Download citation
Download citation
link to html
For charge balance in the title compound, (H5O2)(C3H7N6)3[Mn(C7H3NO4)2]2(OH)·C7H5NO4·5H2O, it is assumed that the metal atom site is disordered MnII/MnIII, probably due to partial air oxidation of the starting MnII species. The formula unit of the complex contains a hydroxonium hydrate cation, H5O2+, also known as the Zundel cation, with twofold symmetry. The O...O [2.445 (10) Å] and O...H distances [1.24 (2) Å] in the H5O2+ cation indicate a strong hydrogen bond. In addition, there is a hydroxide ion that is disordered with respect to a twofold rotation axis. One of the melaminium groups and the pyridine-2,6-dicarboxyl­ate (pydc) ligand also reside on crystallographic twofold axes. The coordination environment of the Mn ion is distorted octa­hedral. Three inter­molecular C=O...π inter­actions are observed, with distances of 3.536 (4), 3.262 (4) and 3.750 (4) Å between carboxyl­ate C=O groups and the centroids of the aromatic rings of pydc and melaminium. There are numerous O—H...O, O—H...N, N—H...O, N—H...N and C—H...O hydrogen bonds. Most of the components of the structure are organized into one plane.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270108032204/gz3154sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270108032204/gz3154Isup2.hkl
Contains datablock I

CCDC reference: 710745

Comment top

Melamine, used in the synthesis of plastics, has recently been implicated in the food industry as an impurity in powdered milk and pet food products and as a causative agent in the production of kidney stones in infants and in pets. With oxalic acid, one of the main constituents of kidney fluids, a proton-transfer salt of [melaminiumH2][C2O2H]2 is formed (Zhang et al., 2005). Melamine is also known to form melaminiumH22+ salts with trifluoroacetic acid (Perpétuo & Janczak, 2006) and other strong acids. With somewhat weaker acids, such as pyridine-2,6-dicarboxylic acid (pydcH2) both the mono- and di-protonated species have been described (Sharif et al., 2006). It is pertinent to study these proton-transfer salts in combination with metal ions in order to model the biological species that may exist in kidney disease. The crystal structures of metal complexes involving CdII (Aghabozorg, Aghajani & Sharif, 2006), ZnII (Aghajani et al., 2006), BiIII (Sharif, Aghabozorg & Moghimi, 2007), PbII (Sharif et al., 2006), CoII (Aghabozorg et al., 2008) and NiII (Sharif, Aghajani & Aghabozorg, 2007) are known. In the asymmetric unit of the title compound, (I), one-and-a-half molecules of melamine are each mono-protonated and crystallize with bis(pyridine-2,6-dicarboxylato)manganate(II/III), a neutral molecule of pydcH2, one-half of a H5O2+ cation, one-half of a hydroxide anion and two-and-a-half molecules of water. Although it is beyond the scope of this report to compare all the metal complexes, it is significant that the synthesis of these complexes can be accomplished by a one-pot method, mixing acid, base and simple metal salt to form crystalline products. We were surprised to find that the product material in this case contains the Zundel cation, H5O2+, and that the Mn is apparently in a disordered mixed-valent (II/III) state. Both MnII and MnIII complexes of salts of the bis complex, Mn(pydc)2, have been described previously, for example, with MnII (MacDonald et al., 2004; Aghabozorg, Ghasemikhah et al., 2006) and with MnIII (Limburg et al., 1997).

Compound (I) is depicted in Fig. 1. Mn is hexacoordinated by two N atoms (N1 and N2) and four O atoms (O1, O3, O5 and O7) from carboxylate groups of two (pydc)2- groups in a distorted octahedral arrangement. The dihedral angle between these two coordinated pydc groups is 88.63 (5)°, which shows that the ligands are almost perpendicular to each other. For charge balance, it was assumed that the metal atom site is disordered MnII/MnIII, probably due to partial air oxidation of MnII. However, this assumption has not been confirmed by any non-crystallographic methods. No difference map peaks satisfied the alternative models, i.e. that the melaminiumH+ was melaminiumH22+ or that one of the coordinated carboxylate groups or water molecules was protonated.

The Mn—N and Mn—O distances (Table 1) are longer than those seen in related MnIII complexes, which average 2.020 (8) and 2.01 (13) Å, respectively (Limburg et al., 1997; Huang et al., 2004). However, they are also shorter than the average of 34 observations [Cambridge Structural Database (CSD), Version?; Allen, 2002) for MnII in pydc coordination compounds, namely 2.22 (6) and 2.30 (7) Å for Mn—N and Mn—O, respectively (CSD refcodes BIPJER, EJAMEH, IHELAI, LOYYON, LOYYUT, MABNIN, MABNOT, NEQPEF, QARZEP, SAQQUX, XEGDIW, XENJEG, MIGZEI and XIMHAD).

The formula unit of the complex contains one hydroxonium hydrate H5O2+ cation that resides on a twofold rotation axis. One of the melaminiumH+ groups and the pydcH2 also reside on crystallographic twofold axes. In addition, there is an OH- (O15—H15) ion that is disordered with respect to a twofold rotation axis.

There are three notable CO···π intermolecular interactions between C O groups and the centroids of the aromatic rings of pyridine-2,6-dicarboxylate and melaminiumH+ (Table 3). As shown in Fig. 2, the packing of the structure can be described by layers that contain almost all the consituent species. The main parts that are not in these layers are the perpendicular pydc2- ligands. By reference to Fig. 1, the hydrogen bonding that leads to these layers can be envisioned. A notable grouping of two melaminiumH+ cations, water and pydcH2 yields seven strong hydrogen bonds.

In pet food contamination studies involving dogs and cats (Filigenzi et al., 2008), melamine and its metabolites are present in kidney tissue. In consideration of the number of intermolecular interactions present in this and similar structures and the rich carboxylic acid environment in the kidneys, the pathology of melamine is not at all surprising.

Related literature top

For related literature, see: Aghabozorg et al. (2008); Aghabozorg, Aghajani & Sharif (2006); Aghabozorg, Ghasemikhah, Soleimannejad, Ghadermazi & Attar Gharamaleki (2006); Aghajani et al. (2006); Allen (2002); Filigenzi et al. (2008); Huang et al. (2004); Limburg et al. (1997); MacDonald et al. (2004); Perpétuo & Janczak (2006); Sharif et al. (2006); Sharif, Aghabozorg & Moghimi (2007); Sharif, Aghajani & Aghabozorg (2007); Zhang et al. (2005).

Experimental top

The reaction between pyridine-2,6-dicarboxylic acid (pydcH2) (100 mg, 1 mmol) in water (10 ml), 2,4,6-triamino-1,3,5-triazine (melamine) (110 mg, 1 mmol) in water (10 ml) and Mn(CH3COO)2 (72 mg, 0.5 mmol) in water (5 ml) at a 2:2:1 molar ratio gave pale-yellow needles after slow evaporation of the solvent at room temperature.

Refinement top

The C-bound and N-bound H atoms were positioned geometrically with C—H = 0.95 and N—H = 0.88 Å, and allowed to ride on their parent atoms with Uiso(H) = 1.2 Ueq(C). H atoms bonded to O were located in a difference Fourier map and allowed to refine with distance restraints of O—H = 0.84 (1) Å and H···H (in water) = 1.30 (2) Å, except for atom H12E, part of the H5O2+ cation, which resides on a twofold axis and was not restrained. This atom was freely refined but displays a large isotropic displacement parameter of 0.11 that causes an Alert A in checkCIF. We suggest that it is slightly disordered with respect to its position on the twofold axis. The H atom bonded to O15, part of the OH- ion that is disordered with respect to the twofold axis, was located in a difference map and refined with a distance restraint of 0.86 (1) Å and Uiso = 1.2Ueq(O15).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the various constituents of (I), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii. [Symmetry codes: (i) -x, y, 3/2 - z, (ii) -x, y, 1/2 - z.]
[Figure 2] Fig. 2. A packing diagram for (I), viewed perpendicular to the [101] direction, showing the presence of perpendicular layers in the structure.
Hydroxonium hydrate tris(2,4,6-triamino-1,3,5-triazin-1-ium) bis[bis(pyridine-2,6-dicarboxylato)manganate(II/III)] hydroxide pyridine-2,6-dicarboxylic acid solvate pentahydrate top
Crystal data top
(H5O2)(C3H7N6)3[Mn(C7H3NO4)2]2(OH)·C7H5NO4·5H2OF(000) = 3012
Mr = 1462.98Dx = 1.669 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 6275 reflections
a = 27.1406 (16) Åθ = 2.8–31.8°
b = 23.1672 (13) ŵ = 0.55 mm1
c = 9.7838 (6) ÅT = 90 K
β = 108.819 (3)°Needle, pale yellow
V = 5822.9 (6) Å30.55 × 0.18 × 0.08 mm
Z = 4
Data collection top
Bruker SMART APEXII
diffractometer
6671 independent reflections
Radiation source: fine-focus sealed tube6153 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
Detector resolution: 8.3 pixels mm-1θmax = 27.5°, θmin = 2.7°
ω scansh = 3535
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
k = 3030
Tmin = 0.754, Tmax = 0.958l = 1212
32194 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.078Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.189H atoms treated by a mixture of independent and constrained refinement
S = 1.33 w = 1/[σ2(Fo2) + 92.6062P]
where P = (Fo2 + 2Fc2)/3
6671 reflections(Δ/σ)max < 0.001
484 parametersΔρmax = 0.56 e Å3
11 restraintsΔρmin = 0.57 e Å3
Crystal data top
(H5O2)(C3H7N6)3[Mn(C7H3NO4)2]2(OH)·C7H5NO4·5H2OV = 5822.9 (6) Å3
Mr = 1462.98Z = 4
Monoclinic, C2/cMo Kα radiation
a = 27.1406 (16) ŵ = 0.55 mm1
b = 23.1672 (13) ÅT = 90 K
c = 9.7838 (6) Å0.55 × 0.18 × 0.08 mm
β = 108.819 (3)°
Data collection top
Bruker SMART APEXII
diffractometer
6671 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
6153 reflections with I > 2σ(I)
Tmin = 0.754, Tmax = 0.958Rint = 0.027
32194 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.07811 restraints
wR(F2) = 0.189H atoms treated by a mixture of independent and constrained refinement
S = 1.33 w = 1/[σ2(Fo2) + 92.6062P]
where P = (Fo2 + 2Fc2)/3
6671 reflectionsΔρmax = 0.56 e Å3
484 parametersΔρmin = 0.57 e Å3
Special details top

Experimental. The IR spectrum of (I) contains at least 25 peaks in the region between 1610 and 1710 cm-1 where water and hydroxonium hydrate stretching frequencies are found.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Mn10.15668 (3)0.63547 (3)0.56112 (8)0.01248 (17)
O10.09524 (16)0.62982 (16)0.4534 (5)0.0293 (9)
O20.0379 (2)0.56998 (18)0.4078 (7)0.0513 (16)
O30.21016 (13)0.58718 (14)0.6487 (4)0.0163 (7)
O40.24064 (14)0.49904 (15)0.6749 (4)0.0204 (7)
O50.21304 (13)0.66806 (14)0.3553 (4)0.0172 (7)
O60.25181 (14)0.74622 (16)0.2345 (4)0.0199 (7)
O70.10369 (13)0.66055 (14)0.7802 (4)0.0175 (7)
O80.07583 (13)0.73355 (15)0.9377 (4)0.0172 (7)
N10.14288 (16)0.54536 (18)0.5358 (4)0.0160 (8)
N20.16389 (15)0.72795 (16)0.5854 (4)0.0117 (7)
C10.0769 (3)0.5800 (2)0.4426 (8)0.0329 (14)
C20.1054 (2)0.5293 (2)0.4832 (7)0.0255 (12)
C30.0939 (2)0.4721 (2)0.4712 (8)0.0332 (15)
H30.06760.46110.43160.040*
C40.1219 (2)0.4307 (2)0.5188 (7)0.0265 (12)
H40.11460.39090.51310.032*
C50.1606 (2)0.4480 (2)0.5747 (6)0.0199 (10)
H50.18000.42040.60800.024*
C60.17009 (18)0.5065 (2)0.5806 (5)0.0160 (9)
C70.21091 (18)0.5325 (2)0.6397 (5)0.0133 (9)
C80.22193 (18)0.7215 (2)0.3438 (5)0.0154 (9)
C90.19396 (17)0.7587 (2)0.4735 (5)0.0138 (9)
C100.19749 (18)0.8186 (2)0.4801 (6)0.0180 (10)
H100.21880.84000.40000.022*
C110.16876 (19)0.8461 (2)0.6076 (6)0.0180 (10)
H110.17050.88690.61570.022*
C120.13763 (18)0.8138 (2)0.7227 (5)0.0158 (9)
H120.11790.83200.81030.019*
C130.13602 (18)0.7541 (2)0.7066 (5)0.0137 (9)
C140.10260 (17)0.7129 (2)0.8186 (5)0.0128 (9)
N30.18329 (15)0.80126 (16)0.4822 (4)0.0138 (8)
H3A0.20050.78220.56090.019 (15)*
N40.16034 (16)0.88993 (17)0.3619 (4)0.0150 (8)
N50.12517 (15)0.80009 (17)0.2460 (4)0.0143 (8)
N60.21724 (16)0.88635 (17)0.5951 (4)0.0163 (8)
H6A0.21990.92420.59680.020*
H6B0.23470.86600.67120.020*
N70.10282 (16)0.88688 (18)0.1318 (5)0.0185 (9)
H7A0.10460.92480.12890.022*
H7B0.08280.86780.05660.022*
N80.15134 (16)0.71480 (17)0.3693 (5)0.0168 (8)
H8A0.13190.69520.29420.020*
H8B0.16980.69650.44800.020*
C150.18722 (18)0.86026 (19)0.4790 (5)0.0140 (9)
C160.13022 (18)0.8586 (2)0.2495 (5)0.0146 (9)
C170.15280 (18)0.7721 (2)0.3639 (5)0.0142 (9)
N90.02796 (15)0.83044 (17)0.1269 (4)0.0146 (8)
N100.00000.7433 (2)0.25000.0144 (11)
H10A0.00000.70560.25000.006 (17)*
N110.00000.9146 (2)0.25000.0177 (12)
H11B0.01820.93410.16990.021*
N120.05381 (17)0.74296 (18)0.0139 (5)0.0203 (9)
H12A0.07240.76100.06510.024*
H12B0.05300.70500.01640.024*
C180.00000.8573 (3)0.25000.0143 (12)
C190.02721 (17)0.7729 (2)0.1287 (5)0.0144 (9)
O90.06440 (16)0.98913 (16)0.0198 (4)0.0287 (9)
O100.09882 (14)1.07099 (15)0.0856 (4)0.0187 (7)
H10B0.120 (3)1.052 (4)0.152 (8)0.10 (4)*
N130.00001.0481 (2)0.25000.0164 (11)
C200.00001.1684 (3)0.25000.0155 (13)
H200.00001.20940.25000.019*
C210.03155 (18)1.1384 (2)0.1322 (5)0.0163 (9)
H210.05331.15820.04960.020*
C220.03059 (18)1.0779 (2)0.1378 (5)0.0151 (9)
C230.06589 (19)1.0411 (2)0.0183 (5)0.0159 (9)
O110.00000.5142 (2)0.25000.0339 (15)
H11C0.016 (4)0.493 (4)0.290 (11)0.08 (3)*
O120.0175 (2)0.6622 (2)0.1181 (5)0.0454 (13)
H12C0.034 (3)0.682 (3)0.047 (5)0.06 (3)*
H12D0.001 (3)0.640 (3)0.086 (7)0.05 (2)*
H12E0.00000.669 (7)0.25000.11 (6)*
O130.17175 (14)1.00644 (15)0.2652 (4)0.0191 (7)
H13A0.163 (3)0.9738 (15)0.289 (9)0.07 (3)*
H13B0.196 (2)0.998 (3)0.232 (9)0.06 (3)*
O140.21524 (15)0.65307 (16)0.6113 (4)0.0211 (8)
H14A0.228 (2)0.6783 (16)0.674 (4)0.015 (14)*
H14B0.209 (3)0.6261 (17)0.661 (5)0.04 (2)*
O150.0058 (3)0.6310 (3)0.1978 (8)0.0212 (15)0.50
H150.007 (7)0.600 (4)0.245 (16)0.025*0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.0140 (3)0.0095 (3)0.0134 (3)0.0001 (3)0.0036 (3)0.0017 (3)
O10.038 (2)0.0125 (17)0.051 (3)0.0052 (16)0.033 (2)0.0097 (17)
O20.059 (3)0.016 (2)0.111 (5)0.006 (2)0.072 (3)0.008 (2)
O30.0173 (16)0.0133 (16)0.0195 (17)0.0013 (13)0.0076 (14)0.0001 (13)
O40.0221 (18)0.0152 (17)0.030 (2)0.0036 (14)0.0161 (16)0.0014 (15)
O50.0216 (17)0.0129 (16)0.0145 (16)0.0030 (13)0.0021 (14)0.0014 (13)
O60.0191 (17)0.0203 (18)0.0141 (17)0.0011 (14)0.0032 (14)0.0020 (14)
O70.0192 (17)0.0116 (16)0.0185 (17)0.0001 (13)0.0018 (14)0.0004 (13)
O80.0162 (16)0.0211 (18)0.0108 (16)0.0005 (13)0.0006 (13)0.0036 (13)
N10.0171 (19)0.0150 (19)0.018 (2)0.0012 (15)0.0080 (16)0.0027 (16)
N20.0122 (18)0.0131 (18)0.0096 (18)0.0008 (14)0.0033 (14)0.0005 (14)
C10.042 (3)0.017 (3)0.056 (4)0.006 (2)0.039 (3)0.007 (3)
C20.029 (3)0.017 (2)0.040 (3)0.006 (2)0.025 (3)0.008 (2)
C30.040 (3)0.017 (3)0.060 (4)0.005 (2)0.040 (3)0.013 (3)
C40.031 (3)0.014 (2)0.042 (3)0.003 (2)0.022 (3)0.008 (2)
C50.022 (2)0.017 (2)0.025 (3)0.0063 (19)0.014 (2)0.007 (2)
C60.014 (2)0.017 (2)0.017 (2)0.0042 (17)0.0040 (18)0.0064 (18)
C70.015 (2)0.014 (2)0.009 (2)0.0003 (17)0.0021 (17)0.0026 (17)
C80.015 (2)0.016 (2)0.014 (2)0.0023 (17)0.0031 (18)0.0018 (18)
C90.011 (2)0.013 (2)0.016 (2)0.0014 (17)0.0030 (17)0.0020 (17)
C100.014 (2)0.016 (2)0.022 (2)0.0014 (18)0.0017 (19)0.0026 (19)
C110.016 (2)0.011 (2)0.024 (3)0.0003 (17)0.0035 (19)0.0004 (19)
C120.016 (2)0.014 (2)0.016 (2)0.0028 (17)0.0043 (18)0.0069 (18)
C130.013 (2)0.016 (2)0.013 (2)0.0021 (17)0.0056 (17)0.0030 (17)
C140.013 (2)0.016 (2)0.010 (2)0.0002 (17)0.0049 (17)0.0010 (17)
N30.0175 (19)0.0089 (18)0.0133 (19)0.0022 (15)0.0029 (15)0.0049 (15)
N40.0174 (19)0.0114 (18)0.017 (2)0.0003 (15)0.0064 (16)0.0006 (15)
N50.0175 (19)0.0103 (18)0.0151 (19)0.0014 (15)0.0055 (16)0.0031 (15)
N60.020 (2)0.0101 (18)0.018 (2)0.0016 (15)0.0061 (17)0.0018 (15)
N70.020 (2)0.0137 (19)0.018 (2)0.0009 (16)0.0010 (17)0.0012 (16)
N80.019 (2)0.0119 (19)0.017 (2)0.0006 (15)0.0026 (16)0.0057 (16)
C150.015 (2)0.009 (2)0.022 (2)0.0018 (17)0.0113 (18)0.0015 (18)
C160.013 (2)0.015 (2)0.017 (2)0.0017 (17)0.0070 (18)0.0020 (18)
C170.013 (2)0.014 (2)0.017 (2)0.0005 (17)0.0073 (18)0.0012 (17)
N90.0141 (18)0.0117 (18)0.016 (2)0.0009 (15)0.0026 (16)0.0001 (15)
N100.017 (3)0.009 (2)0.018 (3)0.0000.005 (2)0.000
N110.022 (3)0.010 (3)0.018 (3)0.0000.003 (2)0.000
N120.021 (2)0.0113 (19)0.027 (2)0.0009 (16)0.0064 (18)0.0003 (17)
C180.014 (3)0.012 (3)0.018 (3)0.0000.007 (3)0.000
C190.012 (2)0.013 (2)0.019 (2)0.0004 (17)0.0069 (18)0.0005 (18)
O90.037 (2)0.0122 (18)0.023 (2)0.0008 (16)0.0083 (17)0.0022 (15)
O100.0179 (17)0.0144 (17)0.0185 (18)0.0011 (13)0.0014 (14)0.0023 (14)
N130.021 (3)0.010 (3)0.021 (3)0.0000.010 (2)0.000
C200.017 (3)0.011 (3)0.019 (3)0.0000.006 (3)0.000
C210.014 (2)0.014 (2)0.021 (2)0.0025 (17)0.0053 (19)0.0018 (19)
C220.014 (2)0.011 (2)0.020 (2)0.0009 (17)0.0052 (19)0.0019 (18)
C230.019 (2)0.014 (2)0.013 (2)0.0015 (18)0.0021 (18)0.0020 (17)
O110.054 (4)0.013 (3)0.051 (4)0.0000.040 (4)0.000
O120.062 (3)0.039 (3)0.041 (3)0.034 (2)0.025 (3)0.022 (2)
O130.0161 (17)0.0174 (18)0.0232 (19)0.0013 (14)0.0054 (15)0.0052 (14)
O140.0277 (19)0.0204 (18)0.0118 (17)0.0043 (15)0.0018 (15)0.0009 (14)
O150.019 (3)0.011 (3)0.032 (4)0.004 (3)0.007 (3)0.004 (3)
Geometric parameters (Å, º) top
Mn1—N12.149 (4)N5—C161.362 (6)
Mn1—N22.172 (4)N6—C151.313 (6)
Mn1—O32.213 (3)N6—H6A0.8800
Mn1—O52.231 (3)N6—H6B0.8800
Mn1—O72.238 (4)N7—C161.325 (6)
Mn1—O12.245 (4)N7—H7A0.8800
O1—C11.276 (7)N7—H7B0.8800
O2—C11.235 (7)N8—C171.330 (6)
O3—C71.269 (6)N8—H8A0.8800
O4—C71.245 (6)N8—H8B0.8800
O5—C81.259 (6)N9—C191.334 (6)
O6—C81.253 (6)N9—C181.350 (5)
O7—C141.266 (6)N10—C191.364 (5)
O8—C141.253 (6)N10—C19i1.364 (5)
N1—C61.325 (6)N10—H10A0.8722
N1—C21.332 (6)N11—C181.329 (8)
N2—C131.329 (6)N11—H11B0.9000
N2—C91.341 (6)N12—C191.319 (6)
C1—C21.527 (7)N12—H12A0.8800
C2—C31.377 (7)N12—H12B0.8800
C3—C41.393 (8)C18—N9i1.350 (5)
C3—H30.9500O9—C231.204 (6)
C4—C51.391 (7)O10—C231.314 (6)
C4—H40.9500O10—H10B0.841 (10)
C5—C61.384 (7)N13—C221.335 (6)
C5—H50.9500N13—C22i1.335 (6)
C6—C71.529 (6)C20—C21i1.382 (6)
C8—C91.519 (7)C20—C211.382 (6)
C9—C101.393 (7)C20—H200.9500
C10—C111.394 (7)C21—C221.403 (6)
C10—H100.9500C21—H210.9500
C11—C121.389 (7)C22—C231.513 (6)
C11—H110.9500O11—H11C0.83 (9)
C12—C131.395 (6)O12—H12C0.837 (10)
C12—H120.9500O12—H12D0.836 (10)
C13—C141.514 (6)O12—H12E1.23 (2)
N3—C171.365 (6)O13—H13A0.841 (10)
N3—C151.372 (6)O13—H13B0.841 (10)
N3—H3A0.8800O14—H14A0.839 (10)
N4—C151.333 (6)O14—H14B0.838 (10)
N4—C161.351 (6)O15—H150.861 (10)
N5—C171.325 (6)
N1—Mn1—N2174.99 (15)N2—C13—C14113.2 (4)
N1—Mn1—O373.38 (14)C12—C13—C14125.3 (4)
N2—Mn1—O3111.27 (13)O8—C14—O7126.4 (4)
N1—Mn1—O5108.61 (14)O8—C14—C13117.6 (4)
N2—Mn1—O572.85 (13)O7—C14—C13116.0 (4)
O3—Mn1—O5100.14 (13)C17—N3—C15120.2 (4)
N1—Mn1—O7106.28 (14)C17—N3—H3A119.9
N2—Mn1—O772.05 (13)C15—N3—H3A119.9
O3—Mn1—O793.41 (13)C15—N4—C16116.2 (4)
O5—Mn1—O7144.88 (12)C17—N5—C16116.2 (4)
N1—Mn1—O172.91 (14)C15—N6—H6A120.0
N2—Mn1—O1102.46 (14)C15—N6—H6B120.0
O3—Mn1—O1146.27 (13)H6A—N6—H6B120.0
O5—Mn1—O189.60 (15)C16—N7—H7A120.0
O7—Mn1—O196.86 (15)C16—N7—H7B120.0
C1—O1—Mn1117.4 (3)H7A—N7—H7B120.0
C7—O3—Mn1118.4 (3)C17—N8—H8A120.0
C8—O5—Mn1118.0 (3)C17—N8—H8B120.0
C14—O7—Mn1118.6 (3)H8A—N8—H8B120.0
C6—N1—C2121.0 (4)N6—C15—N4121.4 (4)
C6—N1—Mn1119.0 (3)N6—C15—N3118.0 (4)
C2—N1—Mn1119.9 (3)N4—C15—N3120.6 (4)
C13—N2—C9120.5 (4)N7—C16—N4117.7 (4)
C13—N2—Mn1120.1 (3)N7—C16—N5116.5 (4)
C9—N2—Mn1119.2 (3)N4—C16—N5125.8 (4)
O2—C1—O1125.8 (5)N5—C17—N8120.5 (4)
O2—C1—C2118.7 (5)N5—C17—N3120.9 (4)
O1—C1—C2115.4 (5)N8—C17—N3118.6 (4)
N1—C2—C3121.6 (5)C19—N9—C18116.5 (4)
N1—C2—C1113.7 (5)C19—N10—C19i119.6 (6)
C3—C2—C1124.7 (5)C19—N10—H10A120.2
C2—C3—C4118.0 (5)C19i—N10—H10A120.2
C2—C3—H3121.0C18—N11—H11B120.0
C4—C3—H3121.0C19—N12—H12A120.0
C5—C4—C3119.8 (5)C19—N12—H12B120.0
C5—C4—H4120.1H12A—N12—H12B120.0
C3—C4—H4120.1N11—C18—N9i117.4 (3)
C6—C5—C4118.2 (5)N11—C18—N9117.4 (3)
C6—C5—H5120.9N9i—C18—N9125.2 (6)
C4—C5—H5120.9N12—C19—N9120.8 (4)
N1—C6—C5121.3 (4)N12—C19—N10118.1 (4)
N1—C6—C7114.0 (4)N9—C19—N10121.1 (4)
C5—C6—C7124.7 (4)C23—O10—H10B116 (8)
O4—C7—O3126.9 (4)C22—N13—C22i117.7 (6)
O4—C7—C6118.2 (4)C21i—C20—C21119.5 (6)
O3—C7—C6115.0 (4)C21i—C20—H20120.2
O6—C8—O5125.3 (5)C21—C20—H20120.2
O6—C8—C9117.7 (4)C20—C21—C22118.1 (5)
O5—C8—C9117.0 (4)C20—C21—H21120.9
N2—C9—C10121.6 (4)C22—C21—H21120.9
N2—C9—C8112.9 (4)N13—C22—C21123.3 (5)
C10—C9—C8125.5 (4)N13—C22—C23114.5 (4)
C9—C10—C11118.0 (5)C21—C22—C23122.2 (4)
C9—C10—H10121.0O9—C23—O10123.2 (5)
C11—C10—H10121.0O9—C23—C22122.9 (4)
C12—C11—C10119.8 (4)O10—C23—C22113.8 (4)
C12—C11—H11120.1H12C—O12—H12D104 (3)
C10—C11—H11120.1H12C—O12—H12E136 (9)
C11—C12—C13118.5 (4)H12D—O12—H12E114 (6)
C11—C12—H12120.8H13A—O13—H13B101 (2)
C13—C12—H12120.8H14A—O14—H14B102 (2)
N2—C13—C12121.5 (4)
N1—Mn1—O1—C17.6 (5)Mn1—O3—C7—O4175.2 (4)
N2—Mn1—O1—C1170.4 (5)Mn1—O3—C7—C65.5 (5)
O3—Mn1—O1—C19.4 (6)N1—C6—C7—O4175.1 (4)
O5—Mn1—O1—C1117.3 (5)C5—C6—C7—O45.9 (7)
O7—Mn1—O1—C197.3 (5)N1—C6—C7—O35.5 (6)
N1—Mn1—O3—C73.2 (3)C5—C6—C7—O3173.5 (5)
N2—Mn1—O3—C7178.8 (3)Mn1—O5—C8—O6178.8 (4)
O5—Mn1—O3—C7103.4 (3)Mn1—O5—C8—C91.2 (5)
O7—Mn1—O3—C7109.1 (3)C13—N2—C9—C100.5 (7)
O1—Mn1—O3—C71.4 (5)Mn1—N2—C9—C10176.0 (4)
N1—Mn1—O5—C8172.8 (3)C13—N2—C9—C8178.9 (4)
N2—Mn1—O5—C82.2 (3)Mn1—N2—C9—C83.4 (5)
O3—Mn1—O5—C8111.5 (3)O6—C8—C9—N2178.7 (4)
O7—Mn1—O5—C80.4 (5)O5—C8—C9—N21.4 (6)
O1—Mn1—O5—C8101.0 (4)O6—C8—C9—C102.0 (7)
N1—Mn1—O7—C14176.6 (3)O5—C8—C9—C10178.0 (5)
N2—Mn1—O7—C141.5 (3)N2—C9—C10—C110.2 (7)
O3—Mn1—O7—C14109.7 (3)C8—C9—C10—C11179.5 (4)
O5—Mn1—O7—C143.3 (5)C9—C10—C11—C120.4 (7)
O1—Mn1—O7—C14102.5 (3)C10—C11—C12—C130.1 (7)
N2—Mn1—N1—C6158.3 (16)C9—N2—C13—C121.0 (7)
O3—Mn1—N1—C60.2 (4)Mn1—N2—C13—C12176.5 (3)
O5—Mn1—N1—C695.6 (4)C9—N2—C13—C14177.4 (4)
O7—Mn1—N1—C688.5 (4)Mn1—N2—C13—C141.9 (5)
O1—Mn1—N1—C6179.2 (4)C11—C12—C13—N20.8 (7)
N2—Mn1—N1—C218 (2)C11—C12—C13—C14177.4 (4)
O3—Mn1—N1—C2176.5 (5)Mn1—O7—C14—O8178.8 (4)
O5—Mn1—N1—C288.1 (4)Mn1—O7—C14—C133.0 (5)
O7—Mn1—N1—C287.8 (4)N2—C13—C14—O8178.5 (4)
O1—Mn1—N1—C24.5 (4)C12—C13—C14—O83.2 (7)
N1—Mn1—N2—C1370.9 (19)N2—C13—C14—O73.2 (6)
O3—Mn1—N2—C1387.0 (3)C12—C13—C14—O7175.1 (4)
O5—Mn1—N2—C13178.5 (4)C16—N4—C15—N6179.2 (4)
O7—Mn1—N2—C130.4 (3)C16—N4—C15—N30.6 (6)
O1—Mn1—N2—C1392.9 (4)C17—N3—C15—N6179.6 (4)
N1—Mn1—N2—C9104.6 (18)C17—N3—C15—N41.7 (7)
O3—Mn1—N2—C997.5 (3)C15—N4—C16—N7179.7 (4)
O5—Mn1—N2—C93.0 (3)C15—N4—C16—N50.0 (7)
O7—Mn1—N2—C9175.9 (4)C17—N5—C16—N7179.8 (4)
O1—Mn1—N2—C982.6 (4)C17—N5—C16—N40.5 (7)
Mn1—O1—C1—O2168.0 (6)C16—N5—C17—N8178.4 (4)
Mn1—O1—C1—C29.3 (8)C16—N5—C17—N31.6 (6)
C6—N1—C2—C30.9 (9)C15—N3—C17—N52.3 (7)
Mn1—N1—C2—C3177.1 (5)C15—N3—C17—N8177.7 (4)
C6—N1—C2—C1177.7 (5)C19—N9—C18—N11179.6 (3)
Mn1—N1—C2—C11.5 (7)C19—N9—C18—N9i0.4 (3)
O2—C1—C2—N1172.1 (6)C18—N9—C19—N12179.3 (4)
O1—C1—C2—N15.3 (9)C18—N9—C19—N100.9 (6)
O2—C1—C2—C36.4 (11)C19i—N10—C19—N12178.9 (5)
O1—C1—C2—C3176.1 (7)C19i—N10—C19—N90.5 (3)
N1—C2—C3—C41.3 (10)C21i—C20—C21—C220.6 (3)
C1—C2—C3—C4177.2 (6)C22i—N13—C22—C210.7 (3)
C2—C3—C4—C50.8 (10)C22i—N13—C22—C23177.2 (5)
C3—C4—C5—C60.2 (9)C20—C21—C22—N131.4 (7)
C2—N1—C6—C50.1 (8)C20—C21—C22—C23176.4 (4)
Mn1—N1—C6—C5176.1 (4)N13—C22—C23—O94.3 (7)
C2—N1—C6—C7179.2 (5)C21—C22—C23—O9177.7 (5)
Mn1—N1—C6—C72.9 (5)N13—C22—C23—O10174.6 (4)
C4—C5—C6—N10.7 (8)C21—C22—C23—O103.4 (7)
C4—C5—C6—C7179.6 (5)
Symmetry code: (i) x, y, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N7—H7A···O90.882.122.811 (5)135
N7—H7B···N90.882.112.988 (6)172
N8—H8B···O140.881.952.830 (6)174
N10—H10A···O150.871.822.665 (9)161
N11—H11B···O90.902.042.925 (5)167
N12—H12A···N50.882.092.964 (6)172
O10—H10B···O130.84 (8)1.82 (8)2.645 (5)167 (11)
O13—H13A···N40.83 (6)2.08 (2)2.910 (5)167 (7)
O15—H15···O110.86 (1)1.98 (8)2.767 (9)151 (15)
N3—H3A···O6ii0.881.892.757 (5)168
N6—H6A···O4iii0.882.052.856 (5)152
N6—H6B···O5ii0.882.062.924 (5)168
N10—H10A···O15i0.871.822.665 (9)161
N12—H12B···O1iv0.882.072.838 (6)146
O11—H11C···O2v0.83 (9)2.07 (9)2.875 (6)165 (10)
O12—H12C···O8vi0.83 (6)1.75 (7)2.560 (6)162 (7)
O12—H12D···O2iv0.85 (5)1.91 (7)2.671 (6)151 (7)
O12—H12E···O12iv1.24 (2)1.24 (2)2.445 (10)163 (15)
O13—H13B···O4vii0.84 (5)1.99 (6)2.794 (5)163 (7)
O14—H14A···O6ii0.84 (4)1.87 (2)2.646 (5)153 (5)
O14—H14B···O3viii0.84 (5)2.06 (3)2.841 (5)154 (5)
C12—H12···O10ix0.952.453.236 (6)140
Symmetry codes: (i) x, y, z1/2; (ii) x+1/2, y+3/2, z+1/2; (iii) x+1/2, y+1/2, z; (iv) x, y, z+1/2; (v) x, y+1, z; (vi) x, y, z1; (vii) x+1/2, y+3/2, z1/2; (viii) x, y, z+3/2; (ix) x, y+2, z+1.

Experimental details

Crystal data
Chemical formula(H5O2)(C3H7N6)3[Mn(C7H3NO4)2]2(OH)·C7H5NO4·5H2O
Mr1462.98
Crystal system, space groupMonoclinic, C2/c
Temperature (K)90
a, b, c (Å)27.1406 (16), 23.1672 (13), 9.7838 (6)
β (°) 108.819 (3)
V3)5822.9 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.55
Crystal size (mm)0.55 × 0.18 × 0.08
Data collection
DiffractometerBruker SMART APEXII
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.754, 0.958
No. of measured, independent and
observed [I > 2σ(I)] reflections
32194, 6671, 6153
Rint0.027
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.078, 0.189, 1.33
No. of reflections6671
No. of parameters484
No. of restraints11
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
w = 1/[σ2(Fo2) + 92.6062P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)0.56, 0.57

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected geometric parameters (Å, º) top
Mn1—N12.149 (4)Mn1—O52.231 (3)
Mn1—N22.172 (4)Mn1—O72.238 (4)
Mn1—O32.213 (3)Mn1—O12.245 (4)
N1—Mn1—N2174.99 (15)O3—Mn1—O793.41 (13)
N1—Mn1—O373.38 (14)O5—Mn1—O7144.88 (12)
N2—Mn1—O3111.27 (13)N1—Mn1—O172.91 (14)
N1—Mn1—O5108.61 (14)N2—Mn1—O1102.46 (14)
N2—Mn1—O572.85 (13)O3—Mn1—O1146.27 (13)
O3—Mn1—O5100.14 (13)O5—Mn1—O189.60 (15)
N1—Mn1—O7106.28 (14)O7—Mn1—O196.86 (15)
N2—Mn1—O772.05 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N7—H7A···O90.882.122.811 (5)135
N7—H7B···N90.882.112.988 (6)172
N8—H8B···O140.881.952.830 (6)174
N10—H10A···O150.871.822.665 (9)161
N11—H11B···O90.902.042.925 (5)167
N12—H12A···N50.882.092.964 (6)172
O10—H10B···O130.84 (8)1.82 (8)2.645 (5)167 (11)
O13—H13A···N40.83 (6)2.08 (2)2.910 (5)167 (7)
O15—H15···O110.861 (10)1.98 (8)2.767 (9)151 (15)
N3—H3A···O6i0.881.892.757 (5)168
N6—H6A···O4ii0.882.052.856 (5)152
N6—H6B···O5i0.882.062.924 (5)168
N10—H10A···O15iii0.871.822.665 (9)161
N12—H12B···O1iv0.882.072.838 (6)146
O11—H11C···O2v0.83 (9)2.07 (9)2.875 (6)165 (10)
O12—H12C···O8vi0.83 (6)1.75 (7)2.560 (6)162 (7)
O12—H12D···O2iv0.85 (5)1.91 (7)2.671 (6)151 (7)
O12—H12E···O12iv1.24 (2)1.24 (2)2.445 (10)163 (15)
O13—H13B···O4vii0.84 (5)1.99 (6)2.794 (5)163 (7)
O14—H14A···O6i0.84 (4)1.87 (2)2.646 (5)153 (5)
O14—H14B···O3viii0.84 (5)2.06 (3)2.841 (5)154 (5)
C12—H12···O10ix0.952.453.236 (6)139.7
Symmetry codes: (i) x+1/2, y+3/2, z+1/2; (ii) x+1/2, y+1/2, z; (iii) x, y, z1/2; (iv) x, y, z+1/2; (v) x, y+1, z; (vi) x, y, z1; (vii) x+1/2, y+3/2, z1/2; (viii) x, y, z+3/2; (ix) x, y+2, z+1.
Summary of short contacts involving CO···π interactions (Å) top
COAromatic ringO···Centroid
C7O4(N1/C2–C6)i3.750 (4)
C8O6(N2/C9–C13)ii3.262 (4)
C14O8(N9/N10/C18/C19/N9iv/C19iv)iii3.536 (4)
Symmetry codes: (i) x, 1-y, 1/2+z; (ii) -x-1/2, 3/2-y, 1-z; (iii) -x, y, 1/2-x; (iv) -x, y, -z-1/2.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds