Download citation
Download citation
link to html
In the mol­ecule of the title compound, C12H11N3OS, the dihedral angle between the planar rings is 59.4 (2)°. The structure is stabilized by intra­molecular N—H...N and inter­molecular N—H...S hydrogen bonds. Inter­molecular N—H...S hydrogen bonds link the independent mol­ecules into dimers.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536806022604/hk2037sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536806022604/hk2037Isup2.hkl
Contains datablock I

CCDC reference: 613714

Key indicators

  • Single-crystal X-ray study
  • T = 296 K
  • Mean [sigma](C-C) = 0.004 Å
  • R factor = 0.056
  • wR factor = 0.180
  • Data-to-parameter ratio = 17.4

checkCIF/PLATON results

No syntax errors found



Alert level B PLAT230_ALERT_2_B Hirshfeld Test Diff for C10 - C11 .. 10.36 su
Alert level C PLAT230_ALERT_2_C Hirshfeld Test Diff for O1 - C9 .. 6.89 su PLAT241_ALERT_2_C Check High Ueq as Compared to Neighbors for C11
0 ALERT level A = In general: serious problem 1 ALERT level B = Potentially serious problem 2 ALERT level C = Check and explain 0 ALERT level G = General alerts; check 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 3 ALERT type 2 Indicator that the structure model may be wrong or deficient 0 ALERT type 3 Indicator that the structure quality may be low 0 ALERT type 4 Improvement, methodology, query or suggestion

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: CAD-4 Software; data reduction: NRCVAX (Gabe et al., 1989); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL/PC (Sheldrick, 1990); software used to prepare material for publication: WinGX (Farrugia, 1999).

1-(2-Furylmethylene)-4-phenylthiosemicarbazide top
Crystal data top
C12H11N3OSZ = 2
Mr = 245.31F(000) = 256
Triclinic, P1Dx = 1.332 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 5.8810 (12) ÅCell parameters from 25 reflections
b = 9.878 (2) Åθ = 4–14°
c = 11.186 (2) ŵ = 0.25 mm1
α = 71.45 (3)°T = 296 K
β = 83.18 (3)°Block, brown
γ = 88.95 (3)°0.35 × 0.25 × 0.25 mm
V = 611.6 (2) Å3
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.010
Radiation source: fine-focus sealed tubeθmax = 27.0°, θmin = 1.9°
Graphite monochromatorh = 07
ω scansk = 1112
2889 measured reflectionsl = 1314
2675 independent reflections3 standard reflections every 100 reflections
1882 reflections with I > 2σ(I) intensity decay: none
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.056Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.180H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.1127P)2 + 0.1125P]
where P = (Fo2 + 2Fc2)/3
2675 reflections(Δ/σ)max < 0.001
154 parametersΔρmax = 0.40 e Å3
0 restraintsΔρmin = 0.52 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.00860 (11)0.88112 (8)0.36216 (6)0.0568 (3)
O10.9002 (4)1.3198 (3)0.2645 (2)0.0859 (7)
N10.4182 (3)0.9470 (2)0.2383 (2)0.0517 (5)
H1A0.54600.99110.23210.062*
N20.2959 (4)1.0658 (2)0.3766 (2)0.0507 (5)
H2A0.20081.07860.43650.061*
N30.4977 (3)1.1451 (2)0.33697 (19)0.0473 (5)
C10.5891 (5)0.7683 (3)0.1526 (3)0.0586 (7)
H1B0.70640.76050.20320.070*
C20.5921 (5)0.6884 (3)0.0697 (3)0.0658 (8)
H2B0.71170.62670.06520.079*
C30.4183 (5)0.7005 (3)0.0058 (3)0.0600 (7)
H3B0.42150.64720.06110.072*
C40.2400 (5)0.7916 (3)0.0008 (3)0.0613 (7)
H4A0.12260.79900.04970.074*
C50.2351 (4)0.8722 (3)0.0826 (2)0.0523 (6)
H5A0.11580.93440.08640.063*
C60.4102 (4)0.8591 (2)0.1588 (2)0.0450 (5)
C70.2480 (4)0.9684 (2)0.3215 (2)0.0432 (5)
C80.5265 (4)1.2403 (3)0.3894 (2)0.0506 (6)
H8A0.41651.25030.45280.061*
C90.7263 (5)1.3318 (3)0.3514 (2)0.0514 (6)
C100.7627 (5)1.4413 (3)0.3950 (3)0.0606 (7)
H10A0.66821.47060.45450.073*
C110.9788 (8)1.5019 (4)0.3294 (5)0.1004 (15)
H11A1.05101.58070.33790.120*
C121.0581 (6)1.4289 (5)0.2557 (5)0.0998 (14)
H12A1.19831.44620.20480.120*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0451 (4)0.0715 (5)0.0627 (4)0.0175 (3)0.0085 (3)0.0383 (3)
O10.0804 (16)0.0857 (16)0.0912 (17)0.0079 (13)0.0043 (13)0.0321 (13)
N10.0392 (10)0.0621 (13)0.0632 (13)0.0114 (9)0.0033 (9)0.0356 (11)
N20.0465 (11)0.0562 (12)0.0558 (12)0.0114 (9)0.0040 (9)0.0297 (10)
N30.0449 (11)0.0497 (11)0.0517 (11)0.0064 (9)0.0046 (9)0.0224 (9)
C10.0458 (13)0.0696 (17)0.0714 (17)0.0026 (12)0.0100 (12)0.0367 (14)
C20.0588 (17)0.0698 (18)0.080 (2)0.0069 (14)0.0050 (14)0.0408 (16)
C30.0659 (17)0.0668 (17)0.0567 (15)0.0117 (13)0.0023 (12)0.0358 (13)
C40.0588 (16)0.0810 (19)0.0509 (15)0.0058 (14)0.0093 (12)0.0291 (14)
C50.0469 (13)0.0639 (16)0.0506 (13)0.0039 (11)0.0055 (10)0.0250 (12)
C60.0409 (12)0.0486 (13)0.0485 (12)0.0100 (9)0.0030 (9)0.0218 (10)
C70.0432 (12)0.0442 (12)0.0447 (12)0.0016 (9)0.0037 (9)0.0181 (10)
C80.0529 (14)0.0518 (14)0.0527 (14)0.0025 (11)0.0055 (11)0.0243 (11)
C90.0546 (14)0.0513 (14)0.0539 (14)0.0039 (11)0.0121 (11)0.0221 (11)
C100.0736 (18)0.0454 (14)0.0765 (18)0.0006 (12)0.0211 (14)0.0340 (13)
C110.100 (3)0.0519 (18)0.150 (4)0.0202 (18)0.068 (3)0.014 (2)
C120.058 (2)0.081 (2)0.130 (4)0.0138 (18)0.002 (2)0.007 (2)
Geometric parameters (Å, º) top
S1—C71.692 (2)C3—C41.380 (4)
O1—C91.356 (4)C3—H3B0.9300
O1—C121.407 (5)C4—C51.388 (4)
N1—C71.345 (3)C4—H4A0.9300
N1—C61.432 (3)C5—C61.392 (4)
N1—H1A0.8600C5—H5A0.9300
N2—C71.347 (3)C8—C91.433 (4)
N2—N31.381 (3)C8—H8A0.9300
N2—H2A0.8600C9—C101.349 (3)
N3—C81.280 (3)C10—C111.428 (6)
C1—C61.379 (4)C10—H10A0.9300
C1—C21.395 (4)C11—C121.301 (6)
C1—H1B0.9300C11—H11A0.9300
C2—C31.381 (4)C12—H12A0.9300
C2—H2B0.9300
C9—O1—C12104.8 (3)C6—C5—H5A120.3
C7—N1—C6127.21 (19)C1—C6—C5120.7 (2)
C7—N1—H1A116.4C1—C6—N1118.3 (2)
C6—N1—H1A116.4C5—C6—N1120.9 (2)
C7—N2—N3120.0 (2)N1—C7—N2114.9 (2)
C7—N2—H2A120.0N1—C7—S1125.35 (17)
N3—N2—H2A120.0N2—C7—S1119.72 (18)
C8—N3—N2116.5 (2)N3—C8—C9120.8 (2)
C6—C1—C2119.3 (3)N3—C8—H8A119.6
C6—C1—H1B120.4C9—C8—H8A119.6
C2—C1—H1B120.4C10—C9—O1111.9 (3)
C3—C2—C1120.4 (3)C10—C9—C8124.7 (3)
C3—C2—H2B119.8O1—C9—C8123.5 (2)
C1—C2—H2B119.8C9—C10—C11104.6 (3)
C4—C3—C2120.0 (2)C9—C10—H10A127.7
C4—C3—H3B120.0C11—C10—H10A127.7
C2—C3—H3B120.0C12—C11—C10108.9 (3)
C3—C4—C5120.2 (2)C12—C11—H11A125.6
C3—C4—H4A119.9C10—C11—H11A125.6
C5—C4—H4A119.9C11—C12—O1109.9 (3)
C4—C5—C6119.4 (2)C11—C12—H12A125.1
C4—C5—H5A120.3O1—C12—H12A125.1
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···N30.862.192.607 (3)109
N2—H2A···S1i0.862.543.382 (2)166
Symmetry code: (i) x, y+2, z+1.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds