Supporting information
Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270108016545/jz3138sup1.cif | |
Structure factor file (CIF format) https://doi.org/10.1107/S0108270108016545/jz3138Isup2.hkl |
CCDC reference: 697558
The tr2ad ligand was prepared in 70% yield by reacting adamantane-1,3-diamine and dimethylformamide azine in boiling xylene in the presence of TsOH as catalyst; the product was crystallized from water as the trihydrate tr2ad.3H2O. For the synthesis of the title compound, Cu(AcO)2.H2O (6.0 mg, 0.03 mmol) 1,3,5-benzenetricarboxylic acid (6.3 mg, 0.03 mmol), tr2ad.3H2O (8.9 mg, 0.03 mmol) and water (7 ml) in a Teflon vessel were placed in a steel autoclave, heated at 453 K for 24 h and then cooled to room temperature over a period of 48 h, affording light-green plates of (I) (yield 85%, 8.1 mg).
All H atoms were located from difference maps and then refined as riding, with O—H distances constrained to 0.85 Å, C—H(aromatic) distances constrained to 0.94 Å and C—H(adamantane) distances constrained to 0.98 Å, and with Uiso(H) equal to 1.2Ueq(C) or 1.5Ueq(O). H atoms of the water molecule were also located and then fixed with O—H bond distances of 0.85 Å and an H—O—H bond angle of 108°. The U values of the water molecule are appreciably larger than those of the rest of the structure.
Data collection: IPDS Software (Stoe & Cie, 2000); cell refinement: IPDS Software (Stoe & Cie, 2000); data reduction: IPDS Software (Stoe & Cie, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: WinGX (Version 1.70.01; Farrugia, 1999).
[Cu4(OH)2(C14H18N6)2(C9H3O6)2]·2H2O | F(000) = 1304 |
Mr = 1279.12 | Dx = 1.798 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
a = 10.1122 (5) Å | Cell parameters from 8000 reflections |
b = 18.9068 (7) Å | θ = 2.2–26.0° |
c = 13.3503 (5) Å | µ = 1.87 mm−1 |
β = 112.241 (2)° | T = 213 K |
V = 2362.53 (17) Å3 | Plate, green |
Z = 2 | 0.22 × 0.18 × 0.11 mm |
Stoe IPDS diffractometer | 4592 independent reflections |
Radiation source: fine-focus sealed tube | 3851 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.050 |
ϕ oscillation scans | θmax = 26.0°, θmin = 2.2° |
Absorption correction: numerical [X-RED (Stoe & Cie, 2001) and X-SHAPE (Stoe & Cie, 1999)] | h = −12→12 |
Tmin = 0.684, Tmax = 0.821 | k = −22→22 |
18636 measured reflections | l = −16→16 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.030 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.080 | H-atom parameters constrained |
S = 0.99 | w = 1/[σ2(Fo2) + (0.0578P)2] where P = (Fo2 + 2Fc2)/3 |
4592 reflections | (Δ/σ)max = 0.002 |
352 parameters | Δρmax = 1.18 e Å−3 |
0 restraints | Δρmin = −0.56 e Å−3 |
[Cu4(OH)2(C14H18N6)2(C9H3O6)2]·2H2O | V = 2362.53 (17) Å3 |
Mr = 1279.12 | Z = 2 |
Monoclinic, P21/n | Mo Kα radiation |
a = 10.1122 (5) Å | µ = 1.87 mm−1 |
b = 18.9068 (7) Å | T = 213 K |
c = 13.3503 (5) Å | 0.22 × 0.18 × 0.11 mm |
β = 112.241 (2)° |
Stoe IPDS diffractometer | 4592 independent reflections |
Absorption correction: numerical [X-RED (Stoe & Cie, 2001) and X-SHAPE (Stoe & Cie, 1999)] | 3851 reflections with I > 2σ(I) |
Tmin = 0.684, Tmax = 0.821 | Rint = 0.050 |
18636 measured reflections |
R[F2 > 2σ(F2)] = 0.030 | 0 restraints |
wR(F2) = 0.080 | H-atom parameters constrained |
S = 0.99 | Δρmax = 1.18 e Å−3 |
4592 reflections | Δρmin = −0.56 e Å−3 |
352 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cu1 | 0.26068 (3) | 0.469671 (15) | 0.29288 (2) | 0.01235 (9) | |
Cu2 | 0.40469 (3) | 0.491597 (15) | 0.56472 (2) | 0.01273 (9) | |
O1 | 0.38520 (16) | 0.52312 (3) | 0.42053 (12) | 0.0124 (3) | |
H1W | 0.3640 | 0.5668 | 0.4129 | 0.019* | |
O2 | 0.37469 (17) | 0.38473 (9) | 0.35256 (12) | 0.0164 (3) | |
O3 | 0.34082 (19) | 0.38453 (9) | 0.51024 (13) | 0.0190 (4) | |
O4 | 0.36772 (17) | 0.05199 (9) | 0.27104 (13) | 0.0185 (4) | |
O5 | 0.22279 (18) | 0.14151 (9) | 0.18524 (13) | 0.0208 (4) | |
O6 | 0.63940 (19) | 0.08103 (10) | 0.66757 (13) | 0.0235 (4) | |
O7 | 0.56927 (18) | 0.16865 (10) | 0.75040 (13) | 0.0218 (4) | |
O8 | 0.6695 (3) | 0.0031 (2) | 0.3479 (3) | 0.0921 (13) | |
H2W | 0.6844 | −0.0024 | 0.2899 | 0.138* | |
H3W | 0.5838 | 0.0169 | 0.3313 | 0.138* | |
N1 | 0.4618 (2) | 0.45631 (11) | 0.71565 (15) | 0.0156 (4) | |
N2 | 0.5829 (2) | 0.48624 (11) | 0.79143 (16) | 0.0181 (4) | |
N3 | 0.5146 (2) | 0.39676 (11) | 0.86645 (15) | 0.0146 (4) | |
N4 | 0.2352 (2) | 0.06286 (12) | 0.92189 (16) | 0.0193 (4) | |
N5 | 0.3266 (2) | 0.05384 (12) | 0.86811 (18) | 0.0251 (5) | |
N6 | 0.3607 (2) | 0.16003 (11) | 0.94429 (16) | 0.0179 (4) | |
C1 | 0.4231 (2) | 0.40341 (14) | 0.76151 (18) | 0.0178 (5) | |
H1 | 0.3436 | 0.3742 | 0.7270 | 0.021* | |
C2 | 0.6118 (3) | 0.44991 (13) | 0.88059 (18) | 0.0179 (5) | |
H2 | 0.6892 | 0.4591 | 0.9457 | 0.021* | |
C3 | 0.2562 (3) | 0.12622 (14) | 0.9650 (2) | 0.0201 (5) | |
H3 | 0.2055 | 0.1454 | 1.0048 | 0.024* | |
C4 | 0.4014 (3) | 0.11254 (15) | 0.8839 (2) | 0.0260 (6) | |
H4 | 0.4736 | 0.1209 | 0.8571 | 0.031* | |
C5 | 0.5063 (2) | 0.34774 (13) | 0.95240 (17) | 0.0136 (5) | |
C6 | 0.4337 (2) | 0.27796 (13) | 0.90010 (18) | 0.0151 (5) | |
H6A | 0.4878 | 0.2555 | 0.8614 | 0.018* | |
H6B | 0.3366 | 0.2873 | 0.8483 | 0.018* | |
C7 | 0.4292 (2) | 0.22883 (13) | 0.99125 (18) | 0.0155 (5) | |
C8 | 0.3430 (3) | 0.26460 (14) | 1.0501 (2) | 0.0203 (5) | |
H8A | 0.3366 | 0.2330 | 1.1063 | 0.024* | |
H8B | 0.2458 | 0.2745 | 0.9987 | 0.024* | |
C9 | 0.4166 (3) | 0.33403 (14) | 1.1017 (2) | 0.0234 (5) | |
H9 | 0.3613 | 0.3568 | 1.1402 | 0.028* | |
C10 | 0.4222 (3) | 0.38384 (14) | 1.0120 (2) | 0.0200 (5) | |
H10A | 0.3251 | 0.3945 | 0.9612 | 0.024* | |
H10B | 0.4687 | 0.4284 | 1.0439 | 0.024* | |
C11 | 0.6588 (2) | 0.33215 (14) | 1.03202 (19) | 0.0186 (5) | |
H11A | 0.7070 | 0.3764 | 1.0636 | 0.022* | |
H11B | 0.7133 | 0.3094 | 0.9938 | 0.022* | |
C12 | 0.6528 (3) | 0.28298 (15) | 1.1224 (2) | 0.0243 (6) | |
H12 | 0.7512 | 0.2734 | 1.1742 | 0.029* | |
C13 | 0.5813 (3) | 0.21293 (14) | 1.0720 (2) | 0.0221 (5) | |
H13A | 0.5776 | 0.1810 | 1.1287 | 0.027* | |
H13B | 0.6365 | 0.1899 | 1.0347 | 0.027* | |
C14 | 0.5684 (3) | 0.31884 (16) | 1.1820 (2) | 0.0288 (6) | |
H14A | 0.6153 | 0.3631 | 1.2147 | 0.035* | |
H14B | 0.5650 | 0.2880 | 1.2400 | 0.035* | |
C15 | 0.3710 (2) | 0.35469 (13) | 0.43742 (17) | 0.0135 (4) | |
C16 | 0.3224 (2) | 0.11582 (13) | 0.26474 (17) | 0.0139 (5) | |
C17 | 0.5770 (2) | 0.13964 (13) | 0.66935 (18) | 0.0144 (5) | |
C18 | 0.4072 (2) | 0.27715 (13) | 0.44860 (18) | 0.0140 (5) | |
C19 | 0.3638 (2) | 0.23499 (13) | 0.35561 (18) | 0.0144 (5) | |
H19 | 0.3162 | 0.2557 | 0.2874 | 0.017* | |
C20 | 0.3907 (2) | 0.16211 (13) | 0.36334 (18) | 0.0144 (5) | |
C21 | 0.4669 (2) | 0.13240 (13) | 0.46532 (18) | 0.0146 (5) | |
H21 | 0.4912 | 0.0842 | 0.4708 | 0.018* | |
C22 | 0.5069 (2) | 0.17396 (13) | 0.55891 (17) | 0.0134 (4) | |
C23 | 0.4751 (2) | 0.24598 (13) | 0.55069 (18) | 0.0134 (4) | |
H23 | 0.4992 | 0.2737 | 0.6136 | 0.016* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu1 | 0.01570 (15) | 0.00763 (17) | 0.00932 (14) | −0.00101 (10) | −0.00024 (10) | 0.00026 (10) |
Cu2 | 0.01599 (15) | 0.01211 (17) | 0.00947 (14) | 0.00338 (10) | 0.00409 (11) | 0.00196 (10) |
O1 | 0.0156 (7) | 0.0088 (9) | 0.0112 (7) | 0.0024 (6) | 0.0032 (6) | −0.0001 (6) |
O2 | 0.0228 (8) | 0.0091 (9) | 0.0152 (8) | 0.0017 (6) | 0.0048 (7) | 0.0016 (6) |
O3 | 0.0304 (9) | 0.0103 (9) | 0.0174 (8) | −0.0019 (7) | 0.0101 (7) | −0.0020 (6) |
O4 | 0.0198 (8) | 0.0093 (9) | 0.0204 (8) | 0.0008 (6) | 0.0008 (7) | −0.0033 (7) |
O5 | 0.0274 (9) | 0.0113 (9) | 0.0141 (8) | 0.0004 (7) | −0.0030 (7) | −0.0011 (6) |
O6 | 0.0320 (10) | 0.0127 (10) | 0.0154 (8) | 0.0066 (7) | −0.0027 (7) | 0.0002 (7) |
O7 | 0.0236 (9) | 0.0277 (11) | 0.0146 (8) | 0.0039 (7) | 0.0079 (7) | 0.0023 (7) |
O8 | 0.0381 (15) | 0.126 (3) | 0.091 (2) | 0.0069 (17) | 0.0012 (15) | −0.063 (2) |
N1 | 0.0172 (9) | 0.0150 (11) | 0.0131 (9) | −0.0002 (8) | 0.0039 (7) | 0.0004 (8) |
N2 | 0.0225 (10) | 0.0155 (11) | 0.0134 (9) | −0.0032 (8) | 0.0037 (8) | 0.0000 (8) |
N3 | 0.0159 (9) | 0.0147 (11) | 0.0120 (9) | −0.0023 (8) | 0.0038 (7) | 0.0012 (8) |
N4 | 0.0237 (10) | 0.0174 (12) | 0.0192 (10) | −0.0051 (8) | 0.0107 (8) | −0.0018 (8) |
N5 | 0.0300 (11) | 0.0202 (13) | 0.0325 (12) | −0.0062 (9) | 0.0203 (10) | −0.0065 (10) |
N6 | 0.0227 (10) | 0.0137 (12) | 0.0202 (10) | −0.0043 (8) | 0.0114 (8) | −0.0007 (8) |
C1 | 0.0161 (11) | 0.0207 (14) | 0.0135 (11) | −0.0025 (9) | 0.0020 (9) | 0.0032 (9) |
C2 | 0.0231 (12) | 0.0141 (13) | 0.0134 (11) | −0.0046 (9) | 0.0035 (9) | −0.0002 (9) |
C3 | 0.0258 (12) | 0.0175 (14) | 0.0209 (12) | −0.0068 (10) | 0.0135 (10) | −0.0040 (10) |
C4 | 0.0319 (14) | 0.0207 (15) | 0.0346 (14) | −0.0059 (11) | 0.0231 (12) | −0.0058 (11) |
C5 | 0.0156 (11) | 0.0135 (13) | 0.0111 (10) | −0.0012 (9) | 0.0044 (8) | 0.0027 (8) |
C6 | 0.0164 (11) | 0.0149 (13) | 0.0134 (10) | −0.0022 (9) | 0.0051 (8) | −0.0007 (9) |
C7 | 0.0180 (11) | 0.0126 (13) | 0.0162 (11) | −0.0041 (9) | 0.0067 (9) | −0.0025 (9) |
C8 | 0.0263 (12) | 0.0181 (14) | 0.0216 (12) | −0.0047 (10) | 0.0148 (10) | −0.0015 (10) |
C9 | 0.0356 (14) | 0.0179 (14) | 0.0238 (12) | −0.0056 (11) | 0.0194 (11) | −0.0041 (10) |
C10 | 0.0261 (12) | 0.0141 (13) | 0.0229 (12) | −0.0008 (10) | 0.0127 (10) | −0.0013 (10) |
C11 | 0.0153 (11) | 0.0193 (14) | 0.0174 (11) | −0.0037 (9) | 0.0018 (9) | 0.0036 (10) |
C12 | 0.0212 (12) | 0.0254 (15) | 0.0176 (12) | −0.0042 (10) | −0.0025 (9) | 0.0091 (10) |
C13 | 0.0219 (12) | 0.0181 (14) | 0.0238 (12) | 0.0011 (10) | 0.0058 (10) | 0.0091 (10) |
C14 | 0.0429 (16) | 0.0270 (16) | 0.0141 (12) | −0.0148 (12) | 0.0080 (11) | −0.0008 (10) |
C15 | 0.0121 (10) | 0.0107 (12) | 0.0133 (10) | −0.0024 (8) | −0.0001 (8) | −0.0007 (8) |
C16 | 0.0171 (11) | 0.0116 (13) | 0.0117 (10) | −0.0024 (9) | 0.0042 (9) | −0.0004 (9) |
C17 | 0.0131 (10) | 0.0099 (12) | 0.0161 (11) | −0.0029 (8) | 0.0011 (9) | 0.0020 (9) |
C18 | 0.0148 (10) | 0.0101 (12) | 0.0151 (11) | −0.0004 (8) | 0.0034 (8) | 0.0007 (8) |
C19 | 0.0181 (11) | 0.0107 (12) | 0.0116 (10) | 0.0001 (8) | 0.0023 (9) | 0.0015 (8) |
C20 | 0.0156 (10) | 0.0125 (13) | 0.0131 (10) | −0.0004 (8) | 0.0031 (8) | −0.0005 (9) |
C21 | 0.0160 (11) | 0.0076 (12) | 0.0168 (11) | 0.0018 (8) | 0.0022 (9) | 0.0013 (9) |
C22 | 0.0109 (10) | 0.0139 (12) | 0.0125 (10) | −0.0005 (8) | 0.0012 (8) | 0.0020 (9) |
C23 | 0.0140 (10) | 0.0120 (12) | 0.0122 (10) | −0.0016 (8) | 0.0026 (8) | −0.0014 (8) |
Cu1—O6i | 1.9153 (17) | C5—C11 | 1.534 (3) |
Cu1—O2 | 1.9616 (16) | C5—C6 | 1.542 (3) |
Cu1—O1 | 1.9715 (14) | C6—C7 | 1.545 (3) |
Cu1—O4ii | 1.9993 (17) | C6—H6A | 0.9800 |
Cu1—N2iii | 2.411 (2) | C6—H6B | 0.9800 |
Cu2—O1 | 1.9525 (14) | C7—C8 | 1.534 (3) |
Cu2—N1 | 1.9893 (19) | C7—C13 | 1.537 (3) |
Cu2—N4iv | 2.010 (2) | C8—C9 | 1.537 (4) |
Cu2—O1iii | 2.0770 (15) | C8—H8A | 0.9800 |
Cu2—O3 | 2.1652 (18) | C8—H8B | 0.9800 |
Cu2—Cu2iii | 3.0536 (5) | C9—C14 | 1.531 (4) |
O1—H1W | 0.8500 | C9—C10 | 1.541 (3) |
O2—C15 | 1.280 (3) | C9—H9 | 0.9900 |
O3—C15 | 1.257 (3) | C10—H10A | 0.9800 |
O4—C16 | 1.282 (3) | C10—H10B | 0.9800 |
O5—C16 | 1.252 (3) | C11—C12 | 1.543 (3) |
O6—C17 | 1.280 (3) | C11—H11A | 0.9800 |
O7—C17 | 1.242 (3) | C11—H11B | 0.9800 |
O8—H2W | 0.8500 | C12—C14 | 1.528 (4) |
O8—H3W | 0.8500 | C12—C13 | 1.537 (4) |
N1—C1 | 1.308 (3) | C12—H12 | 0.9900 |
N1—N2 | 1.380 (3) | C13—H13A | 0.9800 |
N2—C2 | 1.308 (3) | C13—H13B | 0.9800 |
N3—C1 | 1.361 (3) | C14—H14A | 0.9800 |
N3—C2 | 1.368 (3) | C14—H14B | 0.9800 |
N3—C5 | 1.502 (3) | C15—C18 | 1.505 (3) |
N4—C3 | 1.311 (3) | C16—C20 | 1.513 (3) |
N4—N5 | 1.379 (3) | C17—C22 | 1.519 (3) |
N5—C4 | 1.314 (4) | C18—C19 | 1.399 (3) |
N6—C3 | 1.350 (3) | C18—C23 | 1.403 (3) |
N6—C4 | 1.370 (3) | C19—C20 | 1.401 (3) |
N6—C7 | 1.495 (3) | C19—H19 | 0.9400 |
C1—H1 | 0.9400 | C20—C21 | 1.403 (3) |
C2—H2 | 0.9400 | C21—C22 | 1.400 (3) |
C3—H3 | 0.9400 | C21—H21 | 0.9400 |
C4—H4 | 0.9400 | C22—C23 | 1.394 (3) |
C5—C10 | 1.528 (3) | C23—H23 | 0.9400 |
O6i—Cu1—O2 | 91.64 (7) | N6—C7—C8 | 109.58 (18) |
O6i—Cu1—O1 | 179.15 (6) | N6—C7—C13 | 107.8 (2) |
O2—Cu1—O1 | 89.07 (5) | C8—C7—C13 | 109.81 (19) |
O6i—Cu1—O4ii | 85.36 (7) | N6—C7—C6 | 109.87 (18) |
O2—Cu1—O4ii | 175.99 (7) | C8—C7—C6 | 109.3 (2) |
O1—Cu1—O4ii | 93.96 (5) | C13—C7—C6 | 110.49 (18) |
O6i—Cu1—N2iii | 94.68 (7) | C7—C8—C9 | 109.47 (19) |
O2—Cu1—N2iii | 94.82 (7) | C7—C8—H8A | 109.8 |
O1—Cu1—N2iii | 84.78 (7) | C9—C8—H8A | 109.8 |
O4ii—Cu1—N2iii | 88.08 (7) | C7—C8—H8B | 109.8 |
O1—Cu2—N1 | 169.48 (7) | C9—C8—H8B | 109.8 |
O1—Cu2—N4iv | 94.09 (6) | H8A—C8—H8B | 108.2 |
N1—Cu2—N4iv | 94.53 (8) | C14—C9—C8 | 109.9 (2) |
O1—Cu2—O1iii | 81.51 (6) | C14—C9—C10 | 109.7 (2) |
N1—Cu2—O1iii | 87.98 (7) | C8—C9—C10 | 109.1 (2) |
N4iv—Cu2—O1iii | 144.16 (7) | C14—C9—H9 | 109.4 |
O1—Cu2—O3 | 92.77 (5) | C8—C9—H9 | 109.4 |
N1—Cu2—O3 | 87.83 (7) | C10—C9—H9 | 109.4 |
N4iv—Cu2—O3 | 121.73 (8) | C5—C10—C9 | 108.9 (2) |
O1iii—Cu2—O3 | 94.07 (5) | C5—C10—H10A | 109.9 |
O1—Cu2—Cu2iii | 42.28 (4) | C9—C10—H10A | 109.9 |
N1—Cu2—Cu2iii | 127.20 (6) | C5—C10—H10B | 109.9 |
N4iv—Cu2—Cu2iii | 126.65 (6) | C9—C10—H10B | 109.9 |
O1iii—Cu2—Cu2iii | 39.23 (4) | H10A—C10—H10B | 108.3 |
O3—Cu2—Cu2iii | 94.54 (5) | C5—C11—C12 | 109.30 (19) |
Cu2—O1—Cu1 | 119.26 (6) | C5—C11—H11A | 109.8 |
Cu2—O1—Cu2iii | 98.49 (6) | C12—C11—H11A | 109.8 |
Cu1—O1—Cu2iii | 108.00 (6) | C5—C11—H11B | 109.8 |
Cu2—O1—H1W | 110.0 | C12—C11—H11B | 109.8 |
Cu1—O1—H1W | 110.2 | H11A—C11—H11B | 108.3 |
Cu2iii—O1—H1W | 110.1 | C14—C12—C13 | 110.4 (2) |
C15—O2—Cu1 | 120.86 (15) | C14—C12—C11 | 109.6 (2) |
C15—O3—Cu2 | 123.39 (15) | C13—C12—C11 | 109.1 (2) |
C16—O4—Cu1v | 123.11 (14) | C14—C12—H12 | 109.2 |
C17—O6—Cu1vi | 125.05 (15) | C13—C12—H12 | 109.2 |
H2W—O8—H3W | 108.4 | C11—C12—H12 | 109.2 |
C1—N1—N2 | 108.06 (18) | C12—C13—C7 | 108.6 (2) |
C1—N1—Cu2 | 135.00 (17) | C12—C13—H13A | 110.0 |
N2—N1—Cu2 | 116.22 (15) | C7—C13—H13A | 110.0 |
C2—N2—N1 | 106.42 (19) | C12—C13—H13B | 110.0 |
C2—N2—Cu1iii | 130.24 (17) | C7—C13—H13B | 110.0 |
N1—N2—Cu1iii | 110.87 (13) | H13A—C13—H13B | 108.4 |
C1—N3—C2 | 104.31 (19) | C12—C14—C9 | 109.2 (2) |
C1—N3—C5 | 129.09 (19) | C12—C14—H14A | 109.8 |
C2—N3—C5 | 126.36 (19) | C9—C14—H14A | 109.8 |
C3—N4—N5 | 108.2 (2) | C12—C14—H14B | 109.8 |
C3—N4—Cu2vii | 125.16 (16) | C9—C14—H14B | 109.8 |
N5—N4—Cu2vii | 126.62 (16) | H14A—C14—H14B | 108.3 |
C4—N5—N4 | 105.7 (2) | O3—C15—O2 | 125.6 (2) |
C3—N6—C4 | 104.0 (2) | O3—C15—C18 | 118.8 (2) |
C3—N6—C7 | 126.9 (2) | O2—C15—C18 | 115.6 (2) |
C4—N6—C7 | 128.5 (2) | O5—C16—O4 | 125.0 (2) |
N1—C1—N3 | 110.2 (2) | O5—C16—C20 | 118.0 (2) |
N1—C1—H1 | 124.9 | O4—C16—C20 | 116.96 (19) |
N3—C1—H1 | 124.9 | O7—C17—O6 | 126.3 (2) |
N2—C2—N3 | 111.0 (2) | O7—C17—C22 | 119.8 (2) |
N2—C2—H2 | 124.5 | O6—C17—C22 | 113.8 (2) |
N3—C2—H2 | 124.5 | C19—C18—C23 | 119.8 (2) |
N4—C3—N6 | 110.6 (2) | C19—C18—C15 | 119.0 (2) |
N4—C3—H3 | 124.7 | C23—C18—C15 | 121.1 (2) |
N6—C3—H3 | 124.7 | C18—C19—C20 | 120.5 (2) |
N5—C4—N6 | 111.4 (2) | C18—C19—H19 | 119.7 |
N5—C4—H4 | 124.3 | C20—C19—H19 | 119.7 |
N6—C4—H4 | 124.3 | C19—C20—C21 | 119.0 (2) |
N3—C5—C10 | 108.97 (19) | C19—C20—C16 | 119.5 (2) |
N3—C5—C11 | 108.42 (18) | C21—C20—C16 | 121.0 (2) |
C10—C5—C11 | 109.66 (19) | C22—C21—C20 | 120.6 (2) |
N3—C5—C6 | 109.67 (17) | C22—C21—H21 | 119.7 |
C10—C5—C6 | 110.75 (19) | C20—C21—H21 | 119.7 |
C11—C5—C6 | 109.32 (19) | C23—C22—C21 | 119.9 (2) |
C5—C6—C7 | 107.97 (18) | C23—C22—C17 | 120.2 (2) |
C5—C6—H6A | 110.1 | C21—C22—C17 | 119.9 (2) |
C7—C6—H6A | 110.1 | C22—C23—C18 | 120.0 (2) |
C5—C6—H6B | 110.1 | C22—C23—H23 | 120.0 |
C7—C6—H6B | 110.1 | C18—C23—H23 | 120.0 |
H6A—C6—H6B | 108.4 | ||
N1—Cu2—O1—Cu1 | 115.5 (4) | C4—N6—C7—C8 | 178.5 (2) |
N4iv—Cu2—O1—Cu1 | −99.58 (8) | C3—N6—C7—C13 | 107.8 (3) |
O1iii—Cu2—O1—Cu1 | 116.22 (6) | C4—N6—C7—C13 | −62.1 (3) |
O3—Cu2—O1—Cu1 | 22.52 (7) | C3—N6—C7—C6 | −131.7 (2) |
Cu2iii—Cu2—O1—Cu1 | 116.22 (6) | C4—N6—C7—C6 | 58.4 (3) |
N1—Cu2—O1—Cu2iii | −0.7 (4) | C5—C6—C7—N6 | −179.46 (18) |
N4iv—Cu2—O1—Cu2iii | 144.20 (7) | C5—C6—C7—C8 | 60.3 (2) |
O1iii—Cu2—O1—Cu2iii | 0.0 | C5—C6—C7—C13 | −60.6 (2) |
O3—Cu2—O1—Cu2iii | −93.70 (6) | N6—C7—C8—C9 | 178.0 (2) |
O2—Cu1—O1—Cu2 | −57.64 (7) | C13—C7—C8—C9 | 59.8 (3) |
O4ii—Cu1—O1—Cu2 | 119.73 (7) | C6—C7—C8—C9 | −61.6 (3) |
N2iii—Cu1—O1—Cu2 | −152.56 (8) | C7—C8—C9—C14 | −59.4 (3) |
O2—Cu1—O1—Cu2iii | 53.47 (6) | C7—C8—C9—C10 | 60.9 (3) |
O4ii—Cu1—O1—Cu2iii | −129.16 (6) | N3—C5—C10—C9 | −178.86 (19) |
N2iii—Cu1—O1—Cu2iii | −41.46 (6) | C11—C5—C10—C9 | −60.3 (3) |
O6i—Cu1—O2—C15 | −111.37 (17) | C6—C5—C10—C9 | 60.4 (2) |
O1—Cu1—O2—C15 | 69.11 (17) | C14—C9—C10—C5 | 60.7 (3) |
N2iii—Cu1—O2—C15 | 153.79 (17) | C8—C9—C10—C5 | −59.8 (3) |
O1—Cu2—O3—C15 | 34.37 (18) | N3—C5—C11—C12 | 178.9 (2) |
N1—Cu2—O3—C15 | −135.12 (18) | C10—C5—C11—C12 | 60.0 (3) |
N4iv—Cu2—O3—C15 | 130.90 (18) | C6—C5—C11—C12 | −61.6 (3) |
O1iii—Cu2—O3—C15 | −47.30 (18) | C5—C11—C12—C14 | −59.7 (3) |
Cu2iii—Cu2—O3—C15 | −7.96 (18) | C5—C11—C12—C13 | 61.2 (3) |
O1—Cu2—N1—C1 | −119.4 (4) | C14—C12—C13—C7 | 60.3 (3) |
N4iv—Cu2—N1—C1 | 95.7 (2) | C11—C12—C13—C7 | −60.2 (3) |
O1iii—Cu2—N1—C1 | −120.2 (2) | N6—C7—C13—C12 | −179.17 (19) |
O3—Cu2—N1—C1 | −26.0 (2) | C8—C7—C13—C12 | −59.8 (3) |
Cu2iii—Cu2—N1—C1 | −120.0 (2) | C6—C7—C13—C12 | 60.8 (3) |
O1—Cu2—N1—N2 | 49.5 (5) | C13—C12—C14—C9 | −60.2 (3) |
N4iv—Cu2—N1—N2 | −95.39 (17) | C11—C12—C14—C9 | 60.0 (3) |
O1iii—Cu2—N1—N2 | 48.79 (16) | C8—C9—C14—C12 | 59.3 (3) |
O3—Cu2—N1—N2 | 142.94 (17) | C10—C9—C14—C12 | −60.7 (3) |
Cu2iii—Cu2—N1—N2 | 48.89 (19) | Cu2—O3—C15—O2 | −36.9 (3) |
C1—N1—N2—C2 | −0.2 (3) | Cu2—O3—C15—C18 | 142.69 (17) |
Cu2—N1—N2—C2 | −172.02 (16) | Cu1—O2—C15—O3 | −25.7 (3) |
C1—N1—N2—Cu1iii | 146.21 (16) | Cu1—O2—C15—C18 | 154.69 (15) |
Cu2—N1—N2—Cu1iii | −25.59 (19) | Cu1v—O4—C16—O5 | −35.7 (3) |
C3—N4—N5—C4 | 1.4 (3) | Cu1v—O4—C16—C20 | 141.37 (16) |
Cu2vii—N4—N5—C4 | −177.69 (19) | Cu1vi—O6—C17—O7 | −9.8 (3) |
N2—N1—C1—N3 | 0.1 (3) | Cu1vi—O6—C17—C22 | 170.73 (15) |
Cu2—N1—C1—N3 | 169.67 (17) | O3—C15—C18—C19 | 144.2 (2) |
C2—N3—C1—N1 | 0.1 (3) | O2—C15—C18—C19 | −36.1 (3) |
C5—N3—C1—N1 | 174.7 (2) | O3—C15—C18—C23 | −31.6 (3) |
N1—N2—C2—N3 | 0.3 (3) | O2—C15—C18—C23 | 148.0 (2) |
Cu1iii—N2—C2—N3 | −137.13 (18) | C23—C18—C19—C20 | −1.6 (3) |
C1—N3—C2—N2 | −0.2 (3) | C15—C18—C19—C20 | −177.5 (2) |
C5—N3—C2—N2 | −175.0 (2) | C18—C19—C20—C21 | −2.5 (3) |
N5—N4—C3—N6 | −1.3 (3) | C18—C19—C20—C16 | 170.1 (2) |
Cu2vii—N4—C3—N6 | 177.83 (16) | O5—C16—C20—C19 | −13.5 (3) |
C4—N6—C3—N4 | 0.6 (3) | O4—C16—C20—C19 | 169.2 (2) |
C7—N6—C3—N4 | −171.2 (2) | O5—C16—C20—C21 | 158.9 (2) |
N4—N5—C4—N6 | −1.0 (3) | O4—C16—C20—C21 | −18.4 (3) |
C3—N6—C4—N5 | 0.3 (3) | C19—C20—C21—C22 | 4.4 (3) |
C7—N6—C4—N5 | 172.0 (2) | C16—C20—C21—C22 | −168.1 (2) |
C1—N3—C5—C10 | −89.6 (3) | C20—C21—C22—C23 | −2.1 (3) |
C2—N3—C5—C10 | 84.0 (3) | C20—C21—C22—C17 | 174.3 (2) |
C1—N3—C5—C11 | 151.1 (2) | O7—C17—C22—C23 | 20.7 (3) |
C2—N3—C5—C11 | −35.3 (3) | O6—C17—C22—C23 | −159.8 (2) |
C1—N3—C5—C6 | 31.8 (3) | O7—C17—C22—C21 | −155.7 (2) |
C2—N3—C5—C6 | −154.6 (2) | O6—C17—C22—C21 | 23.8 (3) |
N3—C5—C6—C7 | 179.26 (18) | C21—C22—C23—C18 | −2.0 (3) |
C10—C5—C6—C7 | −60.4 (2) | C17—C22—C23—C18 | −178.5 (2) |
C11—C5—C6—C7 | 60.5 (2) | C19—C18—C23—C22 | 3.9 (3) |
C3—N6—C7—C8 | −11.6 (3) | C15—C18—C23—C22 | 179.7 (2) |
Symmetry codes: (i) x−1/2, −y+1/2, z−1/2; (ii) −x+1/2, y+1/2, −z+1/2; (iii) −x+1, −y+1, −z+1; (iv) −x+1/2, y+1/2, −z+3/2; (v) −x+1/2, y−1/2, −z+1/2; (vi) x+1/2, −y+1/2, z+1/2; (vii) −x+1/2, y−1/2, −z+3/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1W···O5ii | 0.85 | 1.90 | 2.652 (2) | 147 |
O8—H2W···N5viii | 0.85 | 2.29 | 3.093 (4) | 158 |
O8—H3W···O4 | 0.85 | 2.13 | 2.974 (3) | 173 |
C4—H4···O7 | 0.94 | 2.20 | 3.078 (3) | 156 |
C3—H3···O5ix | 0.94 | 2.35 | 3.098 (3) | 136 |
Symmetry codes: (ii) −x+1/2, y+1/2, −z+1/2; (viii) −x+1, −y, −z+1; (ix) x, y, z+1. |
Experimental details
Crystal data | |
Chemical formula | [Cu4(OH)2(C14H18N6)2(C9H3O6)2]·2H2O |
Mr | 1279.12 |
Crystal system, space group | Monoclinic, P21/n |
Temperature (K) | 213 |
a, b, c (Å) | 10.1122 (5), 18.9068 (7), 13.3503 (5) |
β (°) | 112.241 (2) |
V (Å3) | 2362.53 (17) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 1.87 |
Crystal size (mm) | 0.22 × 0.18 × 0.11 |
Data collection | |
Diffractometer | Stoe IPDS diffractometer |
Absorption correction | Numerical [X-RED (Stoe & Cie, 2001) and X-SHAPE (Stoe & Cie, 1999)] |
Tmin, Tmax | 0.684, 0.821 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 18636, 4592, 3851 |
Rint | 0.050 |
(sin θ/λ)max (Å−1) | 0.618 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.030, 0.080, 0.99 |
No. of reflections | 4592 |
No. of parameters | 352 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 1.18, −0.56 |
Computer programs: IPDS Software (Stoe & Cie, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 1999), WinGX (Version 1.70.01; Farrugia, 1999).
Cu1—O6i | 1.9153 (17) | Cu2—O1 | 1.9525 (14) |
Cu1—O2 | 1.9616 (16) | Cu2—N1 | 1.9893 (19) |
Cu1—O1 | 1.9715 (14) | Cu2—N4iv | 2.010 (2) |
Cu1—O4ii | 1.9993 (17) | Cu2—O1iii | 2.0770 (15) |
Cu1—N2iii | 2.411 (2) | Cu2—O3 | 2.1652 (18) |
O6i—Cu1—O2 | 91.64 (7) | N1—Cu2—N4iv | 94.53 (8) |
O6i—Cu1—O1 | 179.15 (6) | O1—Cu2—O1iii | 81.51 (6) |
O2—Cu1—O1 | 89.07 (5) | N1—Cu2—O1iii | 87.98 (7) |
O6i—Cu1—O4ii | 85.36 (7) | N4iv—Cu2—O1iii | 144.16 (7) |
O2—Cu1—O4ii | 175.99 (7) | O1—Cu2—O3 | 92.77 (5) |
O1—Cu1—O4ii | 93.96 (5) | N1—Cu2—O3 | 87.83 (7) |
O6i—Cu1—N2iii | 94.68 (7) | N4iv—Cu2—O3 | 121.73 (8) |
O2—Cu1—N2iii | 94.82 (7) | O1iii—Cu2—O3 | 94.07 (5) |
O1—Cu1—N2iii | 84.78 (7) | Cu2—O1—Cu1 | 119.26 (6) |
O4ii—Cu1—N2iii | 88.08 (7) | Cu2—O1—Cu2iii | 98.49 (6) |
O1—Cu2—N1 | 169.48 (7) | Cu1—O1—Cu2iii | 108.00 (6) |
O1—Cu2—N4iv | 94.09 (6) |
Symmetry codes: (i) x−1/2, −y+1/2, z−1/2; (ii) −x+1/2, y+1/2, −z+1/2; (iii) −x+1, −y+1, −z+1; (iv) −x+1/2, y+1/2, −z+3/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1W···O5ii | 0.85 | 1.90 | 2.652 (2) | 147 |
O8—H2W···N5v | 0.85 | 2.29 | 3.093 (4) | 158 |
O8—H3W···O4 | 0.85 | 2.13 | 2.974 (3) | 173 |
C4—H4···O7 | 0.94 | 2.20 | 3.078 (3) | 156 |
C3—H3···O5vi | 0.94 | 2.35 | 3.098 (3) | 136 |
Symmetry codes: (ii) −x+1/2, y+1/2, −z+1/2; (v) −x+1, −y, −z+1; (vi) x, y, z+1. |
1,2,4-Triazole and its derivatives commonly adopt multiple N1,N2-coordination bridges that effectively transmit magnetic interaction between paramagnetic metal centers (van Koningsbruggen et al., 1997), and these features are essential for the preparation of polynuclear complexes exhibiting diverse magnetic properties (Kahn et al., 1992). For connecting many metal ions, the triazole bridges are especially applicable in combination with short-distance inorganic (OH or Cl) or organic (RCO2- or RPO32-) links. They are complementary in their coordination preferences and may act synergetically in the generation of complicated polynuclear motifs, as was revealed by the structure of hydroxotricopper(II) complexes with 4-amino-1,2,4-triazoles (Liu et al., 2003). Further attractive possibilities for the extension of the polynuclear ensembles and their propagation into the lattice could be provided by the cooperation of triazole and polyfunctional anionic linkers, such as polycarboxylates (Zhai et al., 2007), and also by employing organic modules bearing multiple triazole groups (Lysenko et al., 2006). In this way, benzene-1,3,5-tricarboxylate and flexible 1,2-bis(1,2,4-triazol-4-yl)ethane were used for the preparation of highly connected topologies involving Ni3 and Zn3 units (Habib et al., 2008). However, since the multivalency of the building block and inherently defined and proper binding geometry are equally important prerequisites from the design perspective, a suitable paradigm for new polytriazolyl ligands may be found with geometrically rigid molecular platforms (cf. adamantane functionalized at the bridgehead positions) rather than using the flexible aliphatic spacers. In this context, we have examined systems combining the aforementioned components; we report here the structure of a new coordination polymer, (I), that features assembly of a polynuclear copper(II)–hydroxide cluster and its propagation by combination of trifunctional benzene-1,3,5-tricarboxylate and bifuctional adamantane-1,3-bis(1,2,4-triazol-4-yl) (tr2ad) bridges.
In (I), the three-dimensional framework architecture is organized by interconnection of copper(II) ions by three types of links, namely µ3-hydroxide, µ3-tr2ad and µ4-C6H3(CO2)3. The unique portion of the structure includes two Cu ions, one each of the hydroxide, bis(triazole) and carboxylate ligands, and a solvent water molecule. Two characteristic Cu3(µ3-OH) fragments share a Cu2···Cu2iii edge [symmetry code: (iii) -x + 1, -y + 1, -z + 1], yielding a tetranuclear Cu4(µ3-OH)2 hydroxo cluster situated across an inversion center (Fig. 1). In the cluster, two pairs of Cu1···Cu2 and Cu1···Cu2iii edges are bridged by bidentate carboxylate and triazole groups, respectively, and the coordination also involves four monodentate carboxy O- and two triazole N-atom donors. This polynuclear ensemble formed by a set of hydroxide, carboxylate and azole bridges has several close precedents for molecular copper(II) species, such as pivalate complexes with 4-amino- and 4-tert-butyl-1,2,4-triazoles (Zhou et al., 2005) and mixed-anion benzoate–pyrazolyde compounds (Mezei et al., 2004). Therefore, the present cluster may be regarded as a predictable feature of the system and it demonstrates an attractive supramolecular synthon for crystal design. Within the central Cu2O2 rhomb of the cluster, the Cu2···Cu2iii separation is relatively short [3.0536 (5) Å] and only slightly exceeds the shortest Cu···Cu distance found for Cu4(µ3-OH)2 units [2.864 (1) Å; Knuuttila, 1982].
The µ3-OH group sustains two short [Cu—O = 1.9525 (14) and 1.9715 (14) Å] and one slightly longer [Cu2—O1iii = 2.0770 (15) Å] coordination bonds. Divergence of these parameters was much more appreciable for a molecular 4-tert-butyl-1,2,4-triazole analog [Cu—O = 1.927 (5)–2.302 (5) Å; Zhou et al., 2005]; however, the relatively strong coordination interactions with the hydroxo group in the title compound facilitate elongation of one of the Cu—N bonds. Thus the typically Jahn–Teller-distorted CuO4N tetragonal pyramid around Cu1 involves four basal O-atom donors [one hydroxide and three carboxylate groups; Cu—O = 1.9153 (17)–1.9993 (17) Å] and a distal triazole N atom at the apex [Cu1—N2iii = 2.411 (2) Å]. A second unique copper ion adopts a distorted trigonal–bipyramidal CuO3N2 coordination with a monodentate triazole N atom in the equatorial position [Cu—N4iv = 2.010 (2) Å; symmetry code: (iv) -x + 1/2, y + 1/2, -z + 3/2; Fig. 1].
The carboxylate groups of the anion display three different coordination modes. The first (containing atom C15) is O2,O3-bidentate bridging between two copper ions; the second carboxylate group (C16) acts as a single coordination donor and accepts a strong hydrogen bond from an adjacent hydroxo group [Cu1—O4ii 1.9993 (17) Å; O1—H1W···O5ii = 2.652 (2) Å; symmetry code: (ii) -x + 1/2, y + 1/2, -z + 1/2; Table 2], while the remaining carboxylate group (C17) is coordinated monodentately. The tr2ad ligand, one triazole group of which is N1,N2-bidentate while the other is monodentate, connects two clusters, and the significant size of the adamantane spacer effects long-distance bridging [Cu2···Cu2vii = 11.63 Å; symmetry code: (vii) -x + 1/2, y - 1/2, -z + 3/2].
Thus, the interconnection of the clusters is supported either by carboxylate or by tr2ad bridges, and these generate two distinct topologies, which connect with each other through common net nodes. Firstly, interconnection of the Cu4(µ3-OH)2 units by bis(triazole) bridges yields a corrugated (4,4)-net, which is parallel to the (101) plane, with a distance between the centroids of the linked clusters of 13.60 (s.u.?) Å. Secondly, each cluster is bonded to six close neighbors by three-connecting carboxylate groups, yielding a neutral coordination layer parallel to the (101) plane (Fig. 2). Its topology may be represented in the form of a regular hexagonal lattice with the hydroxide–copper clusters as six-connected nodes; furthermore, considering the ligands also as three-connected net points, a 3,6-coordinated "Kagome dual" (kgd) isohedral lattice is found with two types of nodes. Such a layer is unprecedented for metal–tricarboxylate complexes, although it may be compared with a three-dimensional eight-connected framework involving closely related [Fe4(µ3-OH)2]10+ clusters (Choi et al., 2007). These covalent layers are separated by 9.36 (s.u.?) Å and are linked by neutral tr2ad bridges (Fig. 3). Such a type of `pillared' structure may favor the accommodation of guest molecules between the layers, in the same way as for clays or organic clay mimics (Biradha et al., 1998).
The organic bridges support the connection of the Cu4(µ3-OH)2 units to ten close neighbors, and this is one of the highest net node coordinations yet observed for metal-organic polymers. One example of a 12-connected coordination topology is known (Li et al., 2005). Two more links for the network in (I) are provided by hydrogen bonding. Thus, the solvent water molecules are incorporated into the interlayer space and are involved in bonding with noncoordinated triazole N atoms and carboxylate O4 atoms [O8—H3W···O4 = 2.974 (3) Å; O8—H2W···N5v = 3.093 (4) Å; symmetry code: (v) -x + 1, -y, -z + 1]. This is accompanied by weak C—H···O bonding of the triazole ring [C···O = 3.078 (3) and 3.098 (3) Å; Table 2 and Fig. 3], which together support additional links between the clusters related by translation parallel to the x axis (symmetry code: x - 1, y, z). Therefore, the entire supramolecular architecture in (I) may be regarded as a 12-connected net corresponding to hexagonal closest packing (hcp) (Fig. 4).
In brief, the title compound reveals a potential for the construction of highly-connected coordination frameworks utilizing polynuclear secondary building blocks and complementary carboxylate and triazole bridges. The study introduces also a new type of bis(triazole) ligand, which may find wider applications for supramolecular synthesis.