Download citation
Download citation
link to html
New coordination compounds with the 4,4′-bi-1,2,4-triazole ligand (btr), namely tetra­aqua-2κ4O-di-μ2-4,4′-bi-1,2,4-tri­azole-1:2κ2N1:N1′;2:3κ2N1:N1′-hexa­chlorido-1κ3Cl,3κ3Cl-tri­zinc(II), [Zn3Cl6(C4H4N6)2(H2O)4], (I), and poly[cadmium(II)-μ2-4,4′-bi-1,2,4-triazole-κ2N1:N2-di-μ2-chlorido], [CdCl2(C4H4N6)]n, (II), reveal an unprecedented mol­ecular zwitterionic structure for (I) and a polymeric two-dimensional layer structure for (II). Differences between these products, which involve the formation of either charge-separated chloro­metallate/aqua­metal fragments or complementary organic and inorganic bridges, are attributable to the hardness–softness characters of the metal cations. In (I), two N1,N1′-bidentate btr mol­ecules connect one [Zn(H2O)4]2+ cation and two [ZnCl3] anions into a linear trizinc motif (the Zn atom of the cation occupies a centre of inversion in an N2O4 coordination octa­hedron, whereas the Zn atom of the anion possesses a distorted tetra­hedral Cl3N environment). In (II), the distorted vertex-sharing CdCl4N2 octa­hedra are linked into binuclear [Cd22-Cl)(μ2-btr)2]3+ fragments by unprecedented N1:N2-bidentate btr double bridges and bridging chloride ligands, while the additional chloride anions are also bridging, providing further propagation of the fragments into a two-dimensional network [Cd—Cl = 2.5869 (2)–2.6248 (7) Å].

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270108008779/jz3126sup1.cif
Contains datablocks global, I, II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270108008779/jz3126Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270108008779/jz3126IIsup3.hkl
Contains datablock II

CCDC references: 690175; 690176

Comment top

The cooperative assembly of small inorganic bridging anions (e.g. halogenides), short organic chelating N-donor bridges (e.g. 1,2,4-triazole derivatives, trz) and transition metal cations provides many possibilities for the development of organic–inorganic frameworks. In a series of CdII- and ZnII-1,2,4-triazolates, the combined role of the anionic components is to connect the metal clusters and to participate in the framework connectivity (Ouellette et al., 2007), while utilization of halogenide anions in ZnF2-trz (Su et al., 2004) and CdCl2-trz (Yi et al., 2004) leads to hollow tubular architectures and materials with luminescent properties. The use of the bitopic 4,4'-bi-(1,2,4-triazole) (btr) instead of simple monofunctional triazole ligands involves the rational propagation of the characteristic nodal units into the lattice by means of the doubled triazole functionalities. In particular, such a combination of bitopic triazole and chloride bridges contributes to the formation of eight-connected coordination frameworks involving linear tricopper(II) secondary building blocks (Lysenko et al., 2007). The combined behaviour of the btr molecule and Cl-, as a co-ligand pair, is still unexplored. We wished to correlate this behaviour with the hardness–softness character of the metal cation. To this end, we have examined ZnII/CdII-btr-Cl- systems and we report here the structures of two new complexes, [Zn(H2O)42-btr)2(ZnCl3)2], (I), and [Cd(µ2-Cl)22-btr)]n, (II).

The molecular trinuclear coordination compound, (I) (Fig. 1), is realised by consecutive interconnection of the Zn ions by two N1,N1'-bitriazole bridges [Zn2—N4 = 2.0545 (18) Å and Zn1—N1 = 2.0930 (17) Å], and involves a cationic part (Zn1) and two outer anionic centres (Zn2). The central Zn1 atom of the cationic fragment lies on an inversion centre and possesses an octahedral N2O4 environment involving two N atoms from btr molecules in trans positions and four aqua ligands in the basal plane [Zn1—O = 2.136 (2) and 2.1091 (17) Å], as has been observed for zwitterionic Zn-pyridine complexes, e.g. Zn(H2O)4(pyridine-3-sulfonate-N)2 (Walsh & Hathaway, 1980). The terminal Zn2 atoms of the anionic fragments display a distorted tetrahedral Cl3N environment [Zn2—Cl = 2.2305 (7)–2.2658 (7) Å], which is similar to that observed for the anion in [LH][Zn(L)Cl3] (L = quinoline; Wang et al., 2001). A few examples of charge-separated aquazinc(II)/trichlorozincate(II) arrays have been provided by organic N-donors such as urotropine (Mak & Huang, 1987) and 3,7-dihydro-1,3,7-trimethyl-1H-purine-2,6-dione (Jin et al., 2005), but the zwitterionic trinuclear molecule of (I) has no counterpart in the chemistry of zinc(II) chloride and non-chelating nitrogen ligands.

The noncoordinated N atoms of the btr molecules of (I) participate in intermolecular O—H···N hydrogen bonds, one type of which, H4W···N2v (see Table 2 for details), connects the molecular complexes into chains. In terms of the graph-set formalism (Etter et al., 1990), pairs of such intermolecular interactions lead to ten-membered R22(10) rings translated parallel to the a axis (Fig. 1), while pairs of somewhat stronger H3W···N5iv interactions link the molecules into layers parallel to the bc plane. Thus, the set of O—H···N bonds leads to a three-dimensional array. The role of O—H···Cl hydrogen bonds is also important. These intermolecular interactions generate a two-dimensional packing pattern, parallel to (102) (Fig. 2), employing four of the six available Cl atoms as hydrogen-bond acceptors. Pairs of weaker C—H···Cl hydrogen bonds (Desiraju & Steiner, 1999) are observed between molecules related by inversion and, in total, the terminal ZnCl3- units are involved in four hydrogen bonds.

The less polarizing Cd2+ cation, as a weaker Lewis acid, forces the Cl- anions to behave as co-bridging linkers, resulting in the formation of the more complicated polymeric architecture in the structure of (II). The N2Cl4 coordination environment of the Cd1 ion is realised as a distorted octahedron comprising four bonds with Cl- anions [Cd1—Cl = 2.5869 (2)–2.6248 (7) Å], the lengths of which are typical of compounds with the same coordination environment (Villa et al., 1971). The coordination is completed by N atoms of the organic ligand located in cis positions [Cd1—N = 2.386 (2) and 2.382 (2) Å]. Such a configuration of a CdN2Cl4 octahedron is uncommon among complexes with non-chelating N-donor ligands [e.g. Cd(piperazine)Cl2 (Vaidhyanathan et al., 2003)] (Fig. 3).

Both organic and inorganic ligands bridge the metal ions of (II) and they contribute to the overall connectivity as complementary linkers. Thus, pairs of Cd ions are bridged by Cl2 [Cd1—Cl2—Cd1i = 98.25 (1)°; symmetry code: (i) -x + 1, y, -z + 3/2] and two N1,N2-bidentate triazoles, similar to the pattern observed in [{Cd32-L)42-Cl)2}(µ2-NCS)2(NCS)2](H2O)2 [L = 4-amino-3,5-dimethyltriazole (Yi et al., 2004)], yielding the primary dinuclear unit of the structure. This coordination mode of the bitriazole ligand is unprecedented; it behaves as a monofunctional triazole, leaving the second available trz ring non-coordinated. Interconnection of the dinuclear units occurs entirely via the Cl- ligands, which function as either single or double bridges between the Cd ions. Two Cl3 atoms act as µ2 double bridges between the [Cd22-btr)22-Cl2)]3+ binuclear fragments [Cd1—Cl3—Cd1ii = 87.59 (2)°; symmetry code: (ii) -x + 1, -y, -z + 2] and assemble them into zigzag [Cd22-btr)22-Cl2)(µ2-Cl3)2]nn+ chains running parallel to the c axis with a Cd1···Cd1ii separation of 3.6210 (4) Å. The chains are connected into a two-dimensional coordination network parallel to the bc plane by means of Cl1 anions, which lie on inversion centres and supply unusual linear interlinks between the Cd ions [Cd1···Cd1vi = 5.1737 (5) Å; symmetry code: (vi) -x + 1, -y + 1, -z + 2]. This geometry at a bridging Cl- is rare; it has been observed for a few anionic complexes such as (MeNH3)2[CdCl4] (Chapuis et al., 1975). The successive coordination sheets are separated by 10.39 Å and their non-coordinated trz termini are interdigitated, supporting very weak interlayer C—H···N hydrogen bonding (Table 4, Fig. 5).

In conclusion, we have demonstrated how the structure of MCl2–btr coordination compounds depends upon the Lewis nature of the dication (Zn2+ or Cd2+). Cooperation of the bitriazole and Cl- bridges is relevant for the polymeric array adopted by soft Cd2+ ions and this provides a paradigm for hybrid organic–inorganic structures of polyfunctional triazoles, whereas for strongly polarizing Zn2+, the ligands are not complementary and produce two distinct coordination geometries within a zwitterionic molecular complex.

Experimental top

All materials were of reagent grade and were used as received. The btr ligand was prepared according to the reported procedure of Bartlett & Humphrey (1967). The title coordination compounds, (I) and (II), were synthesized in a similar manner. Evaporation of mixed aqueous solutions (3 ml) of CdCl2.H2O (0.0402 g, 0.2 mmol) and btr (0.0136 g, 0.1 mmol) in a desiccator over H2SO4 for a few days afforded colourless prisms of (II) (yield 84%). Analogously, compound (I) was prepared in 65% yield.

Refinement top

For (I), O-bound H atoms were found in intermediate Fourier maps and were refined fully with isotropic displacement parameters and with restraints for the O—H bond lengths [O—H = 0.79 (2)–0.81 (2) Å]. For both structures, C-bound H atoms were treated as riding in geometrically idealized positions, with C—H = 0.94 Å and Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: IPDS Software (Stoe & Cie, 2000) for (I); SMART-NT (Bruker, 1998) for (II). Cell refinement: IPDS Software (Stoe & Cie, 2000) for (I); SAINT-NT (Bruker, 1999) for (II). Data reduction: IPDS Software (Stoe & Cie, 2000) for (I); SAINT-NT (Bruker, 1999) for (II). For both compounds, program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: WinGX (Version 1.70.01; Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The structure of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii. Dashed lines indicate hydrogen bonds. [Symmetry codes: (i) -x, -y, -z; (v) x - 1, y, z.]
[Figure 2] Fig. 2. A fragment of the structure of (I), showing the packing mode of the long metal–organic molecules and their interconnection by O—H···Cl hydrogen bonds. O—H···N hydrogen bonding expands the structure in the [Which?] direction, which is orthogonal to the plane of the drawing. [Symmetry codes: (ii) -x, -y + 1, -z; (vii) x + 1, -y + 1/2, z + 1/2].
[Figure 3] Fig. 3. The structure of (II), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 40% probability level and H atoms are shown as small spheres of arbitrary radii. [Symmetry codes: (i) 1 - x, y, 1.5 - z; (ii) 1 - x, -y, 2 - z].
[Figure 4] Fig. 4. The two-dimensional network in the structure of (II), which is supported by a combination of inorganic (bold lines) and organic bridges. H atoms and part of the non-coordinated triazole groups have been omitted for clarity. N atoms are shaded grey. [Symmetry codes: (i) 1 - x, y, 3/2 - z; (ii) 1 - x, -y, 2 - z; (vi) -x + 1, -y + 1, -z + 2].
[Figure 5] Fig. 5. The packing of successive coordination layers in the structure of (II), showing interdigitation of the non-coordinated trz groups (projection on the ac plane). Dashed lines indicate weak C—H···N hydrogen bonds. [Symmetry codes: (iii) -x + 3/2, -y + 3/2, -z + 2; (iv) -x + 3/2, y - 1/2, -z + 3/2].
(I) tetraaqua-2κ4O-di-µ2-4,4'-bi-1,2,4-triazole- 1:2κ2N1:N1',2:3κ2N1:N1'-hexachlorido-1κ3Cl,3κ3Cl- trizinc(II) top
Crystal data top
[Zn3Cl6(C4H4N6)2(H2O)4]F(000) = 744
Mr = 753.14Dx = 2.060 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 6.8300 (5) ÅCell parameters from 8000 reflections
b = 14.6428 (14) Åθ = 2.8–27.9°
c = 12.5650 (9) ŵ = 3.64 mm1
β = 104.903 (9)°T = 213 K
V = 1214.36 (17) Å3Prism, colourless
Z = 20.23 × 0.18 × 0.17 mm
Data collection top
Stoe IPDS
diffractometer
2849 independent reflections
Radiation source: fine-focus sealed tube2157 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.040
ϕ oscillation scansθmax = 27.9°, θmin = 2.8°
Absorption correction: part of the refinement model (ΔF)
(DIFABS; Walker & Stuart, 1983)
h = 88
Tmin = 0.424, Tmax = 0.536k = 1919
10447 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.024Hydrogen site location: difference Fourier map
wR(F2) = 0.056H atoms treated by a mixture of independent and constrained refinement
S = 0.89 w = 1/[σ2(Fo2) + (0.0334P)2]
where P = (Fo2 + 2Fc2)/3
2849 reflections(Δ/σ)max = 0.002
167 parametersΔρmax = 0.76 e Å3
6 restraintsΔρmin = 0.63 e Å3
Crystal data top
[Zn3Cl6(C4H4N6)2(H2O)4]V = 1214.36 (17) Å3
Mr = 753.14Z = 2
Monoclinic, P21/cMo Kα radiation
a = 6.8300 (5) ŵ = 3.64 mm1
b = 14.6428 (14) ÅT = 213 K
c = 12.5650 (9) Å0.23 × 0.18 × 0.17 mm
β = 104.903 (9)°
Data collection top
Stoe IPDS
diffractometer
2849 independent reflections
Absorption correction: part of the refinement model (ΔF)
(DIFABS; Walker & Stuart, 1983)
2157 reflections with I > 2σ(I)
Tmin = 0.424, Tmax = 0.536Rint = 0.040
10447 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0246 restraints
wR(F2) = 0.056H atoms treated by a mixture of independent and constrained refinement
S = 0.89Δρmax = 0.76 e Å3
2849 reflectionsΔρmin = 0.63 e Å3
167 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.00000.00000.00000.01572 (9)
Zn20.32992 (4)0.623118 (16)0.11676 (2)0.01810 (8)
Cl10.17784 (11)0.73159 (4)0.19116 (6)0.03413 (16)
Cl20.67080 (8)0.63170 (4)0.17691 (5)0.02477 (13)
Cl30.23367 (9)0.61617 (4)0.06960 (5)0.02266 (13)
O10.1708 (3)0.04515 (13)0.15837 (18)0.0300 (4)
O20.2235 (3)0.05848 (11)0.06747 (16)0.0192 (4)
N10.1568 (3)0.12394 (12)0.03174 (17)0.0161 (4)
N20.3584 (3)0.13284 (12)0.02816 (18)0.0212 (4)
N30.2590 (3)0.25767 (11)0.09273 (17)0.0152 (4)
N40.2683 (3)0.49051 (12)0.15066 (17)0.0181 (4)
N50.2734 (3)0.45433 (13)0.25361 (19)0.0243 (5)
N60.2638 (3)0.34413 (12)0.13739 (16)0.0152 (4)
C10.1006 (3)0.19870 (14)0.0708 (2)0.0173 (5)
H10.02810.21000.08210.021*
C20.4159 (3)0.21386 (15)0.0661 (2)0.0212 (5)
H20.54600.23850.07390.025*
C30.2602 (3)0.42346 (14)0.0815 (2)0.0182 (5)
H30.25310.42910.00610.022*
C40.2713 (4)0.36578 (15)0.2431 (2)0.0229 (5)
H40.27450.32360.30000.027*
H1W0.172 (5)0.0974 (14)0.177 (3)0.035 (9)*
H2W0.213 (5)0.0116 (19)0.208 (2)0.040 (10)*
H3W0.234 (5)0.032 (2)0.122 (2)0.047 (10)*
H4W0.335 (4)0.065 (3)0.030 (3)0.063 (13)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.01852 (18)0.01153 (16)0.0180 (2)0.00277 (13)0.00624 (14)0.00248 (14)
Zn20.02179 (14)0.01289 (12)0.01948 (16)0.00184 (10)0.00504 (10)0.00071 (10)
Cl10.0443 (4)0.0229 (3)0.0372 (4)0.0094 (3)0.0142 (3)0.0043 (3)
Cl20.0216 (3)0.0287 (3)0.0220 (3)0.0029 (2)0.0021 (2)0.0051 (2)
Cl30.0241 (3)0.0238 (3)0.0183 (3)0.0041 (2)0.0023 (2)0.0008 (2)
O10.0403 (11)0.0236 (10)0.0213 (12)0.0032 (8)0.0010 (8)0.0026 (8)
O20.0206 (9)0.0186 (8)0.0204 (11)0.0001 (6)0.0090 (7)0.0007 (7)
N10.0148 (9)0.0142 (9)0.0194 (11)0.0016 (7)0.0045 (7)0.0008 (7)
N20.0175 (9)0.0184 (9)0.0301 (13)0.0025 (7)0.0107 (8)0.0038 (8)
N30.0160 (8)0.0102 (8)0.0193 (11)0.0023 (7)0.0044 (7)0.0024 (7)
N40.0231 (10)0.0136 (8)0.0201 (12)0.0018 (7)0.0100 (8)0.0012 (7)
N50.0358 (12)0.0184 (10)0.0206 (13)0.0041 (8)0.0110 (9)0.0024 (8)
N60.0189 (9)0.0116 (8)0.0161 (11)0.0031 (7)0.0062 (7)0.0029 (7)
C10.0136 (10)0.0145 (10)0.0227 (14)0.0017 (8)0.0025 (9)0.0017 (9)
C20.0162 (11)0.0199 (11)0.0302 (16)0.0011 (8)0.0107 (10)0.0049 (9)
C30.0238 (11)0.0145 (10)0.0173 (13)0.0016 (9)0.0068 (9)0.0001 (8)
C40.0339 (13)0.0190 (11)0.0170 (14)0.0030 (9)0.0087 (10)0.0007 (9)
Geometric parameters (Å, º) top
Zn1—N1i2.0930 (17)N1—N21.395 (3)
Zn1—N12.0930 (17)N2—C21.301 (3)
Zn1—O2i2.1091 (17)N3—C11.356 (3)
Zn1—O22.1091 (17)N3—C21.363 (3)
Zn1—O1i2.136 (2)N3—N61.382 (2)
Zn1—O12.136 (2)N4—C31.303 (3)
Zn2—N42.0545 (18)N4—N51.390 (3)
Zn2—Cl12.2305 (7)N5—C41.303 (3)
Zn2—Cl22.2589 (7)N6—C41.354 (3)
Zn2—Cl32.2658 (7)N6—C31.354 (3)
O1—H1W0.80 (2)C1—H10.9400
O1—H2W0.79 (2)C2—H20.9400
O2—H3W0.81 (2)C3—H30.9400
O2—H4W0.80 (2)C4—H40.9400
N1—C11.298 (3)
N1i—Zn1—N1180.0C1—N1—N2108.91 (17)
N1i—Zn1—O2i87.67 (7)C1—N1—Zn1128.07 (15)
N1—Zn1—O2i92.33 (7)N2—N1—Zn1122.40 (13)
N1i—Zn1—O292.33 (7)C2—N2—N1106.31 (18)
N1—Zn1—O287.67 (7)C1—N3—C2106.70 (18)
O2i—Zn1—O2180.0C1—N3—N6126.88 (18)
N1i—Zn1—O1i92.25 (7)C2—N3—N6126.38 (18)
N1—Zn1—O1i87.75 (7)C3—N4—N5108.67 (18)
O2i—Zn1—O1i88.31 (8)C3—N4—Zn2123.35 (17)
O2—Zn1—O1i91.69 (8)N5—N4—Zn2126.56 (14)
N1i—Zn1—O187.75 (7)C4—N5—N4106.8 (2)
N1—Zn1—O192.25 (7)C4—N6—C3107.40 (18)
O2i—Zn1—O191.69 (8)C4—N6—N3127.16 (19)
O2—Zn1—O188.31 (8)C3—N6—N3125.4 (2)
O1i—Zn1—O1180.0N1—C1—N3108.39 (19)
N4—Zn2—Cl1116.35 (6)N1—C1—H1125.8
N4—Zn2—Cl2103.40 (6)N3—C1—H1125.8
Cl1—Zn2—Cl2111.79 (3)N2—C2—N3109.69 (19)
N4—Zn2—Cl398.71 (6)N2—C2—H2125.2
Cl1—Zn2—Cl3114.99 (3)N3—C2—H2125.2
Cl2—Zn2—Cl3110.39 (3)N4—C3—N6108.0 (2)
Zn1—O1—H1W122 (2)N4—C3—H3126.0
Zn1—O1—H2W123 (3)N6—C3—H3126.0
H1W—O1—H2W113 (4)N5—C4—N6109.2 (2)
Zn1—O2—H3W112 (2)N5—C4—H4125.4
Zn1—O2—H4W119 (3)N6—C4—H4125.4
H3W—O2—H4W106 (4)
O2i—Zn1—N1—C1176.2 (2)C1—N3—N6—C472.9 (3)
O2—Zn1—N1—C13.8 (2)C2—N3—N6—C4104.4 (3)
O1i—Zn1—N1—C195.6 (2)C1—N3—N6—C3106.6 (3)
O1—Zn1—N1—C184.4 (2)C2—N3—N6—C376.1 (3)
O2i—Zn1—N1—N213.82 (18)N2—N1—C1—N30.5 (3)
O2—Zn1—N1—N2166.18 (18)Zn1—N1—C1—N3171.52 (15)
O1i—Zn1—N1—N274.39 (18)C2—N3—C1—N10.8 (3)
O1—Zn1—N1—N2105.61 (18)N6—N3—C1—N1178.6 (2)
C1—N1—N2—C20.1 (3)N1—N2—C2—N30.6 (3)
Zn1—N1—N2—C2171.56 (17)C1—N3—C2—N20.9 (3)
Cl1—Zn2—N4—C3146.99 (17)N6—N3—C2—N2178.7 (2)
Cl2—Zn2—N4—C390.08 (19)N5—N4—C3—N61.2 (3)
Cl3—Zn2—N4—C323.43 (19)Zn2—N4—C3—N6166.06 (14)
Cl1—Zn2—N4—N548.14 (19)C4—N6—C3—N40.9 (3)
Cl2—Zn2—N4—N574.79 (18)N3—N6—C3—N4179.52 (19)
Cl3—Zn2—N4—N5171.70 (17)N4—N5—C4—N60.4 (3)
C3—N4—N5—C41.0 (3)C3—N6—C4—N50.3 (3)
Zn2—N4—N5—C4165.72 (16)N3—N6—C4—N5179.9 (2)
Symmetry code: (i) x, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1W···Cl1ii0.80 (2)2.51 (2)3.294 (2)167 (3)
O1—H2W···Cl2iii0.79 (2)2.55 (2)3.318 (2)163 (3)
O2—H3W···N5iv0.81 (2)2.00 (2)2.809 (3)174 (3)
O2—H4W···N2v0.80 (2)2.31 (3)2.976 (3)142 (4)
C2—H2···Cl3vi0.942.623.445 (2)147
C3—H3···Cl2vi0.942.643.493 (3)151
Symmetry codes: (ii) x, y+1, z; (iii) x1, y+1/2, z1/2; (iv) x, y1/2, z+1/2; (v) x1, y, z; (vi) x+1, y+1, z.
(II) poly[cadmium(II)-µ2-4,4'-bi-1,2,4-triazole-κ2N1:N2-di-µ2-chlorido] top
Crystal data top
[CdCl2(C4H4N6)]F(000) = 1216
Mr = 319.43Dx = 2.316 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 21.789 (2) ÅCell parameters from 6891 reflections
b = 6.3833 (4) Åθ = 3.1–28.0°
c = 13.8073 (13) ŵ = 2.93 mm1
β = 107.468 (11)°T = 213 K
V = 1831.8 (3) Å3Prism, colourless
Z = 80.21 × 0.20 × 0.17 mm
Data collection top
Siemens SMART CCD area-detector
diffractometer
2179 independent reflections
Radiation source: fine-focus sealed tube1863 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
ω scansθmax = 28.0°, θmin = 3.1°
Absorption correction: empirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
h = 2828
Tmin = 0.529, Tmax = 0.610k = 87
6891 measured reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.027Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.069H-atom parameters constrained
S = 0.99 w = 1/[σ2(Fo2) + (0.0507P)2]
where P = (Fo2 + 2Fc2)/3
2179 reflections(Δ/σ)max = 0.003
120 parametersΔρmax = 2.76 e Å3
0 restraintsΔρmin = 0.67 e Å3
Crystal data top
[CdCl2(C4H4N6)]V = 1831.8 (3) Å3
Mr = 319.43Z = 8
Monoclinic, C2/cMo Kα radiation
a = 21.789 (2) ŵ = 2.93 mm1
b = 6.3833 (4) ÅT = 213 K
c = 13.8073 (13) Å0.21 × 0.20 × 0.17 mm
β = 107.468 (11)°
Data collection top
Siemens SMART CCD area-detector
diffractometer
2179 independent reflections
Absorption correction: empirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
1863 reflections with I > 2σ(I)
Tmin = 0.529, Tmax = 0.610Rint = 0.034
6891 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0270 restraints
wR(F2) = 0.069H-atom parameters constrained
S = 0.99Δρmax = 2.76 e Å3
2179 reflectionsΔρmin = 0.67 e Å3
120 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cd10.500023 (9)0.16621 (3)0.893760 (14)0.01578 (9)
Cl10.50000.50001.00000.0334 (3)
Cl20.50000.10287 (16)0.75000.01628 (19)
Cl30.59084 (3)0.00467 (13)1.04472 (5)0.02184 (16)
N10.57722 (12)0.3547 (4)0.83723 (19)0.0193 (5)
N20.57513 (12)0.3622 (4)0.73589 (18)0.0179 (5)
N30.64474 (11)0.5896 (5)0.81943 (18)0.0182 (5)
N40.73062 (17)1.0614 (6)0.8613 (3)0.0503 (10)
N50.78008 (14)0.9138 (7)0.8890 (3)0.0404 (8)
N60.68965 (12)0.7476 (5)0.8409 (2)0.0216 (5)
C10.61885 (15)0.4937 (6)0.8863 (2)0.0228 (6)
H10.62930.52290.95610.027*
C20.61582 (14)0.5062 (5)0.7263 (2)0.0205 (6)
H20.62370.54510.66550.025*
C30.67754 (19)0.9566 (6)0.8332 (4)0.0447 (11)
H30.63631.01660.81060.054*
C40.75511 (15)0.7283 (7)0.8765 (3)0.0338 (8)
H40.77810.60150.88960.041*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.02063 (13)0.01550 (14)0.01164 (12)0.00003 (8)0.00548 (8)0.00231 (7)
Cl10.0455 (7)0.0291 (7)0.0248 (6)0.0029 (6)0.0095 (5)0.0130 (5)
Cl20.0222 (4)0.0120 (5)0.0150 (4)0.0000.0062 (3)0.000
Cl30.0136 (3)0.0300 (4)0.0211 (3)0.0014 (3)0.0041 (2)0.0139 (3)
N10.0240 (12)0.0207 (14)0.0135 (11)0.0043 (10)0.0059 (9)0.0001 (9)
N20.0223 (11)0.0189 (14)0.0128 (11)0.0028 (10)0.0055 (9)0.0021 (9)
N30.0173 (11)0.0196 (14)0.0177 (11)0.0045 (10)0.0050 (9)0.0015 (10)
N40.0409 (19)0.037 (2)0.064 (2)0.0188 (17)0.0018 (17)0.0009 (18)
N50.0254 (14)0.059 (2)0.0360 (17)0.0188 (16)0.0086 (13)0.0087 (17)
N60.0152 (11)0.0237 (15)0.0250 (13)0.0054 (11)0.0046 (9)0.0017 (11)
C10.0266 (15)0.0268 (17)0.0139 (13)0.0076 (13)0.0045 (11)0.0018 (12)
C20.0235 (14)0.0228 (16)0.0164 (14)0.0057 (13)0.0079 (11)0.0029 (11)
C30.0282 (18)0.026 (2)0.070 (3)0.0031 (16)0.0001 (18)0.0048 (19)
C40.0179 (15)0.044 (2)0.0377 (18)0.0049 (16)0.0062 (13)0.0072 (18)
Geometric parameters (Å, º) top
Cd1—N12.382 (2)N3—N61.374 (4)
Cd1—N2i2.386 (2)N4—C31.291 (5)
Cd1—Cl12.5869 (2)N4—N51.396 (5)
Cd1—Cl3ii2.6154 (7)N5—C41.293 (6)
Cd1—Cl32.6168 (8)N6—C31.358 (5)
Cd1—Cl22.6248 (7)N6—C41.368 (4)
N1—C11.304 (4)C1—H10.9400
N1—N21.387 (3)C2—H20.9400
N2—C21.311 (4)C3—H30.9400
N3—C21.359 (4)C4—H40.9400
N3—C11.364 (4)
N1—Cd1—N2i83.24 (9)N1—N2—Cd1i123.10 (18)
N1—Cd1—Cl183.69 (6)C2—N3—C1107.2 (3)
N2i—Cd1—Cl182.91 (6)C2—N3—N6126.1 (2)
N1—Cd1—Cl3ii174.19 (7)C1—N3—N6126.6 (2)
N2i—Cd1—Cl3ii92.66 (6)C3—N4—N5106.3 (3)
Cl1—Cd1—Cl3ii91.74 (2)C4—N5—N4108.8 (3)
N1—Cd1—Cl391.18 (6)C3—N6—C4105.9 (3)
N2i—Cd1—Cl3171.48 (7)C3—N6—N3126.5 (3)
Cl1—Cd1—Cl390.10 (2)C4—N6—N3127.6 (3)
Cl3ii—Cd1—Cl392.41 (2)N1—C1—N3108.5 (3)
N1—Cd1—Cl285.56 (6)N1—C1—H1125.7
N2i—Cd1—Cl286.07 (6)N3—C1—H1125.7
Cl1—Cd1—Cl2165.422 (19)N2—C2—N3108.4 (3)
Cl3ii—Cd1—Cl298.30 (2)N2—C2—H2125.8
Cl3—Cd1—Cl299.96 (2)N3—C2—H2125.8
Cd1—Cl2—Cd1i98.25 (4)N4—C3—N6110.5 (4)
Cd1ii—Cl3—Cd187.59 (2)N4—C3—H3124.8
C1—N1—N2107.9 (2)N6—C3—H3124.8
C1—N1—Cd1128.5 (2)N5—C4—N6108.5 (4)
N2—N1—Cd1122.38 (18)N5—C4—H4125.8
C2—N2—N1107.9 (2)N6—C4—H4125.8
C2—N2—Cd1i128.7 (2)
N1—Cd1—Cl2—Cd1i42.51 (6)Cd1—N1—N2—Cd1i5.2 (3)
N2i—Cd1—Cl2—Cd1i41.01 (6)C3—N4—N5—C40.0 (5)
Cl1—Cd1—Cl2—Cd1i0.07 (3)C2—N3—N6—C384.3 (5)
Cl3ii—Cd1—Cl2—Cd1i133.127 (18)C1—N3—N6—C392.6 (5)
Cl3—Cd1—Cl2—Cd1i132.927 (17)C2—N3—N6—C497.4 (4)
N1—Cd1—Cl3—Cd1ii175.44 (7)C1—N3—N6—C485.7 (4)
Cl1—Cd1—Cl3—Cd1ii91.74 (2)N2—N1—C1—N30.9 (4)
Cl3ii—Cd1—Cl3—Cd1ii0.0Cd1—N1—C1—N3168.6 (2)
Cl2—Cd1—Cl3—Cd1ii98.86 (2)C2—N3—C1—N11.4 (4)
N2i—Cd1—N1—C1114.3 (3)N6—N3—C1—N1178.9 (3)
Cl1—Cd1—N1—C130.8 (3)N1—N2—C2—N30.8 (3)
Cl3—Cd1—N1—C159.2 (3)Cd1i—N2—C2—N3174.3 (2)
Cl2—Cd1—N1—C1159.1 (3)C1—N3—C2—N21.4 (4)
N2i—Cd1—N1—N251.7 (2)N6—N3—C2—N2178.8 (3)
Cl1—Cd1—N1—N2135.3 (2)N5—N4—C3—N60.0 (5)
Cl3—Cd1—N1—N2134.7 (2)C4—N6—C3—N40.0 (5)
Cl2—Cd1—N1—N234.8 (2)N3—N6—C3—N4178.6 (3)
C1—N1—N2—C20.1 (3)N4—N5—C4—N60.0 (4)
Cd1—N1—N2—C2168.7 (2)C3—N6—C4—N50.0 (4)
C1—N1—N2—Cd1i173.8 (2)N3—N6—C4—N5178.6 (3)
Symmetry codes: (i) x+1, y, z+3/2; (ii) x+1, y, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···N5iii0.942.473.274 (4)144
C2—H2···N5iv0.942.573.193 (4)124
C4—H4···Cl3v0.942.813.531 (4)135
Symmetry codes: (iii) x+3/2, y+3/2, z+2; (iv) x+3/2, y1/2, z+3/2; (v) x+3/2, y+1/2, z+2.

Experimental details

(I)(II)
Crystal data
Chemical formula[Zn3Cl6(C4H4N6)2(H2O)4][CdCl2(C4H4N6)]
Mr753.14319.43
Crystal system, space groupMonoclinic, P21/cMonoclinic, C2/c
Temperature (K)213213
a, b, c (Å)6.8300 (5), 14.6428 (14), 12.5650 (9)21.789 (2), 6.3833 (4), 13.8073 (13)
β (°) 104.903 (9) 107.468 (11)
V3)1214.36 (17)1831.8 (3)
Z28
Radiation typeMo KαMo Kα
µ (mm1)3.642.93
Crystal size (mm)0.23 × 0.18 × 0.170.21 × 0.20 × 0.17
Data collection
DiffractometerStoe IPDS
diffractometer
Siemens SMART CCD area-detector
diffractometer
Absorption correctionPart of the refinement model (ΔF)
(DIFABS; Walker & Stuart, 1983)
Empirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.424, 0.5360.529, 0.610
No. of measured, independent and
observed [I > 2σ(I)] reflections
10447, 2849, 2157 6891, 2179, 1863
Rint0.0400.034
(sin θ/λ)max1)0.6580.660
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.024, 0.056, 0.89 0.027, 0.069, 0.99
No. of reflections28492179
No. of parameters167120
No. of restraints60
H-atom treatmentH atoms treated by a mixture of independent and constrained refinementH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.76, 0.632.76, 0.67

Computer programs: IPDS Software (Stoe & Cie, 2000), SMART-NT (Bruker, 1998), SAINT-NT (Bruker, 1999), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 1999), WinGX (Version 1.70.01; Farrugia, 1999).

Selected geometric parameters (Å, º) for (I) top
Zn1—N12.0930 (17)Zn2—Cl12.2305 (7)
Zn1—O22.1091 (17)Zn2—Cl22.2589 (7)
Zn1—O12.136 (2)Zn2—Cl32.2658 (7)
Zn2—N42.0545 (18)
N1—Zn1—O2i92.33 (7)N4—Zn2—Cl1116.35 (6)
N1—Zn1—O287.67 (7)N4—Zn2—Cl2103.40 (6)
N1—Zn1—O1i87.75 (7)Cl1—Zn2—Cl2111.79 (3)
O2—Zn1—O1i91.69 (8)N4—Zn2—Cl398.71 (6)
N1—Zn1—O192.25 (7)Cl1—Zn2—Cl3114.99 (3)
O2—Zn1—O188.31 (8)
Symmetry code: (i) x, y, z.
Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
O1—H1W···Cl1ii0.80 (2)2.51 (2)3.294 (2)167 (3)
O1—H2W···Cl2iii0.79 (2)2.55 (2)3.318 (2)163 (3)
O2—H3W···N5iv0.81 (2)2.00 (2)2.809 (3)174 (3)
O2—H4W···N2v0.80 (2)2.31 (3)2.976 (3)142 (4)
C2—H2···Cl3vi0.942.623.445 (2)147
C3—H3···Cl2vi0.942.643.493 (3)151
Symmetry codes: (ii) x, y+1, z; (iii) x1, y+1/2, z1/2; (iv) x, y1/2, z+1/2; (v) x1, y, z; (vi) x+1, y+1, z.
Selected geometric parameters (Å, º) for (II) top
Cd1—N12.382 (2)Cd1—Cl3ii2.6154 (7)
Cd1—N2i2.386 (2)Cd1—Cl32.6168 (8)
Cd1—Cl12.5869 (2)Cd1—Cl22.6248 (7)
N1—Cd1—N2i83.24 (9)Cl3ii—Cd1—Cl392.41 (2)
N1—Cd1—Cl183.69 (6)N1—Cd1—Cl285.56 (6)
N1—Cd1—Cl3ii174.19 (7)Cl1—Cd1—Cl2165.422 (19)
N1—Cd1—Cl391.18 (6)Cl3—Cd1—Cl299.96 (2)
N2i—Cd1—Cl3171.48 (7)Cd1—Cl2—Cd1i98.25 (4)
Cl1—Cd1—Cl390.10 (2)Cd1ii—Cl3—Cd187.59 (2)
Symmetry codes: (i) x+1, y, z+3/2; (ii) x+1, y, z+2.
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
C1—H1···N5iii0.942.473.274 (4)144
C2—H2···N5iv0.942.573.193 (4)124
C4—H4···Cl3v0.942.813.531 (4)135
Symmetry codes: (iii) x+3/2, y+3/2, z+2; (iv) x+3/2, y1/2, z+3/2; (v) x+3/2, y+1/2, z+2.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds