Supporting information
Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270108009657/iz3047sup1.cif | |
Structure factor file (CIF format) https://doi.org/10.1107/S0108270108009657/iz3047Isup2.hkl |
A sample with nominal Dy18Ni55Sn27 composition was prepared by arc-melting the Dy (99.9 wt.%), Ni (99.99 wt.%) and Sn (99.999 wt.%) metals on a water-cooled copper hearth under a protective Ti-gettered argon atmosphere. The obtained alloy was annealed at 870 K for 720 h in an evacuated silica ampoule and finally quenched in cold water. A crystal of Dy2Ni7Sn3 suitable for single-crystal X-ray diffraction analysis was extracted directly from the annealed sample. The chemical composition of the crystal was determined via EDX analysis on a Carl Zeiss DSM 962 equipped with a Link EDX system, giving 18.2 (1)% Dy, 55.5 (3)% Ni, and 26.3 (2)% Sn. These values are very close to the composition calculated from the structure refinement.
The structure solution and refinement were also performed in the noncentrosymmetric space group C2ce but were less satisfactory and resulted in larger R indices and atomic displacement parameters.
Data collection: CrysAlis CCD (Oxford Diffraction, 2005); cell refinement: CrysAlis RED (Oxford Diffraction, 2005); data reduction: CrysAlis RED (Oxford Diffraction, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).
Dy2Ni7Sn3 | F(000) = 3824 |
Mr = 1092.04 | Dx = 9.469 Mg m−3 |
Orthorhombic, Cmca | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -C 2bc 2 | Cell parameters from 1232 reflections |
a = 8.5964 (2) Å | θ = 3.2–30.5° |
b = 23.6415 (6) Å | µ = 45.49 mm−1 |
c = 7.5383 (2) Å | T = 298 K |
V = 1532.02 (7) Å3 | Prism, silver |
Z = 8 | 0.30 × 0.20 × 0.17 mm |
Xcalibur Oxford Diffraction with a CCD detector diffractometer | 1232 independent reflections |
Radiation source: fine-focus sealed X-ray tube, Xcalibur Oxford Diffraction with CCD detector | 1033 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.034 |
ω scans | θmax = 30.5°, θmin = 3.2° |
Absorption correction: analytical (de Meulenaer & Tompa, 1965) | h = −10→12 |
Tmin = 0.040, Tmax = 0.143 | k = −33→27 |
6228 measured reflections | l = −10→9 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.028 | w = 1/[σ2(Fo2) + (0.0184P)2 + 100.8928P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.067 | (Δ/σ)max < 0.001 |
S = 1.24 | Δρmax = 2.64 e Å−3 |
1232 reflections | Δρmin = −3.04 e Å−3 |
65 parameters | Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
0 restraints | Extinction coefficient: 0.000240 (16) |
Dy2Ni7Sn3 | V = 1532.02 (7) Å3 |
Mr = 1092.04 | Z = 8 |
Orthorhombic, Cmca | Mo Kα radiation |
a = 8.5964 (2) Å | µ = 45.49 mm−1 |
b = 23.6415 (6) Å | T = 298 K |
c = 7.5383 (2) Å | 0.30 × 0.20 × 0.17 mm |
Xcalibur Oxford Diffraction with a CCD detector diffractometer | 1232 independent reflections |
Absorption correction: analytical (de Meulenaer & Tompa, 1965) | 1033 reflections with I > 2σ(I) |
Tmin = 0.040, Tmax = 0.143 | Rint = 0.034 |
6228 measured reflections |
R[F2 > 2σ(F2)] = 0.028 | 0 restraints |
wR(F2) = 0.067 | w = 1/[σ2(Fo2) + (0.0184P)2 + 100.8928P] where P = (Fo2 + 2Fc2)/3 |
S = 1.24 | Δρmax = 2.64 e Å−3 |
1232 reflections | Δρmin = −3.04 e Å−3 |
65 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Ni1 | 0.15159 (14) | 0.19856 (5) | 0.07809 (16) | 0.0110 (2) | |
Ni2 | 0.23855 (14) | 0.38402 (5) | 0.09232 (15) | 0.0100 (2) | |
Ni3 | 0.0000 | 0.04715 (8) | 0.3546 (2) | 0.0132 (3) | |
Ni4 | 0.0000 | 0.10151 (7) | 0.0567 (2) | 0.0103 (3) | |
Dy1 | 0.0000 | 0.19380 (3) | 0.42638 (8) | 0.00883 (14) | |
Ni5 | 0.0000 | 0.33455 (7) | 0.3102 (2) | 0.0113 (3) | |
Sn1 | 0.0000 | 0.43821 (4) | 0.20612 (12) | 0.00949 (18) | |
Sn2 | 0.2500 | 0.10649 (3) | 0.2500 | 0.00723 (17) | |
Sn3 | 0.2500 | 0.28218 (4) | 0.2500 | 0.00952 (18) | |
Dy2 | 0.20681 (6) | 0.0000 | 0.0000 | 0.00830 (14) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ni1 | 0.0111 (5) | 0.0111 (5) | 0.0107 (5) | 0.0010 (4) | 0.0003 (4) | −0.0010 (4) |
Ni2 | 0.0104 (5) | 0.0098 (5) | 0.0099 (5) | 0.0023 (4) | 0.0021 (4) | 0.0007 (4) |
Ni3 | 0.0101 (7) | 0.0122 (8) | 0.0173 (8) | 0.000 | 0.000 | 0.0043 (6) |
Ni4 | 0.0073 (7) | 0.0123 (8) | 0.0112 (8) | 0.000 | 0.000 | 0.0010 (6) |
Dy1 | 0.0065 (2) | 0.0099 (3) | 0.0100 (3) | 0.000 | 0.000 | −0.0003 (2) |
Ni5 | 0.0087 (7) | 0.0120 (8) | 0.0134 (8) | 0.000 | 0.000 | 0.0001 (6) |
Sn1 | 0.0075 (4) | 0.0090 (4) | 0.0119 (4) | 0.000 | 0.000 | 0.0000 (3) |
Sn2 | 0.0073 (3) | 0.0068 (4) | 0.0076 (4) | 0.000 | −0.0007 (3) | 0.000 |
Sn3 | 0.0101 (4) | 0.0071 (4) | 0.0114 (4) | 0.000 | 0.0004 (3) | 0.000 |
Dy2 | 0.0074 (2) | 0.0062 (2) | 0.0114 (3) | 0.000 | 0.000 | −0.0005 (2) |
Ni1—Sn3 | 2.5107 (14) | Dy1—Sn2 | 3.2630 (7) |
Ni1—Ni2i | 2.5207 (17) | Dy1—Sn3 | 3.2791 (7) |
Ni1—Ni5ii | 2.5277 (19) | Ni5—Ni4vii | 2.396 (2) |
Ni1—Ni1iii | 2.606 (2) | Ni5—Sn3viii | 2.5213 (10) |
Ni1—Ni4 | 2.6435 (19) | Ni5—Sn3 | 2.5213 (10) |
Ni1—Sn3i | 2.6533 (12) | Ni5—Ni1xii | 2.5277 (19) |
Ni1—Sn2 | 2.6707 (14) | Ni5—Ni1vii | 2.5277 (19) |
Ni1—Dy1 | 2.9332 (13) | Ni5—Sn1 | 2.5733 (19) |
Ni1—Dy1iv | 2.9974 (12) | Ni5—Ni2v | 2.6381 (15) |
Ni1—Dy1ii | 3.0792 (13) | Ni5—Ni2viii | 2.6381 (15) |
Ni2—Ni2v | 2.385 (2) | Ni5—Ni2iii | 2.8758 (17) |
Ni2—Ni1i | 2.5207 (17) | Ni5—Dy1ii | 2.9698 (19) |
Ni2—Ni4i | 2.5360 (14) | Sn1—Ni2iii | 2.5656 (13) |
Ni2—Sn1 | 2.5656 (13) | Sn1—Ni3xiii | 2.616 (2) |
Ni2—Sn2i | 2.5921 (12) | Sn1—Ni3ii | 2.672 (2) |
Ni2—Ni5iv | 2.6381 (15) | Sn1—Ni4vii | 2.8050 (19) |
Ni2—Sn3 | 2.6868 (13) | Sn1—Ni2v | 3.0002 (14) |
Ni2—Dy2i | 2.8676 (12) | Sn1—Ni2viii | 3.0002 (14) |
Ni2—Ni5 | 2.8758 (17) | Sn1—Dy2xiii | 3.1942 (8) |
Ni2—Sn1iv | 3.0002 (13) | Sn1—Dy2vii | 3.1942 (8) |
Ni2—Dy1ii | 3.0258 (13) | Sn1—Dy2xiv | 3.3016 (7) |
Ni3—Ni4 | 2.587 (2) | Sn1—Dy2i | 3.3016 (7) |
Ni3—Sn1vi | 2.616 (2) | Sn2—Ni2xii | 2.5921 (12) |
Ni3—Sn1vii | 2.672 (2) | Sn2—Ni2i | 2.5921 (12) |
Ni3—Sn2 | 2.6849 (11) | Sn2—Ni4iv | 2.5990 (10) |
Ni3—Sn2viii | 2.6849 (11) | Sn2—Ni1v | 2.6707 (14) |
Ni3—Dy2viii | 2.9657 (10) | Sn2—Ni3iv | 2.6849 (11) |
Ni3—Dy2ix | 2.9657 (10) | Sn2—Dy2 | 3.1667 (6) |
Ni3—Dy2x | 3.3986 (16) | Sn2—Dy2ix | 3.1667 (6) |
Ni3—Dy2 | 3.3986 (16) | Sn2—Dy1iv | 3.2630 (7) |
Ni4—Ni5ii | 2.396 (2) | Sn3—Ni1v | 2.5107 (14) |
Ni4—Ni2xi | 2.5360 (14) | Sn3—Ni5iv | 2.5213 (10) |
Ni4—Ni2i | 2.5360 (14) | Sn3—Ni1xii | 2.6533 (12) |
Ni4—Sn2 | 2.5990 (10) | Sn3—Ni1i | 2.6533 (12) |
Ni4—Sn2viii | 2.5990 (10) | Sn3—Ni2v | 2.6868 (13) |
Ni4—Ni1iii | 2.6435 (19) | Sn3—Dy1iv | 3.2791 (7) |
Ni4—Sn1ii | 2.8050 (19) | Sn3—Dy1xv | 3.3004 (5) |
Ni4—Dy2x | 3.0171 (14) | Sn3—Dy1ii | 3.3004 (5) |
Ni4—Dy2 | 3.0171 (14) | Dy2—Ni2i | 2.8676 (12) |
Dy1—Ni1iii | 2.9332 (13) | Dy2—Ni2xvi | 2.8676 (12) |
Dy1—Ni5vii | 2.9698 (19) | Dy2—Ni3iv | 2.9657 (10) |
Dy1—Ni1viii | 2.9974 (12) | Dy2—Ni3xvii | 2.9657 (10) |
Dy1—Ni1v | 2.9974 (12) | Dy2—Ni4x | 3.0171 (14) |
Dy1—Ni2vii | 3.0258 (13) | Dy2—Sn2xvii | 3.1667 (6) |
Dy1—Ni2xii | 3.0258 (13) | Dy2—Sn1ii | 3.1942 (8) |
Dy1—Ni1xii | 3.0792 (13) | Dy2—Sn1vi | 3.1942 (8) |
Dy1—Ni1vii | 3.0792 (13) | Dy2—Sn1xviii | 3.3016 (7) |
Dy1—Sn2viii | 3.2630 (7) | Dy2—Sn1i | 3.3016 (7) |
Sn3—Ni1—Ni2i | 138.30 (6) | Sn3viii—Ni5—Ni2 | 134.81 (7) |
Sn3—Ni1—Ni5ii | 146.09 (7) | Sn3—Ni5—Ni2 | 59.28 (3) |
Ni2i—Ni1—Ni5ii | 63.01 (5) | Ni1xii—Ni5—Ni2 | 102.39 (4) |
Sn3—Ni1—Ni1iii | 109.69 (3) | Ni1vii—Ni5—Ni2 | 161.77 (7) |
Ni2i—Ni1—Ni1iii | 112.00 (4) | Sn1—Ni5—Ni2 | 55.84 (4) |
Ni5ii—Ni1—Ni1iii | 58.97 (3) | Ni2v—Ni5—Ni2 | 51.04 (5) |
Sn3—Ni1—Ni4 | 151.76 (6) | Ni2viii—Ni5—Ni2 | 125.89 (8) |
Ni2i—Ni1—Ni4 | 58.76 (4) | Ni2iii—Ni5—Ni2 | 90.97 (7) |
Ni5ii—Ni1—Ni4 | 55.14 (6) | Ni4vii—Ni5—Dy1ii | 153.92 (8) |
Ni1iii—Ni1—Ni4 | 60.47 (3) | Sn3viii—Ni5—Dy1ii | 73.38 (4) |
Sn3—Ni1—Sn3i | 103.80 (4) | Sn3—Ni5—Dy1ii | 73.38 (4) |
Ni2i—Ni1—Sn3i | 62.51 (4) | Ni1xii—Ni5—Dy1ii | 135.11 (6) |
Ni5ii—Ni1—Sn3i | 58.18 (4) | Ni1vii—Ni5—Dy1ii | 135.11 (6) |
Ni1iii—Ni1—Sn3i | 108.59 (3) | Sn1—Ni5—Dy1ii | 85.29 (5) |
Ni4—Ni1—Sn3i | 104.44 (6) | Ni2v—Ni5—Dy1ii | 111.81 (5) |
Sn3—Ni1—Sn2 | 106.53 (5) | Ni2viii—Ni5—Dy1ii | 111.81 (5) |
Ni2i—Ni1—Sn2 | 59.83 (4) | Ni2iii—Ni5—Dy1ii | 62.32 (4) |
Ni5ii—Ni1—Sn2 | 107.38 (6) | Ni2—Ni5—Dy1ii | 62.32 (4) |
Ni1iii—Ni1—Sn2 | 108.47 (3) | Ni4vii—Ni5—Dy1 | 114.37 (7) |
Ni4—Ni1—Sn2 | 58.56 (4) | Sn3viii—Ni5—Dy1 | 64.60 (4) |
Sn3i—Ni1—Sn2 | 119.41 (5) | Sn3—Ni5—Dy1 | 64.60 (4) |
Sn3—Ni1—Dy1 | 73.61 (3) | Ni1xii—Ni5—Dy1 | 59.81 (4) |
Ni2i—Ni1—Dy1 | 126.37 (5) | Ni1vii—Ni5—Dy1 | 59.81 (4) |
Ni5ii—Ni1—Dy1 | 118.31 (5) | Sn1—Ni5—Dy1 | 177.00 (7) |
Ni1iii—Ni1—Dy1 | 63.62 (2) | Ni2v—Ni5—Dy1 | 110.97 (5) |
Ni4—Ni1—Dy1 | 78.59 (5) | Ni2viii—Ni5—Dy1 | 110.97 (5) |
Sn3i—Ni1—Dy1 | 169.29 (5) | Ni2iii—Ni5—Dy1 | 122.60 (5) |
Sn2—Ni1—Dy1 | 71.04 (3) | Ni2—Ni5—Dy1 | 122.60 (5) |
Sn3—Ni1—Dy1iv | 72.46 (3) | Dy1ii—Ni5—Dy1 | 91.71 (5) |
Ni2i—Ni1—Dy1iv | 65.85 (4) | Ni2iii—Sn1—Ni2 | 106.13 (6) |
Ni5ii—Ni1—Dy1iv | 119.64 (5) | Ni2iii—Sn1—Ni5 | 68.06 (4) |
Ni1iii—Ni1—Dy1iv | 177.76 (3) | Ni2—Sn1—Ni5 | 68.06 (4) |
Ni4—Ni1—Dy1iv | 117.34 (5) | Ni2iii—Sn1—Ni3xiii | 115.66 (4) |
Sn3i—Ni1—Dy1iv | 71.18 (3) | Ni2—Sn1—Ni3xiii | 115.66 (4) |
Sn2—Ni1—Dy1iv | 70.02 (3) | Ni5—Sn1—Ni3xiii | 172.34 (7) |
Dy1—Ni1—Dy1iv | 116.91 (4) | Ni2iii—Sn1—Ni3ii | 74.52 (4) |
Sn3—Ni1—Dy1ii | 71.55 (3) | Ni2—Sn1—Ni3ii | 74.52 (4) |
Ni2i—Ni1—Dy1ii | 127.54 (5) | Ni5—Sn1—Ni3ii | 115.19 (6) |
Ni5ii—Ni1—Dy1ii | 74.99 (5) | Ni3xiii—Sn1—Ni3ii | 72.48 (7) |
Ni1iii—Ni1—Dy1ii | 64.96 (2) | Ni2iii—Sn1—Ni4vii | 98.50 (4) |
Ni4—Ni1—Dy1ii | 119.08 (5) | Ni2—Sn1—Ni4vii | 98.50 (4) |
Sn3i—Ni1—Dy1ii | 69.32 (3) | Ni5—Sn1—Ni4vii | 52.69 (6) |
Sn2—Ni1—Dy1ii | 171.04 (5) | Ni3xiii—Sn1—Ni4vii | 119.64 (6) |
Dy1—Ni1—Dy1ii | 100.14 (4) | Ni3ii—Sn1—Ni4vii | 167.88 (6) |
Dy1iv—Ni1—Dy1ii | 116.72 (4) | Ni2iii—Sn1—Ni2v | 123.70 (5) |
Ni2v—Ni2—Ni1i | 118.49 (5) | Ni2—Sn1—Ni2v | 50.01 (4) |
Ni2v—Ni2—Ni4i | 111.62 (8) | Ni5—Sn1—Ni2v | 55.87 (3) |
Ni1i—Ni2—Ni4i | 63.04 (5) | Ni3xiii—Sn1—Ni2v | 120.60 (4) |
Ni2v—Ni2—Sn1 | 74.50 (5) | Ni3ii—Sn1—Ni2v | 123.88 (3) |
Ni1i—Ni2—Sn1 | 148.94 (6) | Ni4vii—Sn1—Ni2v | 51.67 (3) |
Ni4i—Ni2—Sn1 | 142.11 (7) | Ni2iii—Sn1—Ni2viii | 50.01 (4) |
Ni2v—Ni2—Sn2i | 171.49 (7) | Ni2—Sn1—Ni2viii | 123.70 (5) |
Ni1i—Ni2—Sn2i | 62.96 (4) | Ni5—Sn1—Ni2viii | 55.87 (3) |
Ni4i—Ni2—Sn2i | 60.89 (4) | Ni3xiii—Sn1—Ni2viii | 120.60 (4) |
Sn1—Ni2—Sn2i | 108.66 (5) | Ni3ii—Sn1—Ni2viii | 123.88 (3) |
Ni2v—Ni2—Ni5iv | 69.64 (6) | Ni4vii—Sn1—Ni2viii | 51.67 (3) |
Ni1i—Ni2—Ni5iv | 58.63 (5) | Ni2v—Sn1—Ni2viii | 97.03 (5) |
Ni4i—Ni2—Ni5iv | 55.12 (5) | Ni2iii—Sn1—Dy2xiii | 154.84 (4) |
Sn1—Ni2—Ni5iv | 144.02 (6) | Ni2—Sn1—Dy2xiii | 90.88 (3) |
Sn2i—Ni2—Ni5iv | 106.46 (6) | Ni5—Sn1—Dy2xiii | 102.95 (4) |
Ni2v—Ni2—Sn3 | 63.65 (3) | Ni3xiii—Sn1—Dy2xiii | 70.80 (4) |
Ni1i—Ni2—Sn3 | 61.16 (4) | Ni3ii—Sn1—Dy2xiii | 128.94 (4) |
Ni4i—Ni2—Sn3 | 106.52 (6) | Ni4vii—Sn1—Dy2xiii | 59.97 (3) |
Sn1—Ni2—Sn3 | 109.20 (5) | Ni2v—Sn1—Dy2xiii | 55.05 (3) |
Sn2i—Ni2—Sn3 | 121.10 (5) | Ni2viii—Sn1—Dy2xiii | 105.13 (3) |
Ni5iv—Ni2—Sn3 | 56.51 (4) | Ni2iii—Sn1—Dy2vii | 90.88 (3) |
Ni2v—Ni2—Dy2i | 103.20 (3) | Ni2—Sn1—Dy2vii | 154.84 (4) |
Ni1i—Ni2—Dy2i | 123.75 (5) | Ni5—Sn1—Dy2vii | 102.95 (4) |
Ni4i—Ni2—Dy2i | 67.56 (5) | Ni3xiii—Sn1—Dy2vii | 70.80 (4) |
Sn1—Ni2—Dy2i | 74.61 (4) | Ni3ii—Sn1—Dy2vii | 128.94 (4) |
Sn2i—Ni2—Dy2i | 70.70 (3) | Ni4vii—Sn1—Dy2vii | 59.97 (3) |
Ni5iv—Ni2—Dy2i | 110.61 (5) | Ni2v—Sn1—Dy2vii | 105.13 (3) |
Sn3—Ni2—Dy2i | 163.37 (5) | Ni2viii—Sn1—Dy2vii | 55.05 (3) |
Ni2v—Ni2—Ni5 | 59.32 (5) | Dy2xiii—Sn1—Dy2vii | 67.64 (2) |
Ni1i—Ni2—Ni5 | 104.07 (6) | Ni2iii—Sn1—Dy2xiv | 56.87 (3) |
Ni4i—Ni2—Ni5 | 160.03 (7) | Ni2—Sn1—Dy2xiv | 132.36 (4) |
Sn1—Ni2—Ni5 | 56.10 (4) | Ni5—Sn1—Dy2xiv | 124.39 (2) |
Sn2i—Ni2—Ni5 | 129.11 (6) | Ni3xiii—Sn1—Dy2xiv | 58.80 (2) |
Ni5iv—Ni2—Ni5 | 105.55 (6) | Ni3ii—Sn1—Dy2xiv | 58.40 (2) |
Sn3—Ni2—Ni5 | 53.77 (4) | Ni4vii—Sn1—Dy2xiv | 126.27 (2) |
Dy2i—Ni2—Ni5 | 130.11 (5) | Ni2v—Sn1—Dy2xiv | 177.62 (4) |
Ni2v—Ni2—Sn1iv | 55.49 (5) | Ni2viii—Sn1—Dy2xiv | 81.69 (2) |
Ni1i—Ni2—Sn1iv | 107.95 (5) | Dy2xiii—Sn1—Dy2xiv | 123.30 (3) |
Ni4i—Ni2—Sn1iv | 60.19 (5) | Dy2vii—Sn1—Dy2xiv | 72.492 (11) |
Sn1—Ni2—Sn1iv | 102.49 (4) | Ni2iii—Sn1—Dy2i | 132.36 (4) |
Sn2i—Ni2—Sn1iv | 116.03 (5) | Ni2—Sn1—Dy2i | 56.87 (3) |
Ni5iv—Ni2—Sn1iv | 53.84 (4) | Ni5—Sn1—Dy2i | 124.39 (2) |
Sn3—Ni2—Sn1iv | 97.54 (4) | Ni3xiii—Sn1—Dy2i | 58.80 (2) |
Dy2i—Ni2—Sn1iv | 65.92 (3) | Ni3ii—Sn1—Dy2i | 58.40 (2) |
Ni5—Ni2—Sn1iv | 114.75 (5) | Ni4vii—Sn1—Dy2i | 126.27 (2) |
Ni2v—Ni2—Dy1ii | 117.90 (5) | Ni2v—Sn1—Dy2i | 81.69 (2) |
Ni1i—Ni2—Dy1ii | 64.68 (4) | Ni2viii—Sn1—Dy2i | 177.62 (4) |
Ni4i—Ni2—Dy1ii | 119.97 (6) | Dy2xiii—Sn1—Dy2i | 72.492 (11) |
Sn1—Ni2—Dy1ii | 84.27 (4) | Dy2vii—Sn1—Dy2i | 123.29 (3) |
Sn2i—Ni2—Dy1ii | 70.53 (3) | Dy2xiv—Sn1—Dy2i | 99.53 (3) |
Ni5iv—Ni2—Dy1ii | 115.02 (5) | Ni2xii—Sn2—Ni2i | 170.07 (6) |
Sn3—Ni2—Dy1ii | 70.30 (3) | Ni2xii—Sn2—Ni4 | 122.04 (4) |
Dy2i—Ni2—Dy1ii | 126.31 (4) | Ni2i—Sn2—Ni4 | 58.49 (4) |
Ni5—Ni2—Dy1ii | 60.36 (4) | Ni2xii—Sn2—Ni4iv | 58.49 (4) |
Sn1iv—Ni2—Dy1ii | 167.62 (5) | Ni2i—Sn2—Ni4iv | 122.04 (4) |
Ni4—Ni3—Sn1vi | 109.70 (8) | Ni4—Sn2—Ni4iv | 174.81 (8) |
Ni4—Ni3—Sn1vii | 142.78 (9) | Ni2xii—Sn2—Ni1v | 57.21 (4) |
Sn1vi—Ni3—Sn1vii | 107.52 (7) | Ni2i—Sn2—Ni1v | 113.61 (4) |
Ni4—Ni3—Sn2 | 59.04 (4) | Ni4—Sn2—Ni1v | 124.81 (5) |
Sn1vi—Ni3—Sn2 | 117.58 (5) | Ni4iv—Sn2—Ni1v | 60.20 (5) |
Sn1vii—Ni3—Sn2 | 102.92 (5) | Ni2xii—Sn2—Ni1 | 113.61 (4) |
Ni4—Ni3—Sn2viii | 59.04 (4) | Ni2i—Sn2—Ni1 | 57.21 (4) |
Sn1vi—Ni3—Sn2viii | 117.58 (5) | Ni4—Sn2—Ni1 | 60.20 (5) |
Sn1vii—Ni3—Sn2viii | 102.92 (5) | Ni4iv—Sn2—Ni1 | 124.81 (5) |
Sn2—Ni3—Sn2viii | 106.34 (6) | Ni1v—Sn2—Ni1 | 70.83 (6) |
Ni4—Ni3—Dy2viii | 120.49 (3) | Ni2xii—Sn2—Ni3 | 73.88 (5) |
Sn1vi—Ni3—Dy2viii | 72.22 (4) | Ni2i—Sn2—Ni3 | 111.60 (5) |
Sn1vii—Ni3—Dy2viii | 71.48 (4) | Ni4—Sn2—Ni3 | 58.61 (5) |
Sn2—Ni3—Dy2viii | 170.12 (7) | Ni4iv—Sn2—Ni3 | 118.26 (5) |
Sn2viii—Ni3—Dy2viii | 67.959 (13) | Ni1v—Sn2—Ni3 | 122.47 (5) |
Ni4—Ni3—Dy2ix | 120.49 (3) | Ni1—Sn2—Ni3 | 108.35 (4) |
Sn1vi—Ni3—Dy2ix | 72.22 (4) | Ni2xii—Sn2—Ni3iv | 111.60 (5) |
Sn1vii—Ni3—Dy2ix | 71.48 (4) | Ni2i—Sn2—Ni3iv | 73.88 (5) |
Sn2—Ni3—Dy2ix | 67.959 (13) | Ni4—Sn2—Ni3iv | 118.26 (5) |
Sn2viii—Ni3—Dy2ix | 170.12 (7) | Ni4iv—Sn2—Ni3iv | 58.61 (5) |
Dy2viii—Ni3—Dy2ix | 116.39 (6) | Ni1v—Sn2—Ni3iv | 108.35 (4) |
Ni4—Ni3—Dy2x | 58.68 (5) | Ni1—Sn2—Ni3iv | 122.47 (5) |
Sn1vi—Ni3—Dy2x | 62.57 (4) | Ni3—Sn2—Ni3iv | 117.00 (7) |
Sn1vii—Ni3—Dy2x | 145.33 (3) | Ni2xii—Sn2—Dy2 | 131.06 (4) |
Sn2—Ni3—Dy2x | 111.04 (6) | Ni2i—Sn2—Dy2 | 58.72 (3) |
Sn2viii—Ni3—Dy2x | 61.42 (3) | Ni4—Sn2—Dy2 | 62.19 (4) |
Dy2viii—Ni3—Dy2x | 73.91 (2) | Ni4iv—Sn2—Dy2 | 113.24 (4) |
Dy2ix—Ni3—Dy2x | 127.73 (6) | Ni1v—Sn2—Dy2 | 166.87 (3) |
Ni4—Ni3—Dy2 | 58.68 (5) | Ni1—Sn2—Dy2 | 108.79 (3) |
Sn1vi—Ni3—Dy2 | 62.57 (4) | Ni3—Sn2—Dy2 | 70.46 (4) |
Sn1vii—Ni3—Dy2 | 145.33 (3) | Ni3iv—Sn2—Dy2 | 60.24 (3) |
Sn2—Ni3—Dy2 | 61.42 (3) | Ni2xii—Sn2—Dy2ix | 58.72 (3) |
Sn2viii—Ni3—Dy2 | 111.04 (6) | Ni2i—Sn2—Dy2ix | 131.06 (4) |
Dy2viii—Ni3—Dy2 | 127.73 (6) | Ni4—Sn2—Dy2ix | 113.24 (4) |
Dy2ix—Ni3—Dy2 | 73.91 (2) | Ni4iv—Sn2—Dy2ix | 62.19 (4) |
Dy2x—Ni3—Dy2 | 63.08 (4) | Ni1v—Sn2—Dy2ix | 108.79 (3) |
Ni5ii—Ni4—Ni2xi | 64.60 (4) | Ni1—Sn2—Dy2ix | 166.87 (3) |
Ni5ii—Ni4—Ni2i | 64.60 (4) | Ni3—Sn2—Dy2ix | 60.24 (3) |
Ni2xi—Ni4—Ni2i | 124.82 (9) | Ni3iv—Sn2—Dy2ix | 70.46 (4) |
Ni5ii—Ni4—Ni3 | 170.66 (10) | Dy2—Sn2—Dy2ix | 74.683 (18) |
Ni2xi—Ni4—Ni3 | 116.84 (4) | Ni2xii—Sn2—Dy1iv | 112.08 (3) |
Ni2i—Ni4—Ni3 | 116.84 (4) | Ni2i—Sn2—Dy1iv | 60.96 (3) |
Ni5ii—Ni4—Sn2 | 113.97 (5) | Ni4—Sn2—Dy1iv | 110.17 (4) |
Ni2xi—Ni4—Sn2 | 167.19 (8) | Ni4iv—Sn2—Dy1iv | 73.29 (4) |
Ni2i—Ni4—Sn2 | 60.62 (3) | Ni1v—Sn2—Dy1iv | 58.23 (3) |
Ni3—Ni4—Sn2 | 62.35 (4) | Ni1—Sn2—Dy1iv | 59.69 (3) |
Ni5ii—Ni4—Sn2viii | 113.97 (5) | Ni3—Sn2—Dy1iv | 167.80 (4) |
Ni2xi—Ni4—Sn2viii | 60.62 (3) | Ni3iv—Sn2—Dy1iv | 71.56 (4) |
Ni2i—Ni4—Sn2viii | 167.19 (8) | Dy2—Sn2—Dy1iv | 109.734 (13) |
Ni3—Ni4—Sn2viii | 62.35 (4) | Dy2ix—Sn2—Dy1iv | 131.930 (13) |
Sn2—Ni4—Sn2viii | 111.56 (6) | Ni2xii—Sn2—Dy1 | 60.96 (3) |
Ni5ii—Ni4—Ni1 | 59.97 (6) | Ni2i—Sn2—Dy1 | 112.08 (3) |
Ni2xi—Ni4—Ni1 | 110.29 (7) | Ni4—Sn2—Dy1 | 73.29 (4) |
Ni2i—Ni4—Ni1 | 58.20 (4) | Ni4iv—Sn2—Dy1 | 110.17 (4) |
Ni3—Ni4—Ni1 | 112.22 (7) | Ni1v—Sn2—Dy1 | 59.69 (3) |
Sn2—Ni4—Ni1 | 61.24 (4) | Ni1—Sn2—Dy1 | 58.23 (3) |
Sn2viii—Ni4—Ni1 | 109.52 (7) | Ni3—Sn2—Dy1 | 71.56 (4) |
Ni5ii—Ni4—Ni1iii | 59.97 (6) | Ni3iv—Sn2—Dy1 | 167.80 (4) |
Ni2xi—Ni4—Ni1iii | 58.20 (4) | Dy2—Sn2—Dy1 | 131.930 (13) |
Ni2i—Ni4—Ni1iii | 110.29 (7) | Dy2ix—Sn2—Dy1 | 109.734 (13) |
Ni3—Ni4—Ni1iii | 112.22 (7) | Dy1iv—Sn2—Dy1 | 101.52 (3) |
Sn2—Ni4—Ni1iii | 109.52 (7) | Ni1—Sn3—Ni1v | 76.11 (6) |
Sn2viii—Ni4—Ni1iii | 61.24 (4) | Ni1—Sn3—Ni5iv | 125.52 (5) |
Ni1—Ni4—Ni1iii | 59.07 (6) | Ni1v—Sn3—Ni5iv | 101.08 (4) |
Ni5ii—Ni4—Sn1ii | 58.68 (6) | Ni1—Sn3—Ni5 | 101.08 (4) |
Ni2xi—Ni4—Sn1ii | 68.14 (5) | Ni1v—Sn3—Ni5 | 125.52 (5) |
Ni2i—Ni4—Sn1ii | 68.14 (5) | Ni5iv—Sn3—Ni5 | 121.19 (8) |
Ni3—Ni4—Sn1ii | 130.66 (8) | Ni1—Sn3—Ni1xii | 120.58 (4) |
Sn2—Ni4—Sn1ii | 122.91 (3) | Ni1v—Sn3—Ni1xii | 76.20 (4) |
Sn2viii—Ni4—Sn1ii | 122.91 (3) | Ni5iv—Sn3—Ni1xii | 110.81 (5) |
Ni1—Ni4—Sn1ii | 110.36 (6) | Ni5—Sn3—Ni1xii | 58.42 (5) |
Ni1iii—Ni4—Sn1ii | 110.36 (6) | Ni1—Sn3—Ni1i | 76.20 (4) |
Ni5ii—Ni4—Dy2x | 113.07 (6) | Ni1v—Sn3—Ni1i | 120.58 (4) |
Ni2xi—Ni4—Dy2x | 61.46 (3) | Ni5iv—Sn3—Ni1i | 58.42 (5) |
Ni2i—Ni4—Dy2x | 124.52 (7) | Ni5—Sn3—Ni1i | 110.81 (5) |
Ni3—Ni4—Dy2x | 74.21 (5) | Ni1xii—Sn3—Ni1i | 160.24 (6) |
Sn2—Ni4—Dy2x | 127.07 (6) | Ni1—Sn3—Ni2v | 161.13 (4) |
Sn2viii—Ni4—Dy2x | 68.18 (3) | Ni1v—Sn3—Ni2v | 117.70 (4) |
Ni1—Ni4—Dy2x | 171.68 (6) | Ni5iv—Sn3—Ni2v | 66.95 (5) |
Ni1iii—Ni4—Dy2x | 114.11 (3) | Ni5—Sn3—Ni2v | 60.77 (5) |
Sn1ii—Ni4—Dy2x | 66.43 (4) | Ni1xii—Sn3—Ni2v | 56.33 (4) |
Ni5ii—Ni4—Dy2 | 113.07 (6) | Ni1i—Sn3—Ni2v | 104.30 (4) |
Ni2xi—Ni4—Dy2 | 124.52 (7) | Ni1—Sn3—Ni2 | 117.70 (4) |
Ni2i—Ni4—Dy2 | 61.46 (3) | Ni1v—Sn3—Ni2 | 161.13 (4) |
Ni3—Ni4—Dy2 | 74.21 (5) | Ni5iv—Sn3—Ni2 | 60.77 (5) |
Sn2—Ni4—Dy2 | 68.18 (3) | Ni5—Sn3—Ni2 | 66.95 (5) |
Sn2viii—Ni4—Dy2 | 127.07 (6) | Ni1xii—Sn3—Ni2 | 104.30 (4) |
Ni1—Ni4—Dy2 | 114.11 (3) | Ni1i—Sn3—Ni2 | 56.33 (4) |
Ni1iii—Ni4—Dy2 | 171.68 (6) | Ni2v—Sn3—Ni2 | 52.71 (5) |
Sn1ii—Ni4—Dy2 | 66.43 (4) | Ni1—Sn3—Dy1 | 59.11 (3) |
Dy2x—Ni4—Dy2 | 72.21 (4) | Ni1v—Sn3—Dy1 | 60.65 (3) |
Ni1iii—Dy1—Ni1 | 52.75 (5) | Ni5iv—Sn3—Dy1 | 160.82 (4) |
Ni1iii—Dy1—Ni5vii | 151.72 (3) | Ni5—Sn3—Dy1 | 71.41 (4) |
Ni1—Dy1—Ni5vii | 151.72 (3) | Ni1xii—Sn3—Dy1 | 61.47 (3) |
Ni1iii—Dy1—Ni1viii | 62.91 (4) | Ni1i—Sn3—Dy1 | 134.13 (3) |
Ni1—Dy1—Ni1viii | 115.62 (3) | Ni2v—Sn3—Dy1 | 114.56 (3) |
Ni5vii—Dy1—Ni1viii | 91.11 (3) | Ni2—Sn3—Dy1 | 136.58 (3) |
Ni1iii—Dy1—Ni1v | 115.62 (3) | Ni1—Sn3—Dy1iv | 60.65 (3) |
Ni1—Dy1—Ni1v | 62.91 (4) | Ni1v—Sn3—Dy1iv | 59.11 (3) |
Ni5vii—Dy1—Ni1v | 91.11 (3) | Ni5iv—Sn3—Dy1iv | 71.41 (4) |
Ni1viii—Dy1—Ni1v | 175.51 (5) | Ni5—Sn3—Dy1iv | 160.82 (4) |
Ni1iii—Dy1—Ni2vii | 95.30 (3) | Ni1xii—Sn3—Dy1iv | 134.13 (3) |
Ni1—Dy1—Ni2vii | 133.98 (4) | Ni1i—Sn3—Dy1iv | 61.47 (3) |
Ni5vii—Dy1—Ni2vii | 57.32 (3) | Ni2v—Sn3—Dy1iv | 136.58 (3) |
Ni1viii—Dy1—Ni2vii | 49.48 (3) | Ni2—Sn3—Dy1iv | 114.56 (3) |
Ni1v—Dy1—Ni2vii | 134.80 (4) | Dy1—Sn3—Dy1iv | 100.83 (3) |
Ni1iii—Dy1—Ni2xii | 133.98 (4) | Ni1—Sn3—Dy1xv | 137.42 (4) |
Ni1—Dy1—Ni2xii | 95.30 (3) | Ni1v—Sn3—Dy1xv | 62.26 (3) |
Ni5vii—Dy1—Ni2xii | 57.32 (3) | Ni5iv—Sn3—Dy1xv | 59.57 (4) |
Ni1viii—Dy1—Ni2xii | 134.80 (4) | Ni5—Sn3—Dy1xv | 109.73 (4) |
Ni1v—Dy1—Ni2xii | 49.48 (3) | Ni1xii—Sn3—Dy1xv | 59.28 (3) |
Ni2vii—Dy1—Ni2xii | 85.33 (5) | Ni1i—Sn3—Dy1xv | 116.86 (3) |
Ni1iii—Dy1—Ni1xii | 119.26 (3) | Ni2v—Sn3—Dy1xv | 59.67 (3) |
Ni1—Dy1—Ni1xii | 96.47 (3) | Ni2—Sn3—Dy1xv | 101.35 (3) |
Ni5vii—Dy1—Ni1xii | 79.90 (4) | Dy1—Sn3—Dy1xv | 103.690 (11) |
Ni1viii—Dy1—Ni1xii | 113.33 (3) | Dy1iv—Sn3—Dy1xv | 89.000 (12) |
Ni1v—Dy1—Ni1xii | 63.28 (4) | Ni1—Sn3—Dy1ii | 62.26 (3) |
Ni2vii—Dy1—Ni1xii | 129.48 (4) | Ni1v—Sn3—Dy1ii | 137.42 (4) |
Ni2xii—Dy1—Ni1xii | 93.56 (3) | Ni5iv—Sn3—Dy1ii | 109.73 (4) |
Ni1iii—Dy1—Ni1vii | 96.47 (3) | Ni5—Sn3—Dy1ii | 59.57 (4) |
Ni1—Dy1—Ni1vii | 119.26 (3) | Ni1xii—Sn3—Dy1ii | 116.86 (3) |
Ni5vii—Dy1—Ni1vii | 79.90 (4) | Ni1i—Sn3—Dy1ii | 59.28 (3) |
Ni1viii—Dy1—Ni1vii | 63.28 (4) | Ni2v—Sn3—Dy1ii | 101.35 (3) |
Ni1v—Dy1—Ni1vii | 113.33 (3) | Ni2—Sn3—Dy1ii | 59.67 (3) |
Ni2vii—Dy1—Ni1vii | 93.56 (3) | Dy1—Sn3—Dy1ii | 89.000 (12) |
Ni2xii—Dy1—Ni1vii | 129.48 (4) | Dy1iv—Sn3—Dy1ii | 103.690 (11) |
Ni1xii—Dy1—Ni1vii | 50.07 (5) | Dy1xv—Sn3—Dy1ii | 160.19 (4) |
Ni1iii—Dy1—Sn2viii | 50.72 (3) | Ni2i—Dy2—Ni2xvi | 161.15 (5) |
Ni1—Dy1—Sn2viii | 87.26 (3) | Ni2i—Dy2—Ni3iv | 65.86 (4) |
Ni5vii—Dy1—Sn2viii | 104.73 (3) | Ni2xvi—Dy2—Ni3iv | 97.50 (4) |
Ni1viii—Dy1—Sn2viii | 50.28 (3) | Ni2i—Dy2—Ni3xvii | 97.50 (4) |
Ni1v—Dy1—Sn2viii | 132.63 (3) | Ni2xvi—Dy2—Ni3xvii | 65.86 (4) |
Ni2vii—Dy1—Sn2viii | 48.50 (2) | Ni3iv—Dy2—Ni3xvii | 63.61 (6) |
Ni2xii—Dy1—Sn2viii | 103.31 (3) | Ni2i—Dy2—Ni4x | 145.35 (4) |
Ni1xii—Dy1—Sn2viii | 162.34 (3) | Ni2xvi—Dy2—Ni4x | 50.98 (3) |
Ni1vii—Dy1—Sn2viii | 113.29 (2) | Ni3iv—Dy2—Ni4x | 148.44 (4) |
Ni1iii—Dy1—Sn2 | 87.26 (3) | Ni3xvii—Dy2—Ni4x | 98.59 (4) |
Ni1—Dy1—Sn2 | 50.72 (3) | Ni2i—Dy2—Ni4 | 50.98 (3) |
Ni5vii—Dy1—Sn2 | 104.73 (3) | Ni2xvi—Dy2—Ni4 | 145.35 (4) |
Ni1viii—Dy1—Sn2 | 132.63 (3) | Ni3iv—Dy2—Ni4 | 98.59 (4) |
Ni1v—Dy1—Sn2 | 50.28 (3) | Ni3xvii—Dy2—Ni4 | 148.44 (4) |
Ni2vii—Dy1—Sn2 | 103.31 (3) | Ni4x—Dy2—Ni4 | 107.79 (4) |
Ni2xii—Dy1—Sn2 | 48.50 (2) | Ni2i—Dy2—Sn2 | 50.58 (2) |
Ni1xii—Dy1—Sn2 | 113.29 (2) | Ni2xvi—Dy2—Sn2 | 126.62 (3) |
Ni1vii—Dy1—Sn2 | 162.34 (3) | Ni3iv—Dy2—Sn2 | 51.80 (3) |
Sn2viii—Dy1—Sn2 | 82.39 (2) | Ni3xvii—Dy2—Sn2 | 114.78 (3) |
Ni1iii—Dy1—Sn3 | 84.48 (3) | Ni4x—Dy2—Sn2 | 141.80 (3) |
Ni1—Dy1—Sn3 | 47.27 (3) | Ni4—Dy2—Sn2 | 49.63 (3) |
Ni5vii—Dy1—Sn3 | 122.60 (3) | Ni2i—Dy2—Sn2xvii | 126.62 (3) |
Ni1viii—Dy1—Sn3 | 128.79 (3) | Ni2xvi—Dy2—Sn2xvii | 50.58 (2) |
Ni1v—Dy1—Sn3 | 46.89 (2) | Ni3iv—Dy2—Sn2xvii | 114.78 (3) |
Ni2vii—Dy1—Sn3 | 177.85 (3) | Ni3xvii—Dy2—Sn2xvii | 51.80 (3) |
Ni2xii—Dy1—Sn3 | 96.37 (2) | Ni4x—Dy2—Sn2xvii | 49.63 (3) |
Ni1xii—Dy1—Sn3 | 49.20 (3) | Ni4—Dy2—Sn2xvii | 141.80 (3) |
Ni1vii—Dy1—Sn3 | 84.34 (3) | Sn2—Dy2—Sn2xvii | 166.53 (2) |
Sn2viii—Dy1—Sn3 | 132.03 (2) | Ni2i—Dy2—Sn1ii | 59.04 (3) |
Sn2—Dy1—Sn3 | 78.826 (17) | Ni2xvi—Dy2—Sn1ii | 134.17 (3) |
Ni4vii—Ni5—Sn3viii | 116.70 (4) | Ni3iv—Dy2—Sn1ii | 123.87 (4) |
Ni4vii—Ni5—Sn3 | 116.70 (4) | Ni3xvii—Dy2—Sn1ii | 112.87 (4) |
Sn3viii—Ni5—Sn3 | 116.95 (7) | Ni4x—Dy2—Sn1ii | 86.42 (3) |
Ni4vii—Ni5—Ni1xii | 64.88 (6) | Ni4—Dy2—Sn1ii | 53.60 (3) |
Sn3viii—Ni5—Ni1xii | 115.54 (7) | Sn2—Dy2—Sn1ii | 96.570 (18) |
Sn3—Ni5—Ni1xii | 63.40 (4) | Sn2xvii—Dy2—Sn1ii | 90.922 (17) |
Ni4vii—Ni5—Ni1vii | 64.88 (6) | Ni2i—Dy2—Sn1vi | 134.17 (3) |
Sn3viii—Ni5—Ni1vii | 63.40 (4) | Ni2xvi—Dy2—Sn1vi | 59.04 (3) |
Sn3—Ni5—Ni1vii | 115.54 (7) | Ni3iv—Dy2—Sn1vi | 112.87 (4) |
Ni1xii—Ni5—Ni1vii | 62.06 (7) | Ni3xvii—Dy2—Sn1vi | 123.87 (4) |
Ni4vii—Ni5—Sn1 | 68.63 (6) | Ni4x—Dy2—Sn1vi | 53.60 (3) |
Sn3viii—Ni5—Sn1 | 114.38 (4) | Ni4—Dy2—Sn1vi | 86.42 (3) |
Sn3—Ni5—Sn1 | 114.38 (4) | Sn2—Dy2—Sn1vi | 90.922 (17) |
Ni1xii—Ni5—Sn1 | 122.58 (7) | Sn2xvii—Dy2—Sn1vi | 96.570 (18) |
Ni1vii—Ni5—Sn1 | 122.58 (7) | Sn1ii—Dy2—Sn1vi | 112.36 (2) |
Ni4vii—Ni5—Ni2v | 60.27 (4) | Ni2i—Dy2—Sn1xviii | 114.35 (3) |
Sn3viii—Ni5—Ni2v | 173.72 (8) | Ni2xvi—Dy2—Sn1xviii | 48.52 (3) |
Sn3—Ni5—Ni2v | 62.72 (3) | Ni3iv—Dy2—Sn1xviii | 48.98 (4) |
Ni1xii—Ni5—Ni2v | 58.37 (4) | Ni3xvii—Dy2—Sn1xviii | 50.12 (4) |
Ni1vii—Ni5—Ni2v | 110.72 (7) | Ni4x—Dy2—Sn1xviii | 99.47 (3) |
Sn1—Ni5—Ni2v | 70.29 (5) | Ni4—Dy2—Sn1xviii | 137.31 (3) |
Ni4vii—Ni5—Ni2viii | 60.27 (4) | Sn2—Dy2—Sn1xviii | 88.980 (19) |
Sn3viii—Ni5—Ni2viii | 62.72 (3) | Sn2xvii—Dy2—Sn1xviii | 80.724 (18) |
Sn3—Ni5—Ni2viii | 173.72 (8) | Sn1ii—Dy2—Sn1xviii | 162.49 (3) |
Ni1xii—Ni5—Ni2viii | 110.72 (7) | Sn1vi—Dy2—Sn1xviii | 84.038 (13) |
Ni1vii—Ni5—Ni2viii | 58.37 (4) | Ni2i—Dy2—Sn1i | 48.52 (3) |
Sn1—Ni5—Ni2viii | 70.29 (5) | Ni2xvi—Dy2—Sn1i | 114.35 (3) |
Ni2v—Ni5—Ni2viii | 116.85 (8) | Ni3iv—Dy2—Sn1i | 50.12 (4) |
Ni4vii—Ni5—Ni2iii | 100.74 (6) | Ni3xvii—Dy2—Sn1i | 48.98 (4) |
Sn3viii—Ni5—Ni2iii | 59.28 (3) | Ni4x—Dy2—Sn1i | 137.31 (3) |
Sn3—Ni5—Ni2iii | 134.81 (7) | Ni4—Dy2—Sn1i | 99.47 (3) |
Ni1xii—Ni5—Ni2iii | 161.77 (7) | Sn2—Dy2—Sn1i | 80.724 (18) |
Ni1vii—Ni5—Ni2iii | 102.39 (4) | Sn2xvii—Dy2—Sn1i | 88.980 (19) |
Sn1—Ni5—Ni2iii | 55.84 (4) | Sn1ii—Dy2—Sn1i | 84.038 (13) |
Ni2v—Ni5—Ni2iii | 125.89 (8) | Sn1vi—Dy2—Sn1i | 162.49 (3) |
Ni2viii—Ni5—Ni2iii | 51.04 (5) | Sn1xviii—Dy2—Sn1i | 80.47 (3) |
Ni4vii—Ni5—Ni2 | 100.74 (6) |
Symmetry codes: (i) −x+1/2, −y+1/2, −z; (ii) −x, −y+1/2, z−1/2; (iii) −x, y, z; (iv) x+1/2, y, −z+1/2; (v) −x+1/2, y, −z+1/2; (vi) x, y−1/2, −z+1/2; (vii) −x, −y+1/2, z+1/2; (viii) x−1/2, y, −z+1/2; (ix) −x+1/2, −y, z+1/2; (x) −x, −y, −z; (xi) x−1/2, −y+1/2, −z; (xii) x, −y+1/2, z+1/2; (xiii) x, y+1/2, −z+1/2; (xiv) x−1/2, y+1/2, z; (xv) −x+1/2, −y+1/2, −z+1; (xvi) −x+1/2, y−1/2, z; (xvii) −x+1/2, −y, z−1/2; (xviii) x+1/2, y−1/2, z. |
Experimental details
Crystal data | |
Chemical formula | Dy2Ni7Sn3 |
Mr | 1092.04 |
Crystal system, space group | Orthorhombic, Cmca |
Temperature (K) | 298 |
a, b, c (Å) | 8.5964 (2), 23.6415 (6), 7.5383 (2) |
V (Å3) | 1532.02 (7) |
Z | 8 |
Radiation type | Mo Kα |
µ (mm−1) | 45.49 |
Crystal size (mm) | 0.30 × 0.20 × 0.17 |
Data collection | |
Diffractometer | Xcalibur Oxford Diffraction with a CCD detector diffractometer |
Absorption correction | Analytical (de Meulenaer & Tompa, 1965) |
Tmin, Tmax | 0.040, 0.143 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 6228, 1232, 1033 |
Rint | 0.034 |
(sin θ/λ)max (Å−1) | 0.714 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.028, 0.067, 1.24 |
No. of reflections | 1232 |
No. of parameters | 65 |
w = 1/[σ2(Fo2) + (0.0184P)2 + 100.8928P] where P = (Fo2 + 2Fc2)/3 | |
Δρmax, Δρmin (e Å−3) | 2.64, −3.04 |
Computer programs: CrysAlis CCD (Oxford Diffraction, 2005), CrysAlis RED (Oxford Diffraction, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 1999).
Ni1—Sn3 | 2.5107 (14) | Ni2—Dy1ii | 3.0258 (13) |
Ni1—Ni2i | 2.5207 (17) | Ni3—Ni4 | 2.587 (2) |
Ni1—Ni5ii | 2.5277 (19) | Ni3—Sn1vi | 2.616 (2) |
Ni1—Ni1iii | 2.606 (2) | Ni3—Sn1vii | 2.672 (2) |
Ni1—Ni4 | 2.6435 (19) | Ni3—Sn2 | 2.6849 (11) |
Ni1—Sn3i | 2.6533 (12) | Ni3—Dy2viii | 2.9657 (10) |
Ni1—Sn2 | 2.6707 (14) | Ni3—Dy2 | 3.3986 (16) |
Ni1—Dy1 | 2.9332 (13) | Ni4—Ni5ii | 2.396 (2) |
Ni1—Dy1iv | 2.9974 (12) | Ni4—Sn2 | 2.5990 (10) |
Ni1—Dy1ii | 3.0792 (13) | Ni4—Sn1ii | 2.8050 (19) |
Ni2—Ni2v | 2.385 (2) | Ni4—Dy2 | 3.0171 (14) |
Ni2—Ni4i | 2.5360 (14) | Dy1—Ni5vii | 2.9698 (19) |
Ni2—Sn1 | 2.5656 (13) | Dy1—Sn2 | 3.2630 (7) |
Ni2—Sn2i | 2.5921 (12) | Dy1—Sn3 | 3.2791 (7) |
Ni2—Ni5iv | 2.6381 (15) | Ni5—Sn3 | 2.5213 (10) |
Ni2—Sn3 | 2.6868 (13) | Ni5—Sn1 | 2.5733 (19) |
Ni2—Dy2i | 2.8676 (12) | Sn1—Dy2vii | 3.1942 (8) |
Ni2—Ni5 | 2.8758 (17) | Sn1—Dy2i | 3.3016 (7) |
Ni2—Sn1iv | 3.0002 (13) | Sn2—Dy2 | 3.1667 (6) |
Symmetry codes: (i) −x+1/2, −y+1/2, −z; (ii) −x, −y+1/2, z−1/2; (iii) −x, y, z; (iv) x+1/2, y, −z+1/2; (v) −x+1/2, y, −z+1/2; (vi) x, y−1/2, −z+1/2; (vii) −x, −y+1/2, z+1/2; (viii) −x+1/2, −y, z+1/2. |
Investigation of the Dy–Ni–Sn ternary system revealed the presence of a large number of Ni-enriched compounds (Romaka et al., 2007), including a new stannide with the composition Dy18Ni55Sn27. After the structure of this new stannide had been solved and refined, the crystal chemistry analysis was carried out. Interatomic distances (Table 1) in the structure are in good agreement with the sum of the corresponding atomic radii. No shortening of the interatomic distances between Sn atoms caused by covalent bonding (inherent in compounds with high Sn content) was observed. As most ternary intermetallics are constructed from the fragments of the most stable binary compounds, the structure analysis of already known Ni-enriched stannides shows that all are derived from the DyNi5 binary compound which crystallizes in the CaCu5 structure type (Wernick & Geller, 1959). The crystal structure of Dy2Ni7Sn3 (Fig. 1a) belongs to the CaCu5 family and contains `DyNi5Sn' (denoted I) and `DyNi2Sn2' (denoted II) fragments (Fig. 1b). The `DyNi5Sn' fragment seems to be very similar to that in DyNi5Sn (Skolozdra et al., 1996), but with a different position of one inner Ni atom. In other respects, both fragments are similar. The `DyNi2Sn2' fragment is a hypothetical structure because of the absence of a compound with such a stoichiometry in the Dy–Ni–Sn system. However, this fragment resembles the deformed fragment in the YB2C2 structure (Bauer & Nowotny, 1971). Stacking of the `DyNi5Sn' and `DyNi2Sn2' fragments in the sequence I–II–I'–I–II–I' may produce the structure of Dy2Ni7Sn3 (Fig. 1b). The main feature of this compound is the method of stacking of the `DyNi5Sn' and `DyNi2Sn2' fragments and the fact that there is no possibility of sequentially building fragment I directly from the previous one (I') because the shared sides of these fragments are shifted and stack along the Dy plane.
By analyzing the Ni-enriched DyNi5Sn, Dy2Ni7Sn3 and DyNi3Sn2 (Skolozdra et al., 1988) ternary stannides of the Dy–Ni–Sn system, it was found that all of them were derived from the binary DyNi5 genetic prototype. Structure relations between these compounds are shown in Fig. 2. While advancing from binary DyNi5 to ternary DyNi5Sn, the coordination polyhedron of the Dy atom splits into two different polyhedra. One replicates that of the binary compound and the other is slightly deformed, but still very similar to that in the DyNi5 compound. Passing through DyNi5Sn to Dy2Ni7Sn3, the polyhedra for the Dy atoms become deformed, but the motif of the DyNi5 fragment can be easily recognized. The Dy polyhedra of the last stannide, DyNi3Sn2, are almost analogous to the initial Dy polyhedron in the DyNi5 compound.