.0 (6) Å3
Mr = 396.62Z = 4
Monoclinic, C2/cMo Kα radiation
a = 13.520 (4) ŵ = 1.82 mm1
b = 10.625 (3) ÅT = 193 K
c = 8.877 (3) Å0.47 × 0.38 × 0.37 mm
β = 105.808 (5)°
Data collection top
Rigaku Mercury
diffractometer
1124 independent reflections
Absorption correction: multi-scan
(Jacobson, 1998)
1097 reflections with I > 2σ(I)
Tmin = 0.439, Tmax = 0.512Rint = 0.020
5638 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0160 restraints
wR(F2) = 0.044H-atom parameters constrained
S = 1.02Δρmax = 0.45 e Å3
1124 reflectionsΔρmin = 0.44 e Å3
98 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cd10.50000.202071 (15)0.25000.01612 (12)
O10.49688 (11)0.31422 (12)0.46619 (18)0.0205 (3)
O20.35308 (10)0.35004 (13)0.28019 (15)0.0198 (3)
N10.26063 (11)0.46434 (14)0.48255 (18)0.0158 (3)
N20.17720 (12)0.39380 (15)0.4885 (2)0.0224 (4)
N30.09751 (12)0.45610 (16)0.4179 (2)0.0250 (4)
N40.12502 (11)0.56785 (15)0.36296 (19)0.0187 (3)
N50.28777 (12)0.66021 (15)0.37108 (19)0.0185 (3)
H5A0.35510.65220.40200.022*
H5B0.26000.72750.31850.022*
C10.22796 (14)0.57057 (17)0.4038 (2)0.0150 (4)
C20.36433 (14)0.41749 (18)0.5428 (2)0.0167 (4)
H2A0.36560.35490.62600.020*
H2B0.40980.48810.59090.020*
C30.40614 (13)0.35699 (16)0.4187 (2)0.0146 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.01032 (15)0.01492 (15)0.02308 (16)0.0000.00447 (9)0.000
O10.0121 (7)0.0213 (7)0.0286 (8)0.0019 (5)0.0064 (6)0.0010 (5)
O20.0213 (7)0.0198 (7)0.0185 (7)0.0021 (5)0.0058 (5)0.0015 (5)
N10.0118 (7)0.0154 (8)0.0208 (8)0.0009 (6)0.0055 (6)0.0001 (6)
N20.0153 (8)0.0181 (8)0.0352 (9)0.0001 (7)0.0092 (7)0.0039 (7)
N30.0157 (8)0.0206 (9)0.0394 (10)0.0002 (7)0.0084 (7)0.0053 (7)
N40.0112 (8)0.0167 (8)0.0279 (8)0.0009 (6)0.0051 (6)0.0022 (7)
N50.0104 (7)0.0175 (8)0.0265 (8)0.0006 (6)0.0033 (6)0.0046 (7)
C10.0143 (9)0.0159 (9)0.0151 (8)0.0018 (7)0.0046 (7)0.0036 (7)
C20.0127 (9)0.0183 (9)0.0177 (9)0.0029 (7)0.0018 (7)0.0002 (7)
C30.0128 (9)0.0092 (8)0.0226 (9)0.0025 (6)0.0063 (7)0.0013 (7)
Geometric parameters (Å, º) top
Cd1—N4i2.2300 (16)N1—C21.446 (2)
Cd1—N4ii2.2300 (16)N2—N31.274 (2)
Cd1—O12.2692 (15)N3—N41.373 (2)
Cd1—O1iii2.2692 (15)N4—C11.340 (2)
Cd1—O2iii2.6037 (14)N4—Cd1iv2.2300 (15)
Cd1—O22.6037 (14)N5—C11.332 (2)
Cd1—C3iii2.7561 (18)N5—H5A0.8800
Cd1—C32.7561 (18)N5—H5B0.8800
O1—C31.268 (2)C2—C31.512 (3)
O2—C31.245 (2)C2—H2A0.9900
N1—C11.338 (2)C2—H2B0.9900
N1—N21.367 (2)
N4i—Cd1—N4ii100.49 (8)C3—O1—Cd198.39 (12)
N4i—Cd1—O1121.98 (5)C3—O2—Cd183.50 (10)
N4ii—Cd1—O198.16 (6)C1—N1—N2108.92 (14)
N4i—Cd1—O1iii98.16 (6)C1—N1—C2129.24 (15)
N4ii—Cd1—O1iii121.98 (5)N2—N1—C2121.60 (15)
O1—Cd1—O1iii116.65 (7)N3—N2—N1106.99 (15)
N4i—Cd1—O2iii147.77 (5)N2—N3—N4110.44 (15)
N4ii—Cd1—O2iii85.77 (5)C1—N4—N3106.53 (15)
O1—Cd1—O2iii87.73 (5)C1—N4—Cd1iv135.43 (13)
O1iii—Cd1—O2iii53.52 (5)N3—N4—Cd1iv117.86 (11)
N4i—Cd1—O285.77 (5)C1—N5—H5A120.0
N4ii—Cd1—O2147.77 (5)C1—N5—H5B120.0
O1—Cd1—O253.52 (5)H5A—N5—H5B120.0
O1iii—Cd1—O287.73 (5)N5—C1—N1125.72 (17)
O2iii—Cd1—O2105.71 (6)N5—C1—N4127.17 (17)
N4i—Cd1—C3iii122.85 (6)N1—C1—N4107.11 (16)
N4ii—Cd1—C3iii102.79 (6)N1—C2—C3113.21 (15)
O1—Cd1—C3iii105.26 (5)N1—C2—H2A108.9
O1iii—Cd1—C3iii27.07 (5)C3—C2—H2A108.9
O2iii—Cd1—C3iii26.67 (5)N1—C2—H2B108.9
O2—Cd1—C3iii99.92 (5)C3—C2—H2B108.9
N4i—Cd1—C3102.79 (6)H2A—C2—H2B107.7
N4ii—Cd1—C3122.85 (6)O2—C3—O1123.53 (17)
O1—Cd1—C327.07 (5)O2—C3—C2121.02 (16)
O1iii—Cd1—C3105.26 (5)O1—C3—C2115.45 (16)
O2iii—Cd1—C399.92 (5)O2—C3—Cd169.82 (10)
O2—Cd1—C326.67 (5)O1—C3—Cd154.54 (9)
C3iii—Cd1—C3106.66 (7)C2—C3—Cd1165.60 (12)
N4i—Cd1—O1—C349.60 (12)Cd1—O2—C3—O19.95 (16)
N4ii—Cd1—O1—C3157.44 (10)Cd1—O2—C3—C2169.46 (15)
O1iii—Cd1—O1—C370.44 (10)Cd1—O1—C3—O211.48 (19)
O2iii—Cd1—O1—C3117.16 (11)Cd1—O1—C3—C2167.96 (13)
O2—Cd1—O1—C35.66 (9)N1—C2—C3—O20.4 (2)
C3iii—Cd1—O1—C396.83 (12)N1—C2—C3—O1179.85 (15)
N4i—Cd1—O2—C3129.92 (11)N1—C2—C3—Cd1136.7 (4)
N4ii—Cd1—O2—C326.90 (15)N4i—Cd1—C3—O251.66 (11)
O1—Cd1—O2—C35.74 (9)N4ii—Cd1—C3—O2163.31 (9)
O1iii—Cd1—O2—C3131.72 (10)O1—Cd1—C3—O2169.82 (17)
O2iii—Cd1—O2—C380.72 (10)O1iii—Cd1—C3—O250.63 (11)
C3iii—Cd1—O2—C3107.45 (11)O2iii—Cd1—C3—O2105.32 (10)
C1—N1—N2—N30.8 (2)C3iii—Cd1—C3—O278.77 (10)
C2—N1—N2—N3175.75 (16)N4i—Cd1—C3—O1138.52 (11)
N1—N2—N3—N40.3 (2)N4ii—Cd1—C3—O126.87 (12)
N2—N3—N4—C10.3 (2)O1iii—Cd1—C3—O1119.19 (11)
N2—N3—N4—Cd1iv175.50 (13)O2iii—Cd1—C3—O164.50 (11)
N2—N1—C1—N5177.98 (17)O2—Cd1—C3—O1169.82 (17)
C2—N1—C1—N53.6 (3)C3iii—Cd1—C3—O191.05 (11)
N2—N1—C1—N41.01 (19)N4i—Cd1—C3—C289.3 (5)
C2—N1—C1—N4175.40 (17)N4ii—Cd1—C3—C222.4 (5)
N3—N4—C1—N5178.18 (17)O1—Cd1—C3—C249.2 (5)
Cd1iv—N4—C1—N57.1 (3)O1iii—Cd1—C3—C2168.4 (5)
N3—N4—C1—N10.78 (19)O2iii—Cd1—C3—C2113.7 (5)
Cd1iv—N4—C1—N1173.88 (13)O2—Cd1—C3—C2140.9 (5)
C1—N1—C2—C379.0 (2)C3iii—Cd1—C3—C2140.3 (5)
N2—N1—C2—C394.75 (19)
Symmetry codes: (i) x+1/2, y1/2, z+1/2; (ii) x+1/2, y1/2, z; (iii) x+1, y, z+1/2; (iv) x1/2, y+1/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N5—H5A···O1v0.882.062.889 (2)158
N5—H5B···O2vi0.882.022.847 (2)157
C2—H2B···O1v0.992.573.426 (2)145
Symmetry codes: (v) x+1, y+1, z+1; (vi) x+1/2, y+1/2, z+1/2.

Experimental details

(I)(II)
Crystal data
Chemical formula[Co(C3H4N5O2)2(H2O)4][Cd(C3H4N5O2)2]
Mr415.22396.62
Crystal system, space groupTriclinic, P1Monoclinic, C2/c
Temperature (K)193193
a, b, c (Å)6.0869 (9), 6.5376 (9), 9.4896 (15)13.520 (4), 10.625 (3), 8.877 (3)
α, β, γ (°)79.302 (8), 83.344 (9), 76.137 (8)90, 105.808 (5), 90
V3)359.24 (9)1227.0 (6)
Z14
Radiation typeMo KαMo Kα
µ (mm1)1.271.82
Crystal size (mm)0.41 × 0.37 × 0.180.47 × 0.38 × 0.37
Data collection
DiffractometerRigaku Mercury
diffractometer
Rigaku Mercury
diffractometer
Absorption correctionMulti-scan
(Jacobson, 1998)
Multi-scan
(Jacobson, 1998)
Tmin, Tmax0.598, 0.8040.439, 0.512
No. of measured, independent and
observed [I > 2σ(I)] reflections
3493, 1296, 1245 5638, 1124, 1097
Rint0.0230.020
(sin θ/λ)max1)0.6020.602
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.026, 0.070, 1.05 0.016, 0.044, 1.02
No. of reflections12961124
No. of parameters14098
No. of restraints40
H-atom treatmentH atoms treated by a mixture of independent and constrained refinementH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.36, 0.470.45, 0.44

Computer programs: CrystalClear (Rigaku/MSC, 2001), CrystalStructure (Rigaku/MSC, 2004), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997).

Selected geometric parameters (Å, º) for (I) top
Co1—O12.0768 (13)Co1—O42.1451 (14)
Co1—O32.0828 (15)
O1—Co1—O392.50 (6)O3—Co1—O492.31 (6)
O1—Co1—O487.90 (6)
Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
O4—H4A···O2i0.881 (18)1.86 (2)2.704 (2)161 (3)
N5—H5B···O2ii0.83 (3)2.00 (3)2.835 (2)175 (2)
N5—H5A···N3iii0.86 (3)2.21 (3)3.047 (3)166 (2)
O4—H4B···N2iv0.881 (18)2.26 (2)3.108 (2)161 (3)
O3—H3B···O2iii0.812 (10)1.930 (12)2.731 (2)169 (3)
O3—H3A···N4ii0.811 (10)2.099 (13)2.889 (2)164 (3)
Symmetry codes: (i) x, y+1, z+2; (ii) x+1, y+1, z+1; (iii) x1, y, z; (iv) x+1, y, z+2.
Selected geometric parameters (Å, º) for (II) top
Cd1—N4i2.2300 (16)Cd1—O22.6037 (14)
Cd1—O12.2692 (15)
N4i—Cd1—N4ii100.49 (8)N4i—Cd1—O285.77 (5)
N4i—Cd1—O1121.98 (5)N4ii—Cd1—O2147.77 (5)
N4ii—Cd1—O198.16 (6)O1—Cd1—O253.52 (5)
O1—Cd1—O1iii116.65 (7)O2iii—Cd1—O2105.71 (6)
O1—Cd1—O2iii87.73 (5)
Symmetry codes: (i) x+1/2, y1/2, z+1/2; (ii) x+1/2, y1/2, z; (iii) x+1, y, z+1/2.
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
N5—H5A···O1iv0.882.062.889 (2)157.6
N5—H5B···O2v0.882.022.847 (2)156.6
C2—H2B···O1iv0.992.573.426 (2)144.6
Symmetry codes: (iv) x+1, y+1, z+1; (v) x+1/2, y+1/2, z+1/2.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds