Download citation
Download citation
link to html
The title compound, [Zn(C32H16N8)(C5H6N2)]·2C4H8O, con­sists of one (phthalocyaninato)zinc (ZnPc) unit, a coordinated 4-amino­pyridine (4-ap) mol­ecule and two tetra­hydro­furan (THF) solvent mol­ecules. The central Zn atom is (4+1)-coordinated by four isoindole N atoms of the Pc core and by the pyridine N atom of 4-amino­pyridine. The Zn atom is displaced by 0.4464 (8) Å from the isoindole N4 plane towards the pyridine N atom. The crystal structure is stabilized by inter­molecular amine–phthalocyaninate N—H...N hydrogen bonds and π–π inter­actions between the aggregated Pc rings, which form mol­ecular layers, and by weak van der Waals inter­actions between the layers. As well as hindering the aggregation of ZnPc mol­ecules by occupying an axial position, the amino group will add new inter­actions which will favor applications of ZnPc, for example, as a sensitizer of photo­dynamic therapy.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270108032472/hj3088sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270108032472/hj3088Isup2.hkl
Contains datablock I

CCDC reference: 682507

Comment top

It is well known that phthalocyanines exhibit interesting optical, electrical, magnetic and catalytic properties, and they are widely used in many fields, such as dyes, catalysts, molecular materials, chemical sensors, nonlinear optical materials, etc. (Kadish et al., 2003; Mckeown, 1998; Torre et al., 2001). Among those phthalocyanine compounds, the phthalocyaninatozinc (ZnPc) derivatives are particularly interesting owing to their unique photosensitizing properties for photodynamic therapy (PDT) (Lukyanets, 1999; Tabata et al., 2000; Milgrom, 1977; Bonnett, 1995), magnetic circularly polarized luminescence (MCPL) and magnetic circular dichroism (MCD) spectra. Our interest in ZnPc derivatives is due to their photodynamic activity. Some crystal structures of (4+1)-coordinated ZnPc derivatives, such as ZnPc(n-hexylamine), ZnPcCl, ZnPc(dipy–pra) (dipy-pra is 1,3-di-4-pyridylpropane), ZnPc[(di/tetra/hexa/octaphenyl-py)], [ZnPc(H2O)].2DMF (DMF is dimethylformamide) and ZnPc(4-Mepy) (4-Mepy is ?) have been reported (Kobayashi et al., 1971; Deneux et al., 1985; Zeng et al., 2005; Fukuda et al., 2005; Cui et al., 2007; Kubiak et al., 2007). In this paper, we report the structure of the title compound, (I), produced by the reaction of 4-aminopyridine with zinc phthalocyanine in tetrahydrofuran (THF) solution. UV–vis and fluorescence spectral measurements and thermal gravimetric analysis were also applied to characterize this complex.

The asymmetric unit of (I) consists of a (4-aminopyridine-κN1)(phthalocyaninato-κ4N)zinc(II) unit, denoted ZnPc(4-ap), and two THF solvent molecules (one of the THF molecules shows disorder) (Fig. 1). The central ZnII atom exhibits (4+1)-coordination by four isoindole N atoms of the Pc ring system and one pyridine N atom of the 4-aminopyridine molecule, forming a distorted pyramid (Table 1). The Zn atom in this coordination environment assumes an sp2d2 hybridization. The bond distances from the azamethine N atoms of the Pc ring to the central Zn atom range from 2.0275 (15) to 2.0343 (15)Å, whereas that from the pyridine N atom of the axial ligand is somewhat longer at 2.0917 (16)Å. The angle between the basal Pc plane defined by the four isoindole N atoms (the N4 plane) and the plane of the coordinated 4-aminopyridine molecule is 87.7(?)°, thus the 4-aminopyridine molecule is almost perpendicular to the Pc plane. The central Zn atom is significantly displaced (by about 0.45Å) from the N4 plane towards the axially coordinated N atom of the 4-aminopyridine molecule.

For axially coordinated ZnPc complexes, a range of values have been observed for the distance between the ZnII cation and the N4 plane, and is related to the bond strength between the metal cation and the axial ligand. For example, the Zn atom is displaced from the N4 plane as follows: 0.2Å in ZnPc(dipy–pra), 0.35Å in ZnPc(4-Mepy), 0.38Å in ZnPc(H2O).2DMF, 0.48Å in ZnPc(n-hexylamine) and 0.59Å in ZnPcCl (Zeng et al., 2005; Kubiak et al., 2007; Cui et al., 2007; Kobayashi et al., 1971; Deneux et al., 1985); the displacement is 0.45Å in compound (I). Additionally, the Pc ring is distorted from planarity, with small angles between the benzene rings and the N4 plane of 8.30 (13), 4.55 (10), 4.22 (10) and 7.56 (12)° for the C2/C3/C17–C20, C6/C7/C21–C24, C10/C11/C25–C28 and C14/C15/C29–C32 rings, respectively. The small differences of these angles are related to the aggregation of the Pc rings, where the less overlapped benzene rings have slightly larger distortion angles.

The crystal structure of (I) is stabilized by hydrogen bonds and ππ interactions between Pc rings. The hydrogen-bonding interactions occur between the azamethine N2 and N6 atoms of the Pc ring as acceptors and the amino group of the 4-aminopyridine molecule as donor (Fig. 2 and Table 2). These intermolecular hydrogen bonds construct an infinite two-dimensional layer in the bc plane. Concurrently, in the two-dimensional layer, the Pc rings are aggregated in a back-to-back fashion, with a distance of 3.56Å and centre offset of 3.15Å of the two stacked N4 planes, which indicates a strong intermolecular ππ interaction (Pauling, 1960). Finally, the THF molecules occupy the space around the axial 4-aminopyridine ligands (Figs. 1 and 3).

As further characterizations of compound (I), the electronic absorption spectrum was recorded in DMF solution. It showed intense absorption in the UV region (B band, 343 nm) and visible–IR region (Q band, 669 nm). Compared with the corresponding bands of ZnPc (340 and 669 nm), a slight red shift in the B band occurs in compound (I), but the Q band is at the same position which indicates the axial ligand has less influence on the Pc π system. In the UV–visible diffuse reflectance spectra of the solid sample, bands at 570 and 649 nm appeared and correspond to the dimeric aggregate of molecules.

ZnPc derivatives all display strong fluorescences. Compound (I) in DMF solution exhibits two emission peaks at about 679 and 739 nm (λex = 617 nm). In contrast to the emission wavelength (676 and 743 nm) of unsubstituted ZnPc, the small red (3 nm) and blue (4 nm) shifts can be related to the presence of the axial ligand (Ogunsipe et al., 2003; Yslas et al., 2005; Nitschke et al., 2004).

The thermogravimetric analysis shows two characteristic steps, the first at about 339 K corresponds to the loss of the THF molecules (12.26%) and the second at about 448 K correlates with the loss of 4-aminopyridine. Finally, above 571 K, the sample decomposes.

Related literature top

For related literature, see: Bonnett (1995); Cui et al. (2007); Deneux et al. (1985); Kadish et al. (2003); Kobayashi et al. (1968, 1971); Kubiak et al. (2007); Lukyanets (1999); Mckeown (1998); Milgrom (1977); Nitschke et al. (2004); Ogunsipe et al. (2003); Pauling (1960); Tabata et al. (2000); Torre et al. (2001); Yslas et al. (2005); Zeng et al. (2005).

Experimental top

Pure zinc(II) phthalocyanine was prepared according to the procedure of Kobayashi et al. (1968). ZnPc powder was reacted with 4-aminopyridine (2:3 molar ratio) in THF solution at about 338 K for 6 h. When the solvent was evaporated slowly at room temperature, violet crystals were obtained in various sizes.

Refinement top

All H atoms bound to C and N atoms of the ZnPc(4-ap) unit were located in difference Fourier syntheses and refined. The H atoms of THF solvent molecules were refined as riding, with C—H = 0.97Å and Uiso(H) = 1.2Ueq(C). One THF molecule (C42–C46/O2A–O2E) was disordered and treated statistically with the site-occupancy factors of the C atoms at each of the five sites equal to 0.8 and the site-occupancy factors of the O atoms to equal 0.2.

Computing details top

Data collection: CrystalClear (Rigaku, 2007); cell refinement: CrystalClear (Rigaku, 2007); data reduction: CrystalClear (Rigaku, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEX (McArdle, 1995); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The crystal structure of compound (I), drawn with 50% probability displacement ellipsoids. H atoms are shown as spheres of arbitrary radii.
[Figure 2] Fig. 2. A view of the hydrogen-bonded structure of compound (I) and the back-to-back ππ interactions between the ZnPc(4-ap) molecules. All H atoms attached to the C atoms and the THF solvent molecules have been omitted for clarity. [Symmetry codes: (i) -x+1, y-1/2, -z+1/2; (ii) -x+1, -y+1, -z.] [Atom labels should relate to atoms as they appear in the coordinate list; if there are duplicate atom labels (here N10, then symmetry codes should be given]
[Figure 3] Fig. 3. The molecular packing of compound (I), showing the positions of the THF solvent molecules around the 4-aminopyridine ligands. H atoms have been omitted for clarity.
(4-Aminopyridine-κN1)(phthalocyaninato-κ4N)zinc(II) tetrahydrofuran disolvate top
Crystal data top
[Zn(C32H16N8)(C5H6N2)]·2C4H8OF(000) = 1696
Mr = 816.22Dx = 1.405 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71069 Å
Hall symbol: -p2ybcCell parameters from 11377 reflections
a = 13.5385 (17) Åθ = 3.1–27.5°
b = 15.0756 (19) ŵ = 0.69 mm1
c = 19.224 (3) ÅT = 298 K
β = 100.420 (3)°Block, purple
V = 3858.9 (9) Å30.72 × 0.70 × 0.20 mm
Z = 4
Data collection top
Rigaku Saturn 724 CCD area-detector
diffractometer
8842 independent reflections
Radiation source: Sealed Tube8208 reflections with I > 2σ(I)
Graphite Monochromator monochromatorRint = 0.028
Detector resolution: 28.5714 pixels mm-1θmax = 27.5°, θmin = 3.1°
dtprofit.ref scansh = 1717
Absorption correction: numerical
(NUMABS; Higashi, 2000)
k = 1915
Tmin = 0.636, Tmax = 0.874l = 2424
30133 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.121H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0691P)2 + 1.4255P]
where P = (Fo2 + 2Fc2)/3
8842 reflections(Δ/σ)max < 0.001
611 parametersΔρmax = 0.37 e Å3
0 restraintsΔρmin = 0.44 e Å3
Crystal data top
[Zn(C32H16N8)(C5H6N2)]·2C4H8OV = 3858.9 (9) Å3
Mr = 816.22Z = 4
Monoclinic, P21/cMo Kα radiation
a = 13.5385 (17) ŵ = 0.69 mm1
b = 15.0756 (19) ÅT = 298 K
c = 19.224 (3) Å0.72 × 0.70 × 0.20 mm
β = 100.420 (3)°
Data collection top
Rigaku Saturn 724 CCD area-detector
diffractometer
8842 independent reflections
Absorption correction: numerical
(NUMABS; Higashi, 2000)
8208 reflections with I > 2σ(I)
Tmin = 0.636, Tmax = 0.874Rint = 0.028
30133 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.121H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.37 e Å3
8842 reflectionsΔρmin = 0.44 e Å3
611 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Zn10.494339 (15)0.814615 (13)0.007637 (10)0.03414 (8)
N10.60057 (11)0.89636 (10)0.06164 (8)0.0366 (3)
N20.49768 (12)0.98717 (10)0.12432 (8)0.0371 (3)
N30.39134 (12)0.89932 (10)0.03483 (8)0.0368 (3)
N40.24176 (12)0.84110 (11)0.04029 (8)0.0396 (3)
N50.38907 (12)0.77725 (10)0.07659 (8)0.0375 (3)
N60.49267 (13)0.69864 (11)0.14683 (9)0.0411 (3)
N70.59833 (12)0.77482 (10)0.05010 (8)0.0377 (3)
N80.74782 (12)0.83266 (11)0.02523 (9)0.0398 (3)
N90.49501 (13)0.70958 (11)0.07882 (8)0.0394 (3)
N100.50518 (17)0.49473 (13)0.21647 (10)0.0494 (4)
H10.6517 (19)0.6260 (17)0.2210 (14)0.055 (7)*
H20.824 (3)0.607 (2)0.219 (2)0.098 (11)*
H30.948 (3)0.658 (2)0.1287 (19)0.096 (11)*
H40.9000 (19)0.7376 (17)0.0362 (14)0.052 (7)*
H50.904 (2)0.9301 (18)0.1226 (15)0.064 (8)*
H60.956 (2)1.0338 (19)0.2076 (14)0.059 (7)*
H70.836 (2)1.1111 (18)0.2594 (14)0.062 (7)*
H80.6617 (18)1.0850 (15)0.2224 (13)0.049 (6)*
H90.3413 (18)1.0897 (15)0.1806 (13)0.047 (6)*
H100.1682 (19)1.1180 (18)0.1749 (14)0.059 (7)*
H110.042 (2)1.0512 (19)0.0915 (16)0.071 (8)*
H120.0845 (19)0.9411 (16)0.0155 (14)0.052 (6)*
H130.087 (2)0.7601 (19)0.1469 (15)0.065 (8)*
H140.034 (3)0.680 (2)0.250 (2)0.091 (11)*
H150.156 (2)0.6099 (19)0.3072 (16)0.069 (8)*
H160.326 (2)0.6251 (18)0.2585 (15)0.064 (8)*
H180.4943 (19)0.607 (2)0.0078 (15)0.070 (9)*
H190.510 (2)0.4937 (18)0.0836 (17)0.071 (9)*
H200.504 (2)0.6622 (19)0.2484 (16)0.066 (8)*
H210.4953 (17)0.7831 (17)0.1657 (13)0.049 (6)*
H220.5053 (18)0.4447 (19)0.1987 (14)0.052 (7)*
H230.5023 (19)0.5051 (14)0.2583 (15)0.043 (6)*
C10.58133 (15)0.72320 (12)0.10938 (10)0.0390 (4)
C20.67786 (16)0.69605 (13)0.12667 (12)0.0451 (4)
C30.75222 (15)0.73163 (13)0.07361 (11)0.0440 (4)
C40.69970 (14)0.78330 (13)0.02784 (10)0.0385 (4)
C50.70146 (13)0.88605 (12)0.06430 (9)0.0365 (4)
C60.75602 (14)0.94474 (13)0.11841 (10)0.0391 (4)
C70.68352 (15)0.99013 (12)0.14787 (9)0.0380 (4)
C80.58565 (14)0.95808 (12)0.11073 (9)0.0361 (4)
C90.40856 (14)0.96048 (12)0.08796 (9)0.0361 (4)
C100.31258 (15)0.99527 (12)0.10078 (10)0.0383 (4)
C110.23774 (14)0.95227 (13)0.05241 (10)0.0388 (4)
C120.29005 (14)0.89225 (12)0.01157 (9)0.0372 (4)
C130.28828 (14)0.79021 (13)0.08109 (10)0.0381 (4)
C140.23424 (15)0.74082 (13)0.14152 (10)0.0430 (4)
C150.30755 (16)0.70100 (14)0.17432 (11)0.0437 (4)
C160.40432 (15)0.72503 (12)0.13171 (9)0.0387 (4)
C170.7034 (2)0.64863 (18)0.18321 (15)0.0634 (7)
C180.8045 (2)0.6356 (2)0.18268 (18)0.0789 (9)
C190.8781 (2)0.6678 (2)0.12830 (19)0.0745 (9)
C200.85346 (19)0.71677 (17)0.07302 (15)0.0576 (6)
C210.85777 (16)0.96046 (16)0.13991 (11)0.0468 (5)
C220.88577 (18)1.02301 (17)0.19271 (12)0.0531 (5)
C230.81376 (18)1.06793 (15)0.22266 (11)0.0522 (5)
C240.71187 (17)1.05294 (14)0.20101 (11)0.0455 (4)
C250.28706 (17)1.05824 (14)0.14744 (11)0.0454 (4)
C260.18597 (18)1.07645 (16)0.14411 (12)0.0519 (5)
C270.11215 (17)1.03436 (17)0.09559 (12)0.0514 (5)
C280.13663 (16)0.97115 (16)0.04904 (11)0.0468 (4)
C290.13270 (18)0.73232 (16)0.16919 (13)0.0536 (5)
C300.1063 (2)0.68400 (18)0.23102 (17)0.0683 (7)
C310.1791 (2)0.6457 (2)0.26458 (15)0.0712 (8)
C320.2801 (2)0.65378 (18)0.23701 (13)0.0584 (6)
C330.49547 (16)0.72070 (13)0.14844 (10)0.0420 (4)
C340.49830 (16)0.65237 (14)0.19593 (10)0.0428 (4)
C350.50135 (14)0.56446 (13)0.17249 (10)0.0390 (4)
C360.5012 (2)0.55329 (14)0.10033 (11)0.0518 (5)
C370.4983 (2)0.62568 (15)0.05711 (11)0.0522 (5)
O10.9274 (3)0.6289 (3)0.1933 (2)0.1560 (15)
C380.8636 (4)0.6944 (3)0.1720 (4)0.147 (2)
H38A0.88390.72610.13290.177*
H38B0.86220.73590.21030.177*
C390.7646 (4)0.6545 (5)0.1495 (5)0.187 (4)
H39A0.72540.65780.18700.224*
H39B0.72810.68420.10800.224*
C400.7848 (5)0.5645 (6)0.1340 (5)0.216 (4)
H40A0.74730.52430.15890.259*
H40B0.76670.55320.08360.259*
C410.8897 (5)0.5539 (5)0.1575 (5)0.208 (4)
H41A0.90230.50270.18840.250*
H41B0.92250.54430.11730.250*
C420.0725 (5)0.6335 (7)0.0275 (5)0.206 (4)0.80
H42A0.00920.62060.04240.247*0.80
H42B0.05840.65320.02130.247*0.80
C430.1259 (9)0.5667 (8)0.0331 (9)0.380 (11)0.80
H43A0.12320.54180.01370.456*0.80
H43B0.09710.52330.06090.456*0.80
C440.2250 (6)0.5784 (7)0.0634 (8)0.289 (6)0.80
H44A0.26830.57400.02850.346*0.80
H44B0.24630.53540.10070.346*0.80
C450.2252 (5)0.6685 (6)0.0920 (4)0.185 (3)0.80
H45A0.24250.66880.14320.222*0.80
H45B0.27120.70690.07270.222*0.80
C460.1209 (5)0.6945 (4)0.0675 (6)0.199 (4)0.80
H46A0.08870.70450.10800.239*0.80
H46B0.11880.74960.04120.239*0.80
O2A0.0725 (5)0.6335 (7)0.0275 (5)0.206 (4)0.20
O2B0.1259 (9)0.5667 (8)0.0331 (9)0.380 (11)0.20
O2C0.2250 (6)0.5784 (7)0.0634 (8)0.289 (6)0.20
O2D0.2252 (5)0.6685 (6)0.0920 (4)0.185 (3)0.20
O2E0.1209 (5)0.6945 (4)0.0675 (6)0.199 (4)0.20
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.03702 (13)0.03550 (13)0.03001 (12)0.00072 (7)0.00635 (8)0.00258 (7)
N10.0385 (8)0.0379 (8)0.0341 (7)0.0023 (6)0.0079 (6)0.0028 (6)
N20.0427 (8)0.0374 (8)0.0312 (7)0.0009 (6)0.0068 (6)0.0014 (6)
N30.0400 (8)0.0370 (8)0.0334 (7)0.0013 (6)0.0063 (6)0.0027 (6)
N40.0405 (8)0.0418 (8)0.0359 (8)0.0017 (7)0.0052 (6)0.0016 (6)
N50.0415 (8)0.0401 (8)0.0304 (7)0.0017 (6)0.0052 (6)0.0039 (6)
N60.0495 (9)0.0410 (8)0.0336 (8)0.0022 (7)0.0097 (7)0.0057 (6)
N70.0410 (8)0.0416 (8)0.0315 (7)0.0018 (6)0.0092 (6)0.0038 (6)
N80.0395 (8)0.0433 (8)0.0377 (8)0.0020 (6)0.0099 (6)0.0018 (6)
N90.0497 (9)0.0368 (7)0.0321 (7)0.0015 (7)0.0084 (6)0.0008 (6)
N100.0706 (13)0.0404 (10)0.0377 (9)0.0017 (8)0.0111 (9)0.0041 (7)
C10.0476 (10)0.0365 (9)0.0351 (8)0.0016 (7)0.0136 (7)0.0036 (7)
C20.0495 (11)0.0423 (10)0.0475 (11)0.0049 (8)0.0191 (9)0.0078 (8)
C30.0472 (10)0.0407 (10)0.0477 (10)0.0014 (8)0.0182 (8)0.0051 (8)
C40.0402 (9)0.0400 (9)0.0371 (9)0.0001 (7)0.0119 (7)0.0003 (7)
C50.0383 (9)0.0385 (9)0.0331 (8)0.0053 (7)0.0077 (7)0.0007 (7)
C60.0429 (9)0.0413 (9)0.0331 (8)0.0079 (7)0.0069 (7)0.0014 (7)
C70.0443 (10)0.0381 (9)0.0311 (8)0.0077 (7)0.0056 (7)0.0011 (7)
C80.0429 (9)0.0352 (9)0.0307 (8)0.0041 (7)0.0081 (7)0.0009 (6)
C90.0435 (9)0.0346 (9)0.0309 (8)0.0026 (7)0.0088 (7)0.0000 (6)
C100.0443 (10)0.0379 (9)0.0334 (8)0.0048 (7)0.0088 (7)0.0027 (7)
C110.0416 (9)0.0414 (9)0.0344 (8)0.0042 (7)0.0091 (7)0.0034 (7)
C120.0401 (9)0.0400 (9)0.0316 (8)0.0018 (7)0.0072 (7)0.0022 (7)
C130.0407 (9)0.0391 (9)0.0336 (8)0.0035 (7)0.0045 (7)0.0001 (7)
C140.0476 (10)0.0391 (9)0.0398 (9)0.0050 (8)0.0012 (8)0.0023 (7)
C150.0490 (11)0.0415 (10)0.0386 (10)0.0017 (8)0.0025 (8)0.0038 (8)
C160.0478 (10)0.0364 (9)0.0310 (8)0.0017 (7)0.0050 (7)0.0024 (7)
C170.0639 (15)0.0660 (15)0.0673 (15)0.0122 (12)0.0307 (12)0.0283 (13)
C180.0701 (17)0.0806 (19)0.097 (2)0.0120 (14)0.0456 (16)0.0448 (17)
C190.0558 (14)0.0710 (17)0.107 (2)0.0051 (12)0.0417 (16)0.0308 (16)
C200.0488 (12)0.0564 (13)0.0714 (16)0.0033 (10)0.0211 (11)0.0130 (12)
C210.0445 (10)0.0541 (12)0.0421 (10)0.0114 (9)0.0089 (8)0.0004 (9)
C220.0502 (12)0.0636 (13)0.0440 (11)0.0214 (10)0.0046 (9)0.0006 (10)
C230.0632 (13)0.0518 (12)0.0401 (10)0.0207 (10)0.0050 (9)0.0062 (9)
C240.0558 (12)0.0422 (10)0.0388 (9)0.0105 (9)0.0093 (8)0.0054 (8)
C250.0550 (12)0.0439 (10)0.0380 (9)0.0067 (9)0.0099 (9)0.0028 (8)
C260.0601 (13)0.0534 (12)0.0451 (11)0.0164 (10)0.0173 (10)0.0000 (9)
C270.0464 (11)0.0608 (13)0.0495 (11)0.0136 (10)0.0153 (9)0.0058 (10)
C280.0431 (10)0.0557 (12)0.0419 (10)0.0054 (9)0.0089 (8)0.0038 (9)
C290.0455 (11)0.0537 (13)0.0582 (13)0.0059 (9)0.0003 (10)0.0087 (10)
C300.0546 (14)0.0703 (17)0.0718 (17)0.0057 (11)0.0100 (13)0.0217 (13)
C310.0713 (17)0.0733 (17)0.0603 (15)0.0037 (13)0.0112 (13)0.0276 (13)
C320.0627 (14)0.0597 (14)0.0483 (12)0.0004 (11)0.0017 (10)0.0179 (11)
C330.0541 (11)0.0378 (10)0.0348 (9)0.0004 (8)0.0095 (8)0.0031 (7)
C340.0537 (11)0.0432 (10)0.0320 (9)0.0007 (8)0.0093 (8)0.0036 (7)
C350.0420 (9)0.0397 (9)0.0353 (9)0.0014 (7)0.0072 (7)0.0010 (7)
C360.0841 (16)0.0357 (10)0.0372 (10)0.0012 (10)0.0154 (10)0.0045 (8)
C370.0827 (16)0.0433 (11)0.0321 (9)0.0032 (10)0.0147 (9)0.0030 (8)
O10.108 (2)0.160 (3)0.178 (4)0.001 (2)0.031 (2)0.046 (3)
C380.100 (3)0.120 (4)0.216 (7)0.004 (3)0.009 (4)0.045 (4)
C390.072 (3)0.182 (6)0.294 (9)0.004 (3)0.001 (4)0.136 (7)
C400.123 (5)0.190 (7)0.297 (11)0.014 (5)0.065 (6)0.020 (7)
C410.124 (5)0.145 (5)0.332 (12)0.010 (4)0.021 (6)0.058 (7)
C420.114 (5)0.246 (9)0.222 (7)0.017 (5)0.066 (5)0.017 (7)
C430.182 (10)0.255 (13)0.65 (3)0.013 (9)0.070 (14)0.153 (15)
C440.104 (5)0.232 (9)0.52 (2)0.021 (6)0.020 (8)0.012 (11)
C450.121 (5)0.244 (8)0.179 (6)0.067 (5)0.003 (4)0.055 (6)
C460.108 (4)0.168 (6)0.321 (11)0.017 (4)0.038 (6)0.010 (6)
O2A0.114 (5)0.246 (9)0.222 (7)0.017 (5)0.066 (5)0.017 (7)
O2B0.182 (10)0.255 (13)0.65 (3)0.013 (9)0.070 (14)0.153 (15)
O2C0.104 (5)0.232 (9)0.52 (2)0.021 (6)0.020 (8)0.012 (11)
O2D0.121 (5)0.244 (8)0.179 (6)0.067 (5)0.003 (4)0.055 (6)
O2E0.108 (4)0.168 (6)0.321 (11)0.017 (4)0.038 (6)0.010 (6)
Geometric parameters (Å, º) top
Zn1—N32.0278 (15)C22—C231.394 (4)
Zn1—N12.0311 (15)C22—H60.96 (3)
Zn1—N52.0335 (15)C23—C241.385 (3)
Zn1—N72.0345 (15)C23—H70.97 (3)
Zn1—N92.0917 (16)C24—H80.98 (2)
N1—C81.366 (2)C25—C261.386 (3)
N1—C51.366 (2)C25—H91.00 (2)
N2—C81.339 (2)C26—C271.391 (4)
N2—C91.342 (2)C26—H100.92 (3)
N3—C91.364 (2)C27—C281.388 (3)
N3—C121.367 (2)C27—H110.98 (3)
N4—C131.334 (3)C28—H120.98 (3)
N4—C121.334 (2)C29—C301.385 (4)
N5—C161.365 (2)C29—H130.92 (3)
N5—C131.366 (2)C30—C311.397 (4)
N6—C11.335 (3)C30—H140.99 (4)
N6—C161.341 (3)C31—C321.380 (4)
N7—C11.365 (2)C31—H150.98 (3)
N7—C41.368 (2)C32—H160.92 (3)
N8—C51.333 (2)C33—C341.372 (3)
N8—C41.334 (2)C33—H211.00 (2)
N9—C371.335 (3)C34—C351.403 (3)
N9—C331.348 (2)C34—H201.01 (3)
N10—C351.344 (3)C35—C361.397 (3)
N10—H220.83 (3)C36—C371.368 (3)
N10—H230.83 (3)C36—H190.97 (3)
C1—C21.464 (3)C37—H180.98 (3)
C2—C171.396 (3)O1—C381.327 (5)
C2—C31.404 (3)O1—C411.373 (7)
C3—C201.387 (3)C38—C391.462 (7)
C3—C41.454 (3)C38—H38A0.9700
C5—C61.460 (2)C38—H38B0.9700
C6—C211.385 (3)C39—C401.426 (9)
C6—C71.398 (3)C39—H39A0.9700
C7—C241.395 (3)C39—H39B0.9700
C7—C81.469 (3)C40—C411.420 (7)
C9—C101.463 (3)C40—H40A0.9700
C10—C251.392 (3)C40—H40B0.9700
C10—C111.404 (3)C41—H41A0.9700
C11—C281.388 (3)C41—H41B0.9700
C11—C121.462 (3)C42—C431.233 (11)
C13—C141.460 (3)C42—C461.299 (10)
C14—C291.387 (3)C42—H42A0.9700
C14—C151.403 (3)C42—H42B0.9700
C15—C321.391 (3)C43—C441.375 (10)
C15—C161.460 (3)C43—H43A0.9700
C17—C181.381 (4)C43—H43B0.9700
C17—H10.97 (3)C44—C451.465 (10)
C18—C191.394 (4)C44—H44A0.9700
C18—H20.91 (4)C44—H44B0.9700
C19—C201.383 (4)C45—C461.459 (8)
C19—H30.96 (4)C45—H45A0.9700
C20—H40.91 (3)C45—H45B0.9700
C21—C221.387 (3)C46—H46A0.9700
C21—H50.89 (3)C46—H46B0.9700
N3—Zn1—N186.70 (6)C24—C23—H7119.6 (16)
N3—Zn1—N587.94 (6)C22—C23—H7118.5 (16)
N1—Zn1—N5154.77 (6)C23—C24—C7117.3 (2)
N3—Zn1—N7154.46 (6)C23—C24—H8121.3 (14)
N1—Zn1—N787.81 (6)C7—C24—H8121.4 (14)
N5—Zn1—N786.47 (6)C26—C25—C10117.6 (2)
N3—Zn1—N9103.29 (6)C26—C25—H9122.7 (14)
N1—Zn1—N9101.89 (6)C10—C25—H9119.7 (14)
N5—Zn1—N9103.34 (6)C25—C26—C27121.6 (2)
N7—Zn1—N9102.25 (6)C25—C26—H10118.3 (16)
C8—N1—C5108.87 (15)C27—C26—H10120.0 (16)
C8—N1—Zn1125.94 (12)C28—C27—C26121.3 (2)
C5—N1—Zn1124.11 (12)C28—C27—H11118.0 (17)
C8—N2—C9123.22 (16)C26—C27—H11120.6 (17)
C9—N3—C12108.84 (15)C27—C28—C11117.3 (2)
C9—N3—Zn1125.89 (12)C27—C28—H12121.0 (15)
C12—N3—Zn1124.21 (12)C11—C28—H12121.7 (15)
C13—N4—C12123.51 (17)C30—C29—C14117.5 (2)
C16—N5—C13108.84 (15)C30—C29—H13123.3 (17)
C16—N5—Zn1126.52 (13)C14—C29—H13119.1 (17)
C13—N5—Zn1124.00 (12)C29—C30—C31121.3 (2)
C1—N6—C16123.41 (16)C29—C30—H14116 (2)
C1—N7—C4108.83 (15)C31—C30—H14123 (2)
C1—N7—Zn1126.50 (13)C32—C31—C30121.3 (2)
C4—N7—Zn1123.78 (12)C32—C31—H15120.8 (17)
C5—N8—C4123.60 (17)C30—C31—H15117.9 (17)
C37—N9—C33115.70 (17)C31—C32—C15118.0 (2)
C37—N9—Zn1120.61 (13)C31—C32—H16119.6 (17)
C33—N9—Zn1123.66 (13)C15—C32—H16122.3 (17)
C35—N10—H22117.2 (19)N9—C33—C34124.18 (18)
C35—N10—H23117.4 (15)N9—C33—H21116.6 (14)
H22—N10—H23125 (2)C34—C33—H21119.2 (14)
N6—C1—N7127.42 (17)C33—C34—C35119.62 (18)
N6—C1—C2123.53 (17)C33—C34—H20122.9 (16)
N7—C1—C2109.05 (17)C35—C34—H20117.3 (16)
C17—C2—C3121.0 (2)N10—C35—C36121.55 (19)
C17—C2—C1132.6 (2)N10—C35—C34122.46 (18)
C3—C2—C1106.29 (17)C36—C35—C34115.98 (18)
C20—C3—C2121.5 (2)C37—C36—C35120.11 (19)
C20—C3—C4132.3 (2)C37—C36—H19122.1 (19)
C2—C3—C4106.24 (17)C35—C36—H19117.6 (19)
N8—C4—N7127.97 (17)N9—C37—C36124.40 (19)
N8—C4—C3122.50 (17)N9—C37—H18125.0 (19)
N7—C4—C3109.48 (16)C36—C37—H18110.4 (19)
N8—C5—N1128.10 (16)C38—O1—C41107.2 (5)
N8—C5—C6122.56 (17)O1—C38—C39107.2 (5)
N1—C5—C6109.34 (16)O1—C38—H38A110.3
C21—C6—C7121.92 (18)C39—C38—H38A110.3
C21—C6—C5131.59 (19)O1—C38—H38B110.3
C7—C6—C5106.46 (16)C39—C38—H38B110.3
C24—C7—C6120.58 (19)H38A—C38—H38B108.5
C24—C7—C8133.15 (19)C40—C39—C38104.7 (5)
C6—C7—C8106.26 (16)C40—C39—H39A110.8
N2—C8—N1127.30 (16)C38—C39—H39A110.8
N2—C8—C7123.63 (17)C40—C39—H39B110.8
N1—C8—C7109.07 (16)C38—C39—H39B110.8
N2—C9—N3127.47 (16)H39A—C39—H39B108.9
N2—C9—C10123.16 (16)C41—C40—C39105.0 (6)
N3—C9—C10109.37 (16)C41—C40—H40A110.7
C25—C10—C11120.55 (19)C39—C40—H40A110.7
C25—C10—C9133.21 (19)C41—C40—H40B110.7
C11—C10—C9106.23 (16)C39—C40—H40B110.7
C28—C11—C10121.59 (18)H40A—C40—H40B108.8
C28—C11—C12132.15 (19)O1—C41—C40109.1 (6)
C10—C11—C12106.25 (16)O1—C41—H41A109.9
N4—C12—N3128.05 (17)C40—C41—H41A109.9
N4—C12—C11122.64 (17)O1—C41—H41B109.9
N3—C12—C11109.31 (16)C40—C41—H41B109.9
N4—C13—N5128.15 (17)H41A—C41—H41B108.3
N4—C13—C14122.63 (17)C43—C42—C46107.5 (7)
N5—C13—C14109.19 (16)C43—C42—H42A110.2
C29—C14—C15121.36 (19)C46—C42—H42A110.2
C29—C14—C13132.2 (2)C43—C42—H42B110.2
C15—C14—C13106.40 (17)C46—C42—H42B110.2
C32—C15—C14120.5 (2)H42A—C42—H42B108.5
C32—C15—C16133.3 (2)C42—C43—C44116.4 (10)
C14—C15—C16106.11 (17)C42—C43—H43A108.2
N6—C16—N5127.23 (17)C44—C43—H43A108.2
N6—C16—C15123.35 (17)C42—C43—H43B108.2
N5—C16—C15109.41 (17)C44—C43—H43B108.2
C18—C17—C2116.9 (2)H43A—C43—H43B107.3
C18—C17—H1122.3 (15)C43—C44—C45102.3 (7)
C2—C17—H1120.9 (15)C43—C44—H44A111.3
C17—C18—C19121.9 (2)C45—C44—H44A111.3
C17—C18—H2120 (2)C43—C44—H44B111.3
C19—C18—H2118 (2)C45—C44—H44B111.3
C20—C19—C18121.6 (2)H44A—C44—H44B109.2
C20—C19—H3117 (2)C46—C45—C44101.1 (6)
C18—C19—H3121 (2)C46—C45—H45A111.6
C19—C20—C3117.0 (2)C44—C45—H45A111.6
C19—C20—H4123.4 (16)C46—C45—H45B111.6
C3—C20—H4119.5 (16)C44—C45—H45B111.6
C6—C21—C22117.4 (2)H45A—C45—H45B109.4
C6—C21—H5122.0 (18)C42—C46—C45110.9 (7)
C22—C21—H5120.5 (18)C42—C46—H46A109.5
C21—C22—C23120.9 (2)C45—C46—H46A109.5
C21—C22—H6117.3 (17)C42—C46—H46B109.5
C23—C22—H6121.8 (17)C45—C46—H46B109.5
C24—C23—C22122.0 (2)H46A—C46—H46B108.0
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N10—H23···N2i0.83 (3)2.27 (3)3.070 (2)162 (2)
N10—H22···N6ii0.83 (3)2.38 (3)3.210 (3)179 (3)
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x+1, y+1, z.

Experimental details

Crystal data
Chemical formula[Zn(C32H16N8)(C5H6N2)]·2C4H8O
Mr816.22
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)13.5385 (17), 15.0756 (19), 19.224 (3)
β (°) 100.420 (3)
V3)3858.9 (9)
Z4
Radiation typeMo Kα
µ (mm1)0.69
Crystal size (mm)0.72 × 0.70 × 0.20
Data collection
DiffractometerRigaku Saturn 724 CCD area-detector
diffractometer
Absorption correctionNumerical
(NUMABS; Higashi, 2000)
Tmin, Tmax0.636, 0.874
No. of measured, independent and
observed [I > 2σ(I)] reflections
30133, 8842, 8208
Rint0.028
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.121, 1.06
No. of reflections8842
No. of parameters611
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.37, 0.44

Computer programs: CrystalClear (Rigaku, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEX (McArdle, 1995).

Selected geometric parameters (Å, º) top
Zn1—N32.0278 (15)Zn1—N72.0345 (15)
Zn1—N12.0311 (15)Zn1—N92.0917 (16)
Zn1—N52.0335 (15)
N3—Zn1—N186.70 (6)N5—Zn1—N786.47 (6)
N3—Zn1—N587.94 (6)N3—Zn1—N9103.29 (6)
N1—Zn1—N5154.77 (6)N1—Zn1—N9101.89 (6)
N3—Zn1—N7154.46 (6)N5—Zn1—N9103.34 (6)
N1—Zn1—N787.81 (6)N7—Zn1—N9102.25 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N10—H23···N2i0.83 (3)2.27 (3)3.070 (2)162 (2)
N10—H22···N6ii0.83 (3)2.38 (3)3.210 (3)179 (3)
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x+1, y+1, z.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds