Download citation
Download citation
link to html
The title compound, calcium penta­molybdenum titanium deca­oxide, is isomorphous with the AMo5(Ti0.7Mo0.3)O10 (A = Sr and Eu) compounds. The smaller size of calcium induces a higher molybdenum content on the capping sites of the bioctahedral Mo10 clusters, leading to more Mo11 and Mo12 clusters in the crystal structure. The oxygen framework derives from the stacking of close-packed layers along the a direction in the ...ABAC... sequence. The Ca2+ ions occupy large cavities which result from the fusion of two cubo­octahedra and are surrounded by ten O atoms. The Ti4+ ion is octa­hedrally coordinated by the O atoms.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270108002989/iz3044sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270108002989/iz3044Isup2.hkl
Contains datablock I

Comment top

Among the molybdenum cluster compounds in solid-state chemistry, the AMo5(Ti0.7Mo0.3)O10 (A = Sr and Eu) compounds constitute an interesting family. Indeed, contrary to other reduced molybdenum compounds in which the Mo clusters are well ordered, the AMo5(Ti0.7Mo0.3)O10 compounds present a disordered mixture of bioctahedral Mo10, Mo11 (monocapped Mo10 clusters) and Mo12 clusters (bicapped Mo10 clusters). Another intriguing feature of the latter compounds is the absence of solid solution between the Mo and Ti atoms and thus the quasi-invariance of the Mo:Ti ratio on the capping sites. We present here the crystal structure of the title isomorphous calcium compound, which has an Mo:Ti ratio slightly different to those observed for the Sr and Eu compounds.

As observed for the Sr and Eu compounds, the crystal structure of the title compound is based on a random mixture of Mo10, Mo11 (monocapped Mo10 clusters) and Mo12 (bicapped Mo10 clusters) clusters due to the partial occupation of the capping Mo6 position (Fig. 1). The Mo10 cluster results from the edge-sharing of two octahedral Mo6 clusters and is similar to those previously observed in the R16Mo21O56 (R = La to Nd) compounds (Gall & Gougeon, 1993; Gall et al., 1999). Consequently, atoms Mo1, Mo2, Mo3 and Mo4 are surrounded by five O atoms in a square-pyramidal environment and atoms Mo5 of the shared edge by four O atoms, forming a flattened tetrahedron. The capping atom Mo6 is in a distorted octahedral environment of O atoms, as previously observed for the bicapped Mo6 cluster in NdMo8O14 (Gougeon et al., 1991). The Mo···Mo distances within the clusters range from 2.5927 (4) to 2.8744 (5) Å. The main differences between the present Ca and the Sr/Eu compounds concern the distances between the Mo5 atoms of the shared edge [2.8744 (5) and 2.85 Å in the Ca and Sr/Eu compounds, respectively] and those between the apical atoms Mo4 and Mo5 [2.5927 (4) and 2.6178 Å in the Ca and Sr/Eu compounds, respectively]. These variations are in agreement with previous findings in the infinite chains of edge-shared Mo6 octahedra, which show that the bond distance between the Mo atoms of the shared edge is shorter when the apical–apical interaction is weaker, and longer when the interaction between the apex Mo atoms is stronger (Gall et al., 2002).

From Fig. 2(a), it is also interesting to note that the Mo clusters are arranged in layers perpendicular to the a axis (see below). As the shortest distance between Mo clusters is 3.1475 (4) Å within one layer and greater than 3.65 Å between adjacent layers, the structure can be considered to be two-dimensional with respect to the Mo network, although it is three-dimensional overall. The Mo—O distances range from 1.898 (4) to 2.149 (3) Å, as usually observed in reduced molybdenum oxides. The oxygen framework derives from the stacking of close-packed layers along the a direction in the sequence (···ABAC···). The B (y 1/4) and C (y 3/4) layers are entirely occupied by O atoms and thus have the composition [O24]. In the A layers (y 0.0 and 1/2), one third of the O atoms are missing or substituted by the Ca ions in an ordered way. Consequently, the latter layers can be formulated [O16Ca4□4] where □ stands for the oxygen vacancies. In this close packing, all the tetrahedral interstices are empty, while half of the octahedral interstices are filled by the Mo1, Mo2, Mo3, Mo4 and Mo5 atoms, which then form bioctahedral Mo10 clusters. In addition, one tenth of the octahedral sites are occupied statistically by atoms Mo6 which cap the faces of the bioctahedral Mo10 and by atoms Ti1 (Fig. 2).

The Ca2+ ions occupy large cavities which result from the fusion of two cubo-octahedra. They are surrounded by ten O atoms with six nearest neighbours at distances ranging from 2.354 (2) to 2.657 (3) Å (thick grey lines in Fig. 3) and four second nearest ones at distances between 2.850 (3) and 3.053 (3) Å (thin grey lines in Fig. 3). In the Sr and Eu compounds, the cation-to-oxygen distances range from 2.50 to 3.23 Å with no clear gap.

The Ti atom, which occupies at 62% a position 0.362 (2) Å from that of the capping Mo6 atom, obviously has the same environment in O atoms as the latter atom. It is thus surrounded by six O atoms, forming a highly distorted octahedron. The Ti—O distances vary between 1.848 (4) and 2.178 (4) Å with a mean value of 2.00 Å. The latter value is in good agreement with the distance of 2.005 Å expected from the sum of the ionic radii of O2- and Ti4+ in octahedral coordination, according to Shannon & Prewitt (1969). The oxidation state of +4 for the Ti atoms was also confirmed from the Ti—O bond lengths using the relationship of Brown & Wu (1976) [s = (dTi—O/1.806)-5.2] which leads to a value of +3.8.

The shortest Mo···Ti distance is 2.904 (3) Å and this is identical to those observed in the Eu [2.903 (2) Å] and Sr [2.905 (2) Å] compounds. Such values preclude the existence of metallic Ti—Mo bonds and thus the formation of heteronuclear clusters.

Bond-valence calculations (Reference?) performed on the Mo atoms led to values of 3.16, 3.23, 2.89, 2.73, 2.35 and 4.39 v.u. for atoms Mo1, Mo2, Mo3, Mo4, Mo5 and Mo6, respectively. This yields an average molybdenum oxidation state of +2.98 leading to about 34 electrons which are delocalized over the cluster. As expected, the oxidation state of the capping Mo6 atom is higher than those of the other Mo atoms. This is principally because atom Mo6 has the lowest coordination by other Mo atoms and therefore the fewest electrons available for metal-to-metal bonding.

Related literature top

For related literature, see: Brown & Wu (1976); Gall & Gougeon (1993); Gall et al. (1999, 2002); Gougeon et al. (1991); Shannon & Prewitt (1969).

Experimental top

Single crystals of CaMo5(Mo0.38Ti0.62)O10 were obtained by the reaction of TiO2, MoO3, CaMoO4 and Mo with the nominal composition CaMo6Ti2O15. CaMoO4 was prepared by heating a stoichiometric mixture of CaCO3 and MoO3 in an open porcelain crucible at 1073 K for 24 h. Mo powder was heated under a flow of H2 at 1273 K for 6 h prior to use. The initial mixture (ca 5 g) was cold pressed and loaded into a molybdenum crucible, which was sealed under low argon pressure using an arc welding system. The charge was heated at the rate of 300 K h-1 up to 1673 K and this temperature was held for 48 h. The vessel was then cooled at 100 K h-1 down to 1373 K and finally furnace cooled. Subsequently, single-phase powders were obtained for compositons CaMo5(Mo1 - xTix)O10 with x ranging from 0.55 to 0.65.

Refinement top

The final refinement cycles included the atomic coordinates, the anisotropic displacement parameters for all atoms, and site-occupancy factors for the Mo6 and Ti1 sites, the sum of which was constrained to the unity. Refinement of the occupancy factors of the O atoms did not reveal defects in oxygen. Because of the disordering of the Mo6 and Ti1 atoms, a reciprocal-space reconstruction of different planes was carried out, as well as long-exposure rotations along the three axes on a single-crystal on the KappaCCD diffractometer. In both cases, no superlattice reflections or diffuse lines were observed.

Computing details top

Data collection: COLLECT (Nonius, 1998); cell refinement: COLLECT (Nonius, 1998); data reduction: EVALCCD (Duisenberg, 1998); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2001); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The Mo–O cluster unit in CaMo5(Mo0.38Ti0.62)O10. The Mo atoms in black which fully occupy their site form the bioctahedral Mo10 cluster. The Mo atoms in light grey which cap the Mo10 cluster have an occupancy factor of 0.382 (3). Displacement ellipsoids are drawn at the 90% probability level.
[Figure 2] Fig. 2. (a) A view of CaMo5(Mo0.38Ti0.62)O10 along the b axis. Displacement ellipsoids are drawn at the 90% probability level. (b) A view of CaMo5(Mo0.38Ti0.62)O10 along the a axis. Displacement ellipsoids are drawn at the 90% probability level.
[Figure 3] Fig. 3. The environment of the Ca atoms (see Comment). [Symmetry codes: (i) ?; (ii) ?; (iii) ?; (iv) ?; (v) ?; (ix) ?. Please complete]
calcium pentamolybdenum titanium decaoxide top
Crystal data top
CaMo5(Mo0.38Ti0.62)O10Dx = 6.402 Mg m3
Mr = 746.06Mo Kα radiation, λ = 0.71069 Å
Orthorhombic, PbcaCell parameters from 19561 reflections
a = 8.9779 (1) Åθ = 3.5–37.0°
b = 11.4442 (2) ŵ = 9.77 mm1
c = 15.0673 (3) ÅT = 293 K
V = 1548.09 (4) Å3Irregular block, black
Z = 80.06 × 0.05 × 0.05 mm
F(000) = 2717
Data collection top
Nonius KappaCCD
diffractometer
4205 independent reflections
Radiation source: fine-focus sealed tube2960 reflections with I > 2σ(I)
Horizontally mounted graphite crystal monochromatorRint = 0.072
Detector resolution: 9 pixels mm-1θmax = 38.0°, θmin = 3.5°
ϕ scans (κ = 0) + additional ω scanh = 1515
Absorption correction: analytical
(de Meulenaer & Tompa, 1965)
k = 1912
Tmin = 0.642, Tmax = 0.698l = 2626
43304 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035 w = 1/[σ2(Fo2) + (0.0142P)2 + 4.7006P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.057(Δ/σ)max = 0.001
S = 1.09Δρmax = 1.75 e Å3
4205 reflectionsΔρmin = 1.90 e Å3
166 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
1 restraintExtinction coefficient: 0.00028 (2)
Crystal data top
CaMo5(Mo0.38Ti0.62)O10V = 1548.09 (4) Å3
Mr = 746.06Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 8.9779 (1) ŵ = 9.77 mm1
b = 11.4442 (2) ÅT = 293 K
c = 15.0673 (3) Å0.06 × 0.05 × 0.05 mm
Data collection top
Nonius KappaCCD
diffractometer
4205 independent reflections
Absorption correction: analytical
(de Meulenaer & Tompa, 1965)
2960 reflections with I > 2σ(I)
Tmin = 0.642, Tmax = 0.698Rint = 0.072
43304 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.035166 parameters
wR(F2) = 0.0571 restraint
S = 1.09Δρmax = 1.75 e Å3
4205 reflectionsΔρmin = 1.90 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ca10.00932 (9)0.10100 (7)0.60112 (5)0.01410 (14)
Mo10.38545 (3)0.05299 (3)0.311983 (19)0.00663 (5)
Mo20.37595 (3)0.17575 (3)0.635100 (18)0.00617 (5)
Mo30.37327 (3)0.17091 (2)0.473653 (18)0.00459 (5)
Mo40.36526 (3)0.06436 (2)0.625439 (18)0.00467 (5)
Mo50.37084 (3)0.06451 (2)0.472172 (18)0.00387 (5)
Mo60.6139 (2)0.29361 (17)0.69618 (15)0.0042 (3)0.382 (3)
Ti10.3649 (3)0.1813 (2)0.79648 (19)0.0047 (3)0.618 (3)
O10.5101 (3)0.4294 (2)0.75624 (16)0.0067 (4)
O20.4930 (3)0.1762 (2)0.74845 (19)0.0151 (6)
O30.7493 (3)0.1819 (2)0.64105 (17)0.0083 (5)
O40.2299 (3)0.0579 (2)0.68723 (16)0.0071 (4)
O50.2547 (3)0.1954 (2)0.69348 (16)0.0071 (4)
O60.2383 (3)0.1881 (2)0.53083 (17)0.0066 (4)
O70.2146 (3)0.0540 (2)0.51961 (16)0.0066 (4)
O80.5057 (3)0.1949 (2)0.58162 (16)0.0068 (4)
O90.2381 (3)0.0637 (2)0.35977 (16)0.0078 (5)
O100.4931 (3)0.3028 (2)0.41274 (18)0.0107 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ca10.0145 (3)0.0135 (3)0.0142 (3)0.0020 (3)0.0013 (3)0.0010 (3)
Mo10.00432 (11)0.01140 (12)0.00417 (11)0.00049 (10)0.00020 (9)0.00196 (10)
Mo20.00523 (11)0.00835 (12)0.00494 (11)0.00277 (10)0.00161 (9)0.00203 (9)
Mo30.00431 (11)0.00396 (11)0.00550 (11)0.00046 (10)0.00017 (9)0.00056 (8)
Mo40.00408 (11)0.00577 (12)0.00415 (11)0.00025 (9)0.00040 (9)0.00011 (8)
Mo50.00364 (11)0.00433 (12)0.00365 (10)0.00008 (9)0.00021 (8)0.00029 (8)
Mo60.0047 (6)0.0040 (7)0.0040 (5)0.0007 (4)0.0010 (4)0.0008 (5)
Ti10.0060 (8)0.0043 (9)0.0037 (6)0.0003 (6)0.0013 (5)0.0006 (6)
O10.0078 (10)0.0083 (12)0.0040 (10)0.0025 (9)0.0010 (8)0.0001 (8)
O20.0134 (12)0.0093 (13)0.0225 (15)0.0047 (11)0.0117 (10)0.0071 (11)
O30.0093 (11)0.0067 (12)0.0089 (11)0.0004 (9)0.0038 (9)0.0005 (8)
O40.0072 (10)0.0071 (11)0.0071 (11)0.0003 (8)0.0029 (8)0.0005 (9)
O50.0073 (9)0.0094 (10)0.0047 (10)0.0032 (8)0.0010 (8)0.0014 (9)
O60.0067 (10)0.0072 (11)0.0059 (10)0.0024 (8)0.0011 (8)0.0012 (8)
O70.0054 (10)0.0071 (10)0.0072 (11)0.0016 (9)0.0006 (8)0.0005 (9)
O80.0071 (10)0.0065 (10)0.0067 (10)0.0010 (8)0.0010 (8)0.0005 (8)
O90.0081 (10)0.0077 (12)0.0074 (11)0.0015 (8)0.0022 (8)0.0017 (8)
O100.0053 (10)0.0092 (11)0.0176 (14)0.0022 (9)0.0011 (9)0.0070 (10)
Geometric parameters (Å, º) top
Ca1—O8i2.354 (2)Mo4—Mo6xii3.147 (2)
Ca1—O2ii2.425 (3)Mo5—O8viii2.028 (2)
Ca1—O3iii2.432 (3)Mo5—O62.049 (2)
Ca1—O42.557 (3)Mo5—O92.071 (2)
Ca1—O7iv2.645 (2)Mo5—O72.078 (2)
Ca1—O62.657 (3)Mo5—Mo3viii2.7252 (4)
Ca1—O9iv2.850 (3)Mo5—Mo4viii2.7886 (4)
Ca1—O72.948 (3)Mo5—Mo5viii2.8744 (5)
Ca1—O10i3.048 (3)Mo6—Ti1xi0.362 (2)
Ca1—O1v3.053 (3)Mo6—O21.898 (4)
Ca1—Mo1vi3.4107 (9)Mo6—O10viii1.905 (3)
Ca1—Mo3i3.4632 (9)Mo6—O31.950 (3)
Mo1—O1vii1.989 (2)Mo6—O12.026 (3)
Mo1—O2viii2.002 (3)Mo6—O5xi2.042 (3)
Mo1—O92.013 (2)Mo6—O9xiii2.149 (3)
Mo1—O3viii2.034 (2)Mo6—Mo1viii2.7564 (19)
Mo1—O4ix2.147 (2)Mo6—Mo3viii2.921 (2)
Mo1—Mo2viii2.6829 (4)Mo6—Mo4xi3.147 (2)
Mo1—Mo6viii2.7564 (19)Ti1—Mo6xii0.362 (2)
Mo1—Mo52.7660 (4)Ti1—O51.848 (4)
Mo1—Mo4viii2.7752 (4)Ti1—O1xii1.870 (4)
Mo1—Mo32.7869 (4)Ti1—O9vi1.891 (4)
Mo1—Ti1x3.056 (2)Ti1—O3xii2.095 (4)
Mo1—Ca1ix3.4107 (9)Ti1—O10xiv2.104 (4)
Mo2—O62.004 (2)Ti1—O2xii2.178 (4)
Mo2—O10viii2.004 (3)Ti1—Mo2xii3.025 (2)
Mo2—O22.005 (3)Ti1—Mo1xiv3.056 (2)
Mo2—O42.038 (2)Ti1—Mo3xiv3.161 (2)
Mo2—O5i2.079 (2)Ti1—Ca1xv3.754 (3)
Mo2—Mo1viii2.6829 (4)O1—Ti1xi1.870 (4)
Mo2—Mo62.6891 (18)O1—Mo1xvi1.989 (2)
Mo2—Mo42.7534 (4)O1—Mo4xi2.106 (2)
Mo2—Mo52.7657 (4)O1—Ca1i3.053 (3)
Mo2—Mo3viii2.7852 (4)O2—Mo1viii2.002 (3)
Mo2—Ti1xi3.025 (2)O2—Ti1xi2.178 (4)
Mo3—O82.034 (2)O2—Ca1xv2.425 (3)
Mo3—O3viii2.053 (2)O3—Mo1viii2.034 (2)
Mo3—O102.068 (2)O3—Mo3viii2.053 (2)
Mo3—O72.074 (2)O3—Ti1xi2.095 (4)
Mo3—O6v2.086 (2)O3—Ca1xvii2.432 (3)
Mo3—Mo42.5927 (4)O4—Mo1vi2.147 (2)
Mo3—Mo52.6944 (4)O5—Mo6xii2.042 (3)
Mo3—Mo5viii2.7252 (4)O5—Mo2v2.079 (2)
Mo3—Mo2viii2.7852 (4)O6—Mo3i2.086 (2)
Mo3—Mo6viii2.921 (2)O7—Ca1iv2.645 (2)
Mo3—Ti1x3.161 (2)O8—Mo5viii2.028 (2)
Mo4—O82.063 (2)O8—Ca1v2.354 (2)
Mo4—O52.070 (2)O9—Ti1ix1.891 (4)
Mo4—O42.074 (2)O9—Mo6xviii2.149 (3)
Mo4—O72.095 (2)O9—Ca1iv2.850 (3)
Mo4—O1xii2.106 (2)O10—Mo6viii1.905 (3)
Mo4—Mo52.7406 (4)O10—Mo2viii2.004 (3)
Mo4—Mo1viii2.7752 (4)O10—Ti1x2.104 (4)
Mo4—Mo5viii2.7886 (4)O10—Ca1v3.048 (3)
Mo4—Ti12.904 (3)
O8i—Ca1—O2ii76.36 (9)O5—Mo4—Mo1viii124.68 (7)
O8i—Ca1—O3iii70.48 (8)O4—Mo4—Mo1viii89.62 (7)
O2ii—Ca1—O3iii68.98 (9)O7—Mo4—Mo1viii138.77 (7)
O8i—Ca1—O4104.06 (9)O1xii—Mo4—Mo1viii45.59 (6)
O2ii—Ca1—O465.61 (9)Mo3—Mo4—Mo1viii120.324 (13)
O3iii—Ca1—O4134.13 (9)Mo5—Mo4—Mo1viii90.637 (11)
O8i—Ca1—O7iv97.23 (9)Mo2—Mo4—Mo1viii58.060 (10)
O2ii—Ca1—O7iv136.16 (9)O8—Mo4—Mo5viii46.50 (7)
O3iii—Ca1—O7iv68.08 (8)O5—Mo4—Mo5viii131.92 (7)
O4—Ca1—O7iv153.49 (8)O4—Mo4—Mo5viii137.30 (7)
O8i—Ca1—O664.31 (8)O7—Mo4—Mo5viii98.47 (6)
O2ii—Ca1—O6103.43 (9)O1xii—Mo4—Mo5viii89.70 (7)
O3iii—Ca1—O6134.56 (8)Mo3—Mo4—Mo5viii60.720 (10)
O4—Ca1—O664.64 (8)Mo5—Mo4—Mo5viii62.639 (11)
O7iv—Ca1—O6112.66 (8)Mo2—Mo4—Mo5viii89.936 (11)
O8i—Ca1—O9iv133.80 (8)Mo1viii—Mo4—Mo5viii59.622 (10)
O2ii—Ca1—O9iv92.74 (8)O8—Mo4—Ti187.19 (8)
O3iii—Ca1—O9iv63.78 (8)O5—Mo4—Ti139.30 (9)
O4—Ca1—O9iv111.90 (8)O4—Mo4—Ti184.95 (8)
O7iv—Ca1—O9iv60.35 (7)O7—Mo4—Ti1134.52 (9)
O6—Ca1—O9iv159.04 (8)O1xii—Mo4—Ti139.98 (8)
O8i—Ca1—O7122.36 (8)Mo3—Mo4—Ti1124.48 (5)
O2ii—Ca1—O7126.66 (8)Mo5—Mo4—Ti1174.78 (6)
O3iii—Ca1—O7159.94 (8)Mo2—Mo4—Ti1114.39 (5)
O4—Ca1—O761.50 (7)Mo1viii—Mo4—Ti185.54 (6)
O7iv—Ca1—O793.78 (7)Mo5viii—Mo4—Ti1117.94 (5)
O6—Ca1—O759.28 (7)O8—Mo4—Mo6xii82.13 (8)
O9iv—Ca1—O7100.35 (7)O5—Mo4—Mo6xii39.76 (8)
O8i—Ca1—O10i61.63 (8)O4—Mo4—Mo6xii89.99 (8)
O2ii—Ca1—O10i137.89 (8)O7—Mo4—Mo6xii135.89 (8)
O3iii—Ca1—O10i97.79 (8)O1xii—Mo4—Mo6xii39.47 (8)
O4—Ca1—O10i120.13 (7)Mo3—Mo4—Mo6xii120.59 (4)
O7iv—Ca1—O10i57.74 (7)Mo5—Mo4—Mo6xii175.34 (4)
O6—Ca1—O10i56.85 (7)Mo2—Mo4—Mo6xii117.92 (4)
O9iv—Ca1—O10i117.77 (7)Mo1viii—Mo4—Mo6xii84.95 (4)
O7—Ca1—O10i78.27 (7)Mo5viii—Mo4—Mo6xii113.56 (4)
O8i—Ca1—O1v137.20 (8)Ti1—Mo4—Mo6xii5.08 (7)
O2ii—Ca1—O1v60.84 (7)O8viii—Mo5—O688.97 (10)
O3iii—Ca1—O1v93.06 (8)O8viii—Mo5—O989.47 (10)
O4—Ca1—O1v59.29 (7)O6—Mo5—O991.24 (10)
O7iv—Ca1—O1v113.21 (7)O8viii—Mo5—O7170.65 (9)
O6—Ca1—O1v123.26 (8)O6—Mo5—O784.83 (10)
O9iv—Ca1—O1v54.16 (7)O9—Mo5—O783.69 (10)
O7—Ca1—O1v86.19 (7)O8viii—Mo5—Mo3137.28 (7)
O10i—Ca1—O1v160.98 (7)O6—Mo5—Mo3133.74 (7)
O1vii—Mo1—O2viii90.14 (11)O9—Mo5—Mo390.41 (7)
O1vii—Mo1—O992.79 (10)O7—Mo5—Mo349.47 (7)
O2viii—Mo1—O9171.18 (10)O8viii—Mo5—Mo3viii47.94 (7)
O1vii—Mo1—O3viii175.29 (10)O6—Mo5—Mo3viii92.98 (7)
O2viii—Mo1—O3viii88.36 (11)O9—Mo5—Mo3viii137.05 (7)
O9—Mo1—O3viii88.06 (10)O7—Mo5—Mo3viii139.26 (7)
O1vii—Mo1—O4ix85.43 (10)Mo3—Mo5—Mo3viii115.941 (12)
O2viii—Mo1—O4ix81.16 (10)O8viii—Mo5—Mo4137.97 (7)
O9—Mo1—O4ix90.78 (9)O6—Mo5—Mo489.85 (7)
O3viii—Mo1—O4ix89.92 (9)O9—Mo5—Mo4132.56 (7)
O1vii—Mo1—Mo2viii92.79 (7)O7—Mo5—Mo449.21 (7)
O2viii—Mo1—Mo2viii48.02 (8)Mo3—Mo5—Mo456.978 (9)
O9—Mo1—Mo2viii139.98 (7)Mo3viii—Mo5—Mo490.198 (11)
O3viii—Mo1—Mo2viii89.52 (7)O8viii—Mo5—Mo290.40 (7)
O4ix—Mo1—Mo2viii129.17 (6)O6—Mo5—Mo246.29 (7)
O1vii—Mo1—Mo6viii133.65 (8)O9—Mo5—Mo2137.52 (7)
O2viii—Mo1—Mo6viii43.52 (10)O7—Mo5—Mo290.36 (7)
O9—Mo1—Mo6viii132.86 (8)Mo3—Mo5—Mo2116.921 (13)
O3viii—Mo1—Mo6viii44.96 (8)Mo3viii—Mo5—Mo260.954 (10)
O4ix—Mo1—Mo6viii86.31 (8)Mo4—Mo5—Mo260.005 (10)
Mo2viii—Mo1—Mo6viii59.24 (4)O8viii—Mo5—Mo189.03 (7)
O1vii—Mo1—Mo592.84 (7)O6—Mo5—Mo1137.70 (7)
O2viii—Mo1—Mo5139.92 (8)O9—Mo5—Mo146.49 (7)
O9—Mo1—Mo548.25 (7)O7—Mo5—Mo190.86 (7)
O3viii—Mo1—Mo591.19 (7)Mo3—Mo5—Mo161.361 (10)
O4ix—Mo1—Mo5138.92 (6)Mo3viii—Mo5—Mo1116.014 (12)
Mo2viii—Mo1—Mo591.898 (12)Mo4—Mo5—Mo1118.327 (12)
Mo6viii—Mo1—Mo5121.65 (5)Mo2—Mo5—Mo1175.950 (14)
O1vii—Mo1—Mo4viii49.15 (7)O8viii—Mo5—Mo4viii47.56 (7)
O2viii—Mo1—Mo4viii93.21 (8)O6—Mo5—Mo4viii136.17 (7)
O9—Mo1—Mo4viii95.00 (7)O9—Mo5—Mo4viii93.30 (7)
O3viii—Mo1—Mo4viii135.41 (7)O7—Mo5—Mo4viii139.00 (7)
O4ix—Mo1—Mo4viii134.37 (7)Mo3—Mo5—Mo4viii89.819 (12)
Mo2viii—Mo1—Mo4viii60.563 (10)Mo3viii—Mo5—Mo4viii56.084 (10)
Mo6viii—Mo1—Mo4viii119.80 (4)Mo4—Mo5—Mo4viii117.361 (11)
Mo5—Mo1—Mo4viii60.431 (10)Mo2—Mo5—Mo4viii117.021 (12)
O1vii—Mo1—Mo3137.34 (7)Mo1—Mo5—Mo4viii59.947 (10)
O2viii—Mo1—Mo394.46 (8)O8viii—Mo5—Mo5viii93.07 (7)
O9—Mo1—Mo389.02 (7)O6—Mo5—Mo5viii134.22 (7)
O3viii—Mo1—Mo347.28 (7)O9—Mo5—Mo5viii134.48 (7)
O4ix—Mo1—Mo3137.19 (7)O7—Mo5—Mo5viii96.27 (7)
Mo2viii—Mo1—Mo361.184 (10)Mo3—Mo5—Mo5viii58.491 (11)
Mo6viii—Mo1—Mo363.60 (5)Mo3viii—Mo5—Mo5viii57.450 (11)
Mo5—Mo1—Mo358.052 (10)Mo4—Mo5—Mo5viii59.499 (11)
Mo4viii—Mo1—Mo388.223 (11)Mo2—Mo5—Mo5viii87.943 (13)
O1vii—Mo1—Ti1x135.17 (9)Mo1—Mo5—Mo5viii88.084 (13)
O2viii—Mo1—Ti1x45.33 (10)Mo4viii—Mo5—Mo5viii57.862 (11)
O9—Mo1—Ti1x130.41 (9)O2—Mo6—O10viii96.21 (14)
O3viii—Mo1—Ti1x43.05 (9)O2—Mo6—O393.96 (13)
O4ix—Mo1—Ti1x82.98 (8)O10viii—Mo6—O389.06 (13)
Mo2viii—Mo1—Ti1x63.24 (5)O2—Mo6—O195.40 (14)
Mo6viii—Mo1—Ti1x4.01 (8)O10viii—Mo6—O196.32 (14)
Mo5—Mo1—Ti1x123.21 (6)O3—Mo6—O1168.63 (14)
Mo4viii—Mo1—Ti1x123.79 (5)O2—Mo6—O5xi92.07 (14)
Mo3—Mo1—Ti1x65.33 (6)O10viii—Mo6—O5xi171.64 (16)
O1vii—Mo1—Ca1ix62.47 (7)O3—Mo6—O5xi91.56 (13)
O2viii—Mo1—Ca1ix44.38 (8)O1—Mo6—O5xi81.67 (12)
O9—Mo1—Ca1ix130.87 (7)O2—Mo6—O9xiii175.54 (16)
O3viii—Mo1—Ca1ix113.65 (7)O10viii—Mo6—O9xiii83.21 (14)
O4ix—Mo1—Ca1ix48.51 (7)O3—Mo6—O9xiii90.45 (13)
Mo2viii—Mo1—Ca1ix86.108 (16)O1—Mo6—O9xiii80.29 (11)
Mo6viii—Mo1—Ca1ix78.28 (5)O5xi—Mo6—O9xiii88.45 (12)
Mo5—Mo1—Ca1ix155.042 (18)O2—Mo6—Mo248.13 (9)
Mo4viii—Mo1—Ca1ix97.556 (17)O10viii—Mo6—Mo248.09 (9)
Mo3—Mo1—Ca1ix138.503 (18)O3—Mo6—Mo291.16 (9)
Ti1x—Mo1—Ca1ix77.76 (6)O1—Mo6—Mo299.90 (11)
O6—Mo2—O10viii91.64 (10)O5xi—Mo6—Mo2140.20 (12)
O6—Mo2—O2172.20 (10)O9xiii—Mo6—Mo2131.22 (12)
O10viii—Mo2—O289.82 (11)O2—Mo6—Mo1viii46.59 (9)
O6—Mo2—O487.26 (10)O10viii—Mo6—Mo1viii91.03 (10)
O10viii—Mo2—O4174.89 (9)O3—Mo6—Mo1viii47.50 (8)
O2—Mo2—O490.62 (11)O1—Mo6—Mo1viii141.93 (12)
O6—Mo2—O5i86.21 (10)O5xi—Mo6—Mo1viii95.54 (11)
O10viii—Mo2—O5i88.20 (10)O9xiii—Mo6—Mo1viii137.76 (11)
O2—Mo2—O5i86.18 (10)Mo2—Mo6—Mo1viii59.02 (4)
O4—Mo2—O5i86.75 (10)O2—Mo6—Mo3viii92.62 (10)
O6—Mo2—Mo1viii139.67 (7)O10viii—Mo6—Mo3viii44.90 (8)
O10viii—Mo2—Mo1viii91.06 (7)O3—Mo6—Mo3viii44.52 (8)
O2—Mo2—Mo1viii47.93 (8)O1—Mo6—Mo3viii141.09 (12)
O4—Mo2—Mo1viii93.01 (7)O5xi—Mo6—Mo3viii136.05 (11)
O5i—Mo2—Mo1viii134.10 (7)O9xiii—Mo6—Mo3viii90.07 (10)
O6—Mo2—Mo6136.30 (8)Mo2—Mo6—Mo3viii59.36 (4)
O10viii—Mo2—Mo645.01 (9)Mo1viii—Mo6—Mo3viii58.71 (4)
O2—Mo2—Mo644.82 (10)O2—Mo6—Mo4xi92.58 (11)
O4—Mo2—Mo6135.32 (9)O10viii—Mo6—Mo4xi137.50 (12)
O5i—Mo2—Mo687.00 (8)O3—Mo6—Mo4xi131.74 (11)
Mo1viii—Mo2—Mo661.74 (5)O1—Mo6—Mo4xi41.36 (8)
O6—Mo2—Mo490.42 (7)O5xi—Mo6—Mo4xi40.41 (7)
O10viii—Mo2—Mo4136.52 (7)O9xiii—Mo6—Mo4xi84.94 (8)
O2—Mo2—Mo493.79 (7)Mo2—Mo6—Mo4xi126.77 (8)
O4—Mo2—Mo448.52 (7)Mo1viii—Mo6—Mo4xi123.64 (8)
O5i—Mo2—Mo4135.27 (7)Mo3viii—Mo6—Mo4xi173.86 (8)
Mo1viii—Mo2—Mo461.377 (10)O5—Ti1—O1xii91.38 (15)
Mo6—Mo2—Mo4123.12 (5)Mo6xii—Ti1—O9vi131.9 (9)
O6—Mo2—Mo547.65 (7)O5—Ti1—O9vi102.92 (15)
O10viii—Mo2—Mo591.40 (7)O1xii—Ti1—O9vi91.49 (15)
O2—Mo2—Mo5139.99 (8)O5—Ti1—O3xii92.85 (15)
O4—Mo2—Mo591.54 (7)O1xii—Ti1—O3xii172.35 (16)
O5i—Mo2—Mo5133.83 (7)O9vi—Ti1—O3xii93.77 (16)
Mo1viii—Mo2—Mo592.064 (12)O5—Ti1—O10xiv169.99 (17)
Mo6—Mo2—Mo5123.22 (5)O1xii—Ti1—O10xiv94.82 (15)
Mo4—Mo2—Mo559.545 (10)O9vi—Ti1—O10xiv84.79 (16)
O6—Mo2—Mo3viii92.22 (7)O3xii—Ti1—O10xiv80.15 (13)
O10viii—Mo2—Mo3viii47.83 (7)O5—Ti1—O2xii89.26 (16)
O2—Mo2—Mo3viii94.44 (9)O1xii—Ti1—O2xii91.36 (15)
O4—Mo2—Mo3viii137.18 (7)O9vi—Ti1—O2xii167.41 (18)
O5i—Mo2—Mo3viii135.97 (7)O3xii—Ti1—O2xii82.33 (13)
Mo1viii—Mo2—Mo3viii61.249 (10)O10xiv—Ti1—O2xii82.76 (12)
Mo6—Mo2—Mo3viii64.47 (5)O5—Ti1—Mo445.21 (9)
Mo4—Mo2—Mo3viii88.694 (12)O1xii—Ti1—Mo446.38 (9)
Mo5—Mo2—Mo3viii58.804 (10)O9vi—Ti1—Mo496.91 (11)
O6—Mo2—Ti1xi134.69 (9)O3xii—Ti1—Mo4138.04 (14)
O10viii—Mo2—Ti1xi43.87 (9)O10xiv—Ti1—Mo4141.11 (14)
O2—Mo2—Ti1xi45.99 (10)O2xii—Ti1—Mo493.93 (12)
O4—Mo2—Ti1xi136.15 (9)O5—Ti1—Mo2xii130.61 (14)
O5i—Mo2—Ti1xi84.61 (9)O1xii—Ti1—Mo2xii92.85 (12)
Mo1viii—Mo2—Ti1xi64.40 (5)O9vi—Ti1—Mo2xii126.10 (14)
Mo6—Mo2—Ti1xi2.69 (9)O3xii—Ti1—Mo2xii79.57 (9)
Mo4—Mo2—Ti1xi125.77 (5)O10xiv—Ti1—Mo2xii41.32 (8)
Mo5—Mo2—Ti1xi124.35 (6)O2xii—Ti1—Mo2xii41.47 (8)
Mo3viii—Mo2—Ti1xi65.77 (5)Mo4—Ti1—Mo2xii123.43 (10)
O6—Mo2—Ca146.58 (7)O5—Ti1—Mo1xiv90.54 (12)
O10viii—Mo2—Ca1133.23 (7)O1xii—Ti1—Mo1xiv132.12 (14)
O2—Mo2—Ca1128.71 (9)O9vi—Ti1—Mo1xiv134.34 (14)
O4—Mo2—Ca143.91 (7)O3xii—Ti1—Mo1xiv41.51 (8)
O5i—Mo2—Ca171.74 (7)O10xiv—Ti1—Mo1xiv79.48 (9)
Mo1viii—Mo2—Ca1133.238 (17)O2xii—Ti1—Mo1xiv40.83 (8)
Mo6—Mo2—Ca1158.64 (5)Mo4—Ti1—Mo1xiv121.77 (10)
Mo4—Mo2—Ca173.849 (16)Mo2xii—Ti1—Mo1xiv52.36 (3)
Mo5—Mo2—Ca175.430 (16)O5—Ti1—Mo3xiv132.46 (14)
Mo3viii—Mo2—Ca1133.499 (17)O1xii—Ti1—Mo3xiv135.00 (14)
Ti1xi—Mo2—Ca1156.33 (5)O9vi—Ti1—Mo3xiv88.07 (12)
O8—Mo3—O3viii168.16 (9)O3xii—Ti1—Mo3xiv39.85 (8)
O8—Mo3—O1087.27 (10)O10xiv—Ti1—Mo3xiv40.32 (8)
O3viii—Mo3—O1081.99 (10)O2xii—Ti1—Mo3xiv81.26 (10)
O8—Mo3—O7102.81 (10)Mo4—Ti1—Mo3xiv174.88 (10)
O3viii—Mo3—O787.26 (9)Mo2xii—Ti1—Mo3xiv53.46 (4)
O10—Mo3—O7167.54 (10)Mo1xiv—Ti1—Mo3xiv53.23 (4)
O8—Mo3—O6v81.13 (10)O5—Ti1—Ca1xv125.57 (12)
O3viii—Mo3—O6v92.47 (9)O1xii—Ti1—Ca1xv53.91 (10)
O10—Mo3—O6v82.43 (10)O9vi—Ti1—Ca1xv47.75 (10)
O7—Mo3—O6v91.80 (9)O3xii—Ti1—Ca1xv127.29 (13)
O8—Mo3—Mo451.25 (7)O10xiv—Ti1—Ca1xv64.38 (10)
O3viii—Mo3—Mo4139.16 (7)O2xii—Ti1—Ca1xv126.58 (12)
O10—Mo3—Mo4138.51 (7)Mo4—Ti1—Ca1xv88.16 (6)
O7—Mo3—Mo451.90 (7)Mo2xii—Ti1—Ca1xv95.40 (7)
O6v—Mo3—Mo489.21 (7)Mo1xiv—Ti1—Ca1xv143.80 (8)
O8—Mo3—Mo598.42 (7)Mo3xiv—Ti1—Ca1xv96.10 (7)
O3viii—Mo3—Mo592.85 (7)Ti1xi—O1—Mo1xvi177.10 (16)
O10—Mo3—Mo5136.92 (7)Mo1xvi—O1—Mo6173.18 (15)
O7—Mo3—Mo549.60 (7)Ti1xi—O1—Mo4xi93.64 (13)
O6v—Mo3—Mo5140.64 (7)Mo1xvi—O1—Mo4xi85.26 (9)
Mo4—Mo3—Mo562.408 (11)Mo6—O1—Mo4xi99.17 (12)
O8—Mo3—Mo5viii47.77 (7)Ti1xi—O1—Ca1i96.43 (13)
O3viii—Mo3—Mo5viii137.00 (7)Mo1xvi—O1—Ca1i82.23 (8)
O10—Mo3—Mo5viii91.18 (7)Mo6—O1—Ca1i98.77 (11)
O7—Mo3—Mo5viii101.00 (7)Mo4xi—O1—Ca1i128.86 (10)
O6v—Mo3—Mo5viii128.82 (7)Mo6—O2—Mo1viii89.89 (14)
Mo4—Mo3—Mo5viii63.196 (10)Mo6—O2—Mo287.04 (13)
Mo5—Mo3—Mo5viii64.059 (12)Mo1viii—O2—Mo284.05 (10)
O8—Mo3—Mo2viii89.74 (7)Mo1viii—O2—Ti1xi93.84 (14)
O3viii—Mo3—Mo2viii86.37 (7)Mo2—O2—Ti1xi92.54 (14)
O10—Mo3—Mo2viii45.90 (7)Mo6—O2—Ca1xv130.10 (14)
O7—Mo3—Mo2viii139.88 (7)Mo1viii—O2—Ca1xv100.35 (11)
O6v—Mo3—Mo2viii128.02 (7)Mo2—O2—Ca1xv142.24 (14)
Mo4—Mo3—Mo2viii123.419 (13)Ti1xi—O2—Ca1xv124.16 (13)
Mo5—Mo3—Mo2viii91.237 (12)Mo6—O3—Mo1viii87.53 (11)
Mo5viii—Mo3—Mo2viii60.242 (10)Mo6—O3—Mo3viii93.72 (11)
O8—Mo3—Mo1137.88 (7)Mo1viii—O3—Mo3viii85.99 (9)
O3viii—Mo3—Mo146.73 (7)Mo1viii—O3—Ti1xi95.44 (12)
O10—Mo3—Mo186.86 (8)Mo3viii—O3—Ti1xi99.30 (12)
O7—Mo3—Mo190.36 (7)Mo6—O3—Ca1xvii155.53 (13)
O6v—Mo3—Mo1138.99 (7)Mo1viii—O3—Ca1xvii109.88 (10)
Mo4—Mo3—Mo1122.981 (13)Mo3viii—O3—Ca1xvii104.25 (10)
Mo5—Mo3—Mo160.586 (10)Ti1xi—O3—Ca1xvii146.26 (13)
Mo5viii—Mo3—Mo190.710 (11)Mo2—O4—Mo484.07 (9)
Mo2viii—Mo3—Mo157.567 (10)Mo2—O4—Mo1vi131.69 (12)
O8—Mo3—Mo6viii127.80 (8)Mo4—O4—Mo1vi131.15 (12)
O3viii—Mo3—Mo6viii41.76 (8)Mo2—O4—Ca1102.54 (10)
O10—Mo3—Mo6viii40.54 (8)Mo4—O4—Ca1113.23 (11)
O7—Mo3—Mo6viii129.03 (8)Mo1vi—O4—Ca192.52 (8)
O6v—Mo3—Mo6viii90.50 (8)Ti1—O5—Mo495.49 (13)
Mo4—Mo3—Mo6viii179.04 (5)Mo6xii—O5—Mo499.83 (11)
Mo5—Mo3—Mo6viii118.28 (4)Ti1—O5—Mo2v136.02 (15)
Mo5viii—Mo3—Mo6viii116.36 (4)Mo6xii—O5—Mo2v128.80 (13)
Mo2viii—Mo3—Mo6viii56.17 (4)Mo4—O5—Mo2v125.08 (12)
Mo1—Mo3—Mo6viii57.69 (4)Mo2—O6—Mo586.06 (9)
O8—Mo3—Ti1x128.11 (8)Mo2—O6—Mo3i132.42 (12)
O3viii—Mo3—Ti1x40.85 (8)Mo5—O6—Mo3i129.41 (13)
O10—Mo3—Ti1x41.16 (9)Mo2—O6—Ca1100.20 (10)
O7—Mo3—Ti1x127.66 (8)Mo5—O6—Ca1113.52 (10)
O6v—Mo3—Ti1x85.61 (8)Mo3i—O6—Ca193.04 (9)
Mo4—Mo3—Ti1x174.79 (5)Mo3—O7—Mo580.93 (8)
Mo5—Mo3—Ti1x121.86 (5)Mo3—O7—Mo476.92 (8)
Mo5viii—Mo3—Ti1x120.79 (5)Mo5—O7—Mo482.11 (8)
Mo2viii—Mo3—Ti1x60.77 (5)Mo3—O7—Ca1iv96.76 (9)
Mo1—Mo3—Ti1x61.44 (5)Mo5—O7—Ca1iv111.51 (10)
Mo6viii—Mo3—Ti1x5.10 (7)Mo4—O7—Ca1iv164.17 (12)
O8—Mo4—O585.81 (10)Mo3—O7—Ca1174.62 (11)
O8—Mo4—O4171.95 (10)Mo5—O7—Ca1102.19 (9)
O5—Mo4—O489.18 (10)Mo4—O7—Ca199.06 (9)
O8—Mo4—O7101.09 (10)Ca1iv—O7—Ca186.22 (7)
O5—Mo4—O796.23 (9)Mo5viii—O8—Mo384.29 (9)
O4—Mo4—O785.70 (10)Mo5viii—O8—Mo485.94 (9)
O8—Mo4—O1xii85.50 (9)Mo3—O8—Mo478.52 (8)
O5—Mo4—O1xii79.12 (9)Mo5viii—O8—Ca1v140.56 (12)
O4—Mo4—O1xii87.37 (10)Mo3—O8—Ca1v104.00 (10)
O7—Mo4—O1xii171.71 (9)Mo4—O8—Ca1v133.38 (12)
O8—Mo4—Mo350.23 (7)Ti1ix—O9—Mo1127.83 (15)
O5—Mo4—Mo396.28 (7)Ti1ix—O9—Mo5133.72 (15)
O4—Mo4—Mo3136.85 (7)Mo1—O9—Mo585.26 (9)
O7—Mo4—Mo351.18 (7)Mo1—O9—Mo6xviii134.81 (14)
O1xii—Mo4—Mo3135.72 (7)Mo5—O9—Mo6xviii128.03 (13)
O8—Mo4—Mo596.25 (7)Ti1ix—O9—Ca1iv102.84 (13)
O5—Mo4—Mo5144.68 (7)Mo1—O9—Ca1iv96.23 (9)
O4—Mo4—Mo591.48 (7)Mo5—O9—Ca1iv104.38 (10)
O7—Mo4—Mo548.68 (6)Mo6xviii—O9—Ca1iv102.10 (11)
O1xii—Mo4—Mo5136.20 (7)Mo6viii—O10—Mo2viii86.90 (13)
Mo3—Mo4—Mo560.614 (10)Mo6viii—O10—Mo394.56 (12)
O8—Mo4—Mo2135.91 (7)Mo2viii—O10—Mo386.28 (10)
O5—Mo4—Mo2135.52 (7)Mo2viii—O10—Ti1x94.82 (13)
O4—Mo4—Mo247.41 (6)Mo3—O10—Ti1x98.52 (13)
O7—Mo4—Mo290.34 (7)Mo6viii—O10—Ca1v147.84 (13)
O1xii—Mo4—Mo288.31 (6)Mo2viii—O10—Ca1v124.68 (11)
Mo3—Mo4—Mo2120.998 (13)Mo3—O10—Ca1v82.83 (9)
Mo5—Mo4—Mo260.451 (9)Ti1x—O10—Ca1v140.40 (13)
O8—Mo4—Mo1viii88.07 (7)
Symmetry codes: (i) x+1/2, y+1/2, z; (ii) x1/2, y, z+3/2; (iii) x1, y, z; (iv) x, y, z+1; (v) x+1/2, y1/2, z; (vi) x+1/2, y, z+1/2; (vii) x, y+1/2, z1/2; (viii) x+1, y, z+1; (ix) x+1/2, y, z1/2; (x) x, y1/2, z1/2; (xi) x+1, y+1/2, z+3/2; (xii) x+1, y1/2, z+3/2; (xiii) x+1/2, y+1/2, z+1; (xiv) x, y1/2, z+1/2; (xv) x+1/2, y, z+3/2; (xvi) x, y+1/2, z+1/2; (xvii) x+1, y, z; (xviii) x1/2, y+1/2, z+1.

Experimental details

Crystal data
Chemical formulaCaMo5(Mo0.38Ti0.62)O10
Mr746.06
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)293
a, b, c (Å)8.9779 (1), 11.4442 (2), 15.0673 (3)
V3)1548.09 (4)
Z8
Radiation typeMo Kα
µ (mm1)9.77
Crystal size (mm)0.06 × 0.05 × 0.05
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correctionAnalytical
(de Meulenaer & Tompa, 1965)
Tmin, Tmax0.642, 0.698
No. of measured, independent and
observed [I > 2σ(I)] reflections
43304, 4205, 2960
Rint0.072
(sin θ/λ)max1)0.866
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.057, 1.09
No. of reflections4205
No. of parameters166
No. of restraints1
Δρmax, Δρmin (e Å3)1.75, 1.90

Computer programs: COLLECT (Nonius, 1998), EVALCCD (Duisenberg, 1998), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2001).

Selected bond lengths (Å) top
Ca1—O8i2.354 (2)Mo3—O102.068 (2)
Ca1—O2ii2.425 (3)Mo3—O72.074 (2)
Ca1—O3iii2.432 (3)Mo3—O6v2.086 (2)
Ca1—O42.557 (3)Mo3—Mo42.5927 (4)
Ca1—O7iv2.645 (2)Mo3—Mo52.6944 (4)
Ca1—O62.657 (3)Mo3—Mo5vii2.7252 (4)
Ca1—O9iv2.850 (3)Mo3—Mo6vii2.921 (2)
Ca1—O72.948 (3)Mo4—O82.063 (2)
Ca1—O10i3.048 (3)Mo4—O52.070 (2)
Ca1—O1v3.053 (3)Mo4—O42.074 (2)
Mo1—O1vi1.989 (2)Mo4—O72.095 (2)
Mo1—O2vii2.002 (3)Mo4—O1ix2.106 (2)
Mo1—O92.013 (2)Mo4—Mo52.7406 (4)
Mo1—O3vii2.034 (2)Mo4—Mo5vii2.7886 (4)
Mo1—O4viii2.147 (2)Mo5—O8vii2.028 (2)
Mo1—Mo2vii2.6829 (4)Mo5—O62.049 (2)
Mo1—Mo6vii2.7564 (19)Mo5—O92.071 (2)
Mo1—Mo52.7660 (4)Mo5—O72.078 (2)
Mo1—Mo4vii2.7752 (4)Mo5—Mo5vii2.8744 (5)
Mo1—Mo32.7869 (4)Mo6—O21.898 (4)
Mo2—O62.004 (2)Mo6—O10vii1.905 (3)
Mo2—O10vii2.004 (3)Mo6—O31.950 (3)
Mo2—O22.005 (3)Mo6—O12.026 (3)
Mo2—O42.038 (2)Mo6—O5x2.042 (3)
Mo2—O5i2.079 (2)Mo6—O9xi2.149 (3)
Mo2—Mo62.6891 (18)Ti1—O51.848 (4)
Mo2—Mo42.7534 (4)Ti1—O1ix1.870 (4)
Mo2—Mo52.7657 (4)Ti1—O9xii1.891 (4)
Mo2—Mo3vii2.7852 (4)Ti1—O3ix2.095 (4)
Mo3—O82.034 (2)Ti1—O10xiii2.104 (4)
Mo3—O3vii2.053 (2)Ti1—O2ix2.178 (4)
Symmetry codes: (i) x+1/2, y+1/2, z; (ii) x1/2, y, z+3/2; (iii) x1, y, z; (iv) x, y, z+1; (v) x+1/2, y1/2, z; (vi) x, y+1/2, z1/2; (vii) x+1, y, z+1; (viii) x+1/2, y, z1/2; (ix) x+1, y1/2, z+3/2; (x) x+1, y+1/2, z+3/2; (xi) x+1/2, y+1/2, z+1; (xii) x+1/2, y, z+1/2; (xiii) x, y1/2, z+1/2.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds