Download citation
Download citation
link to html
In the title complex, {[Cu(CH3COO)2(C13H14N2)(H2O)]·H2O}n, the Cu atom is five-coordinated in a distorted square-pyramidal geometry by one O atom of the coordinated water mol­ecule, two O atoms from two acetate anions and two N atoms from two 1,3-di-4-pyridylpropane (dpp) ligands. The dpp ligands bridge the Cu atoms to form a zigzag chain. The crystal structure involves O—H...O hydrogen bonds.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S160053680703334X/kp2117sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S160053680703334X/kp2117Isup2.hkl
Contains datablock I

CCDC reference: 657574

Key indicators

  • Single-crystal X-ray study
  • T = 291 K
  • Mean [sigma](C-C) = 0.009 Å
  • R factor = 0.047
  • wR factor = 0.117
  • Data-to-parameter ratio = 15.1

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT127_ALERT_1_C Implicit Hall Symbol Inconsistent with Explicit F 2 2d PLAT241_ALERT_2_C Check High Ueq as Compared to Neighbors for O4 PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for Cu1 PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for C14 PLAT341_ALERT_3_C Low Bond Precision on C-C Bonds (x 1000) Ang ... 9 PLAT710_ALERT_4_C Delete 1-2-3 or 2-3-4 Linear Torsion Angle ... # 1 O3 -CU1 -O1 -C14 156.80 1.30 1.555 1.555 1.555 1.555 PLAT710_ALERT_4_C Delete 1-2-3 or 2-3-4 Linear Torsion Angle ... # 5 O1 -CU1 -O3 -C16 12.00 1.70 1.555 1.555 1.555 1.555 PLAT710_ALERT_4_C Delete 1-2-3 or 2-3-4 Linear Torsion Angle ... # 11 N2 -CU1 -N1 -C5 -116.20 1.30 16.644 1.555 1.555 1.555 PLAT710_ALERT_4_C Delete 1-2-3 or 2-3-4 Linear Torsion Angle ... # 15 N2 -CU1 -N1 -C1 61.10 1.50 16.644 1.555 1.555 1.555
Alert level G REFLT03_ALERT_4_G Please check that the estimate of the number of Friedel pairs is correct. If it is not, please give the correct count in the _publ_section_exptl_refinement section of the submitted CIF. From the CIF: _diffrn_reflns_theta_max 25.50 From the CIF: _reflns_number_total 3599 Count of symmetry unique reflns 1924 Completeness (_total/calc) 187.06% TEST3: Check Friedels for noncentro structure Estimate of Friedel pairs measured 1675 Fraction of Friedel pairs measured 0.871 Are heavy atom types Z>Si present yes PLAT794_ALERT_5_G Check Predicted Bond Valency for Cu1 (2) 2.05 PLAT860_ALERT_3_G Note: Number of Least-Squares Restraints ....... 1
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 9 ALERT level C = Check and explain 3 ALERT level G = General alerts; check 1 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 3 ALERT type 2 Indicator that the structure model may be wrong or deficient 2 ALERT type 3 Indicator that the structure quality may be low 5 ALERT type 4 Improvement, methodology, query or suggestion 1 ALERT type 5 Informative message, check

Comment top

The ligand 1,3-di-4-pyridylpropane (dpp) has been extensively studied in recent years due to its strong coordination capability and bridging function. Here we report the structure of a new coordination polymer (I) (Fig. 1). The polymeric chain is assembled of [Cu(C13H14N2)(CH3COO)2(H2O)].H2O with the five coordinated CuII. The coordination sphere includes the coordinated water molecule, two carboxyl O atoms from two acetate anions and two pyridyl N from two 1,3-di-4-pyridylpropane(dpp) ligands (Table 1). The plane N1/O3/N2A/O1 defines the base of the pyramid while water O5 is the apex. The distance from Cu to the least-squares plane N1/O3/N2A/O1 is 0.1272 (3) Å. The dpp ligand acts as a bridging ligand linking neighbouring CuII atoms into a zigzag chain with the Cu1···Cu1 (-x + 7/4, y - 1/4, z - 3/4) separation distance of 12.851 (2) Å.

In the crystal structure of (I), there is π-π stacking interactions between the adjacent pyridine rings of neighbouring chains. The dihedral angle of aromatics involved in stacking is 8.788 (1) °. Interplanar average distance and ring-centroid separation distance are 3.441 (1) Å and 3.701 (4) Å, respectively. The chain structure is crosswise arranged into two-dimensional network (Fig. 2) by π-π stacking. The coordinated and uncoordinate water molecules, and carboxyl group take part in intermolecular hydrogen bonding (Table 2) stabilizing the structure.

Related literature top

None of these references are cited in the CIF; do you wish to add them all here?

For related literature, see: Carlucci et al. (2002); Dai et al. (2004); Hou et al. (2003); Konar et al. (2004); Lee et al. (2004); Li et al. (2004, 2005); Madalan et al. (2005); Manna et al. (2005); Nassimbeni et al. (2004); Niu et al. (2003); Rarig & Zubieta (2003); Sunahara et al. (2004); Tong et al. (2002); Xia et al. (2004).

Experimental top

The ligand dpp (1 mmol, 0.2 g) was dissolved in a mixture water - methanol (v/v 1:1, 20 ml). To this solution, Cu(CH3COO)2. 4H2O (1 mmol, 0.26 g) was added and the resulting mixture was stirred and refluxed at 353 K for 3 h. Then the reaction mixture was cooled to room temperature. After filtration and evaporation in air for five days, dark-blue block-shaped crystals were obtained in the yield of 45%.

Refinement top

H atoms bonded to C atoms were positioned geometrically with C—H distance 0.93–0.97 Å, and treated as riding atoms with Uiso(H)=1.2Ueq(C). H atoms bonded to O atoms were located in a difference Fourier map and refined isotropically.

Structure description top

The ligand 1,3-di-4-pyridylpropane (dpp) has been extensively studied in recent years due to its strong coordination capability and bridging function. Here we report the structure of a new coordination polymer (I) (Fig. 1). The polymeric chain is assembled of [Cu(C13H14N2)(CH3COO)2(H2O)].H2O with the five coordinated CuII. The coordination sphere includes the coordinated water molecule, two carboxyl O atoms from two acetate anions and two pyridyl N from two 1,3-di-4-pyridylpropane(dpp) ligands (Table 1). The plane N1/O3/N2A/O1 defines the base of the pyramid while water O5 is the apex. The distance from Cu to the least-squares plane N1/O3/N2A/O1 is 0.1272 (3) Å. The dpp ligand acts as a bridging ligand linking neighbouring CuII atoms into a zigzag chain with the Cu1···Cu1 (-x + 7/4, y - 1/4, z - 3/4) separation distance of 12.851 (2) Å.

In the crystal structure of (I), there is π-π stacking interactions between the adjacent pyridine rings of neighbouring chains. The dihedral angle of aromatics involved in stacking is 8.788 (1) °. Interplanar average distance and ring-centroid separation distance are 3.441 (1) Å and 3.701 (4) Å, respectively. The chain structure is crosswise arranged into two-dimensional network (Fig. 2) by π-π stacking. The coordinated and uncoordinate water molecules, and carboxyl group take part in intermolecular hydrogen bonding (Table 2) stabilizing the structure.

None of these references are cited in the CIF; do you wish to add them all here?

For related literature, see: Carlucci et al. (2002); Dai et al. (2004); Hou et al. (2003); Konar et al. (2004); Lee et al. (2004); Li et al. (2004, 2005); Madalan et al. (2005); Manna et al. (2005); Nassimbeni et al. (2004); Niu et al. (2003); Rarig & Zubieta (2003); Sunahara et al. (2004); Tong et al. (2002); Xia et al. (2004).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2; data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 2004); software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. A segment of the polymeric structure of (I) with the atom numbering scheme. H atoms and solvent molecules have been omitted for clarity. Labelling A corresponds to symmetry operation -x + 7/4, y - 1/4, z - 3/4.
[Figure 2] Fig. 2. Packing of (I) showing the intercrossed chains in the bc plane stabilized by π-π stacking and hydrogen bonds. H atoms bonded to C have been omitted for clarity.
catena-Poly[[[aquabis(acetato-κO)copper(II)]-µ-1,3-di-4-pyridylpropane-\ κ2N:N'] monohydrate] top
Crystal data top
[Cu(C2H3O2)2(C13H14N2)(H2O)]·H2OF(000) = 3472
Mr = 415.92Dx = 1.401 Mg m3
Orthorhombic, Fdd2Mo Kα radiation, λ = 0.71073 Å
Hall symbol: F 2 2dCell parameters from 1579 reflections
a = 18.988 (3) Åθ = 2.5–17.4°
b = 32.249 (6) ŵ = 1.14 mm1
c = 12.883 (2) ÅT = 291 K
V = 7889 (2) Å3Block, blue
Z = 160.26 × 0.18 × 0.10 mm
Data collection top
Bruker APEX II CCD area-detector
diffractometer
3599 independent reflections
Radiation source: fine-focus sealed tube2517 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.062
φ and ω scansθmax = 25.5°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 2221
Tmin = 0.757, Tmax = 0.895k = 3838
11662 measured reflectionsl = 1515
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.047 w = 1/[σ2(Fo2) + (0.0455P)2 + 4.4493P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.118(Δ/σ)max = 0.001
S = 1.03Δρmax = 0.37 e Å3
3599 reflectionsΔρmin = 0.34 e Å3
238 parametersExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
1 restraintExtinction coefficient: 0.00018 (5)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983), 1675 Friedel pairs
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.03 (2)
Crystal data top
[Cu(C2H3O2)2(C13H14N2)(H2O)]·H2OV = 7889 (2) Å3
Mr = 415.92Z = 16
Orthorhombic, Fdd2Mo Kα radiation
a = 18.988 (3) ŵ = 1.14 mm1
b = 32.249 (6) ÅT = 291 K
c = 12.883 (2) Å0.26 × 0.18 × 0.10 mm
Data collection top
Bruker APEX II CCD area-detector
diffractometer
3599 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2517 reflections with I > 2σ(I)
Tmin = 0.757, Tmax = 0.895Rint = 0.062
11662 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.047H-atom parameters constrained
wR(F2) = 0.118Δρmax = 0.37 e Å3
S = 1.03Δρmin = 0.34 e Å3
3599 reflectionsAbsolute structure: Flack (1983), 1675 Friedel pairs
238 parametersAbsolute structure parameter: 0.03 (2)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes)

are estimated using the full covariance matrix. The cell e.s.d.'s are taken

into account individually in the estimation of e.s.d.'s in distances, angles

and torsion angles; correlations between e.s.d.'s in cell parameters are only

used when they are defined by crystal symmetry. An approximate (isotropic)

treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and

goodness of fit S are based on F2, conventional R-factors R are based

on F, with F set to zero for negative F2. The threshold expression of

F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is

not relevant to the choice of reflections for refinement. R-factors based

on F2 are statistically about twice as large as those based on F, and R-

factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.94362 (3)0.221410 (19)0.13402 (4)0.0506 (2)
O11.0258 (2)0.21314 (13)0.2238 (3)0.0634 (11)
O21.0911 (3)0.26709 (19)0.1777 (4)0.0951 (17)
O30.8590 (2)0.22242 (12)0.0479 (3)0.0566 (10)
O40.8358 (2)0.16359 (14)0.1289 (5)0.0794 (12)
N10.8914 (2)0.25056 (13)0.2485 (3)0.0468 (11)
N20.7602 (2)0.43467 (13)0.7749 (3)0.0487 (11)
C10.8983 (3)0.24184 (17)0.3503 (4)0.0498 (14)
H10.92990.22130.36970.060*
C20.8608 (3)0.26183 (17)0.4273 (4)0.0499 (14)
H20.86830.25490.49650.060*
C30.8124 (3)0.29185 (14)0.4024 (4)0.0434 (13)
C40.8042 (3)0.30058 (19)0.2972 (5)0.0552 (15)
H40.77180.32050.27580.066*
C50.8443 (3)0.27966 (17)0.2248 (4)0.0551 (15)
H5A0.83800.28630.15520.066*
C60.7696 (3)0.31317 (18)0.4853 (4)0.0553 (15)
H6A0.74730.29190.52720.066*
H6B0.80200.32810.53020.066*
C70.7137 (3)0.34300 (18)0.4510 (5)0.0579 (16)
H7A0.68500.32990.39800.069*
H7B0.73600.36710.42010.069*
C80.6663 (3)0.35713 (19)0.5390 (5)0.0657 (17)
H8A0.62750.37290.50960.079*
H8B0.64640.33280.57210.079*
C90.7015 (3)0.38344 (15)0.6215 (5)0.0503 (14)
C100.7441 (3)0.41616 (17)0.5972 (4)0.0529 (15)
H100.75450.42170.52810.064*
C110.7718 (3)0.44097 (17)0.6741 (4)0.0517 (15)
H110.80000.46320.65470.062*
C120.7200 (4)0.40184 (17)0.7989 (5)0.0627 (16)
H120.71150.39650.86870.075*
C130.6905 (3)0.37572 (18)0.7271 (5)0.0607 (16)
H130.66360.35320.74830.073*
C141.0826 (4)0.2345 (3)0.2237 (5)0.0641 (17)
C151.1433 (4)0.2170 (3)0.2868 (7)0.101 (3)
H15A1.18460.23360.27590.152*
H15B1.15250.18900.26520.152*
H15C1.13110.21720.35910.152*
C160.8226 (3)0.1898 (2)0.0627 (5)0.0638 (17)
C170.7590 (4)0.1858 (3)0.0080 (6)0.094 (2)
H17A0.73020.16310.01490.141*
H17B0.77450.18070.07780.141*
H17C0.73220.21100.00590.141*
O50.9779 (3)0.28664 (15)0.0658 (4)0.0954 (16)
H1W1.01750.27600.07310.143*
H2W0.97950.30680.02570.143*
O60.7594 (3)0.09240 (19)0.1507 (5)0.133 (2)
H3W0.78130.11400.16470.200*
H4W0.76430.07620.09930.200*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0534 (4)0.0558 (4)0.0425 (3)0.0047 (3)0.0012 (4)0.0031 (3)
O10.063 (3)0.074 (3)0.052 (3)0.013 (2)0.007 (2)0.002 (2)
O20.088 (4)0.113 (4)0.084 (4)0.015 (3)0.006 (3)0.018 (3)
O30.056 (3)0.062 (3)0.052 (2)0.006 (2)0.007 (2)0.0083 (19)
O40.077 (3)0.077 (3)0.085 (3)0.011 (2)0.008 (3)0.002 (3)
N10.049 (3)0.046 (3)0.045 (3)0.003 (2)0.000 (2)0.001 (2)
N20.057 (3)0.047 (3)0.042 (3)0.004 (2)0.003 (2)0.004 (2)
C10.047 (3)0.052 (3)0.051 (4)0.004 (3)0.003 (3)0.005 (3)
C20.051 (4)0.053 (3)0.046 (3)0.001 (3)0.004 (3)0.002 (3)
C30.044 (3)0.037 (2)0.049 (4)0.007 (2)0.005 (3)0.008 (2)
C40.067 (4)0.052 (3)0.046 (3)0.013 (3)0.009 (3)0.003 (3)
C50.070 (4)0.056 (3)0.039 (3)0.014 (3)0.006 (3)0.000 (3)
C60.055 (4)0.057 (3)0.054 (4)0.007 (3)0.002 (3)0.013 (3)
C70.062 (4)0.053 (3)0.059 (4)0.010 (3)0.008 (3)0.018 (3)
C80.053 (4)0.069 (4)0.075 (4)0.007 (3)0.002 (3)0.023 (3)
C90.044 (3)0.041 (3)0.066 (4)0.003 (2)0.002 (3)0.012 (3)
C100.056 (4)0.057 (3)0.046 (3)0.004 (3)0.002 (3)0.009 (3)
C110.054 (4)0.050 (3)0.051 (4)0.005 (3)0.002 (3)0.000 (3)
C120.086 (5)0.052 (3)0.050 (3)0.007 (3)0.000 (3)0.007 (3)
C130.070 (4)0.049 (3)0.064 (4)0.016 (3)0.000 (3)0.003 (3)
C140.048 (4)0.099 (5)0.046 (4)0.004 (4)0.007 (3)0.014 (4)
C150.058 (5)0.150 (8)0.095 (6)0.016 (5)0.026 (5)0.007 (5)
C160.055 (4)0.079 (5)0.057 (4)0.009 (4)0.001 (3)0.026 (4)
C170.063 (5)0.135 (7)0.084 (5)0.003 (5)0.013 (4)0.050 (5)
O50.079 (3)0.094 (4)0.113 (4)0.001 (3)0.011 (3)0.027 (3)
O60.169 (6)0.124 (5)0.107 (5)0.062 (4)0.025 (5)0.015 (4)
Geometric parameters (Å, º) top
Cu1—O31.952 (4)C7—C81.517 (8)
Cu1—O11.960 (4)C7—H7A0.9700
Cu1—N12.011 (4)C7—H7B0.9700
Cu1—N2i2.037 (4)C8—C91.516 (8)
Cu1—O52.371 (5)C8—H8A0.9700
O1—C141.280 (8)C8—H8B0.9700
O2—C141.217 (8)C9—C101.366 (7)
O3—C161.275 (8)C9—C131.398 (8)
O4—C161.226 (8)C10—C111.377 (7)
N1—C51.332 (6)C10—H100.9300
N1—C11.347 (6)C11—H110.9300
N2—C111.332 (6)C12—C131.370 (8)
N2—C121.342 (7)C12—H120.9300
N2—Cu1ii2.037 (4)C13—H130.9300
C1—C21.381 (7)C14—C151.520 (9)
C1—H10.9300C15—H15A0.9600
C2—C31.373 (7)C15—H15B0.9600
C2—H20.9300C15—H15C0.9600
C3—C41.393 (8)C16—C171.517 (9)
C3—C61.508 (7)C17—H17A0.9600
C4—C51.380 (8)C17—H17B0.9600
C4—H40.9300C17—H17C0.9600
C5—H5A0.9300O5—H1W0.8307
C6—C71.500 (8)O5—H2W0.8299
C6—H6A0.9700O6—H3W0.8316
C6—H6B0.9700O6—H4W0.8492
O3—Cu1—O1172.88 (18)H7A—C7—H7B107.8
O3—Cu1—N190.19 (17)C9—C8—C7115.5 (5)
O1—Cu1—N191.35 (17)C9—C8—H8A108.4
O3—Cu1—N2i88.36 (17)C7—C8—H8A108.4
O1—Cu1—N2i89.17 (17)C9—C8—H8B108.4
N1—Cu1—N2i172.12 (18)C7—C8—H8B108.4
O3—Cu1—O590.03 (17)H8A—C8—H8B107.5
O1—Cu1—O596.93 (19)C10—C9—C13116.7 (5)
N1—Cu1—O589.59 (17)C10—C9—C8122.2 (6)
N2i—Cu1—O598.15 (18)C13—C9—C8121.1 (5)
C14—O1—Cu1126.6 (4)C9—C10—C11120.7 (5)
C16—O3—Cu1110.4 (4)C9—C10—H10119.7
C5—N1—C1115.8 (5)C11—C10—H10119.7
C5—N1—Cu1119.5 (4)N2—C11—C10123.3 (5)
C1—N1—Cu1124.6 (4)N2—C11—H11118.4
C11—N2—C12116.1 (5)C10—C11—H11118.4
C11—N2—Cu1ii120.8 (4)N2—C12—C13124.2 (6)
C12—N2—Cu1ii123.0 (4)N2—C12—H12117.9
N1—C1—C2123.5 (5)C13—C12—H12117.9
N1—C1—H1118.3C12—C13—C9119.1 (5)
C2—C1—H1118.3C12—C13—H13120.5
C3—C2—C1120.4 (5)C9—C13—H13120.5
C3—C2—H2119.8O2—C14—O1125.3 (7)
C1—C2—H2119.8O2—C14—C15118.8 (7)
C2—C3—C4116.4 (5)O1—C14—C15115.9 (7)
C2—C3—C6121.1 (5)C14—C15—H15A109.5
C4—C3—C6122.5 (5)C14—C15—H15B109.5
C5—C4—C3119.8 (5)H15A—C15—H15B109.5
C5—C4—H4120.1C14—C15—H15C109.5
C3—C4—H4120.1H15A—C15—H15C109.5
N1—C5—C4124.0 (5)H15B—C15—H15C109.5
N1—C5—H5A118.0O4—C16—O3124.2 (6)
C4—C5—H5A118.0O4—C16—C17121.5 (7)
C7—C6—C3117.7 (5)O3—C16—C17114.4 (7)
C7—C6—H6A107.9C16—C17—H17A109.5
C3—C6—H6A107.9C16—C17—H17B109.5
C7—C6—H6B107.9H17A—C17—H17B109.5
C3—C6—H6B107.9C16—C17—H17C109.5
H6A—C6—H6B107.2H17A—C17—H17C109.5
C6—C7—C8113.1 (5)H17B—C17—H17C109.5
C6—C7—H7A109.0Cu1—O5—H1W80.8
C8—C7—H7A109.0Cu1—O5—H2W159.1
C6—C7—H7B109.0H1W—O5—H2W111.2
C8—C7—H7B109.0H3W—O6—H4W129.1
O3—Cu1—O1—C14156.8 (13)C1—N1—C5—C40.4 (8)
N1—Cu1—O1—C14100.8 (5)Cu1—N1—C5—C4178.0 (5)
N2i—Cu1—O1—C1487.1 (5)C3—C4—C5—N10.5 (9)
O5—Cu1—O1—C1411.0 (5)C2—C3—C6—C7174.9 (5)
O1—Cu1—O3—C1612.0 (17)C4—C3—C6—C73.6 (8)
N1—Cu1—O3—C1690.4 (4)C3—C6—C7—C8170.5 (5)
N2i—Cu1—O3—C1681.8 (4)C6—C7—C8—C966.6 (7)
O5—Cu1—O3—C16180.0 (4)C7—C8—C9—C1047.2 (8)
O3—Cu1—N1—C536.9 (4)C7—C8—C9—C13134.2 (6)
O1—Cu1—N1—C5150.1 (4)C13—C9—C10—C112.7 (8)
N2i—Cu1—N1—C5116.2 (13)C8—C9—C10—C11175.9 (5)
O5—Cu1—N1—C553.1 (4)C12—N2—C11—C100.9 (9)
O3—Cu1—N1—C1140.5 (4)Cu1ii—N2—C11—C10177.5 (4)
O1—Cu1—N1—C132.6 (4)C9—C10—C11—N20.9 (9)
N2i—Cu1—N1—C161.1 (15)C11—N2—C12—C130.8 (9)
O5—Cu1—N1—C1129.5 (4)Cu1ii—N2—C12—C13177.4 (5)
C5—N1—C1—C21.3 (8)N2—C12—C13—C90.9 (10)
Cu1—N1—C1—C2178.8 (4)C10—C9—C13—C122.7 (8)
N1—C1—C2—C31.3 (9)C8—C9—C13—C12176.0 (6)
C1—C2—C3—C40.2 (8)Cu1—O1—C14—O210.7 (9)
C1—C2—C3—C6178.4 (5)Cu1—O1—C14—C15169.1 (4)
C2—C3—C4—C50.6 (8)Cu1—O3—C16—O46.4 (7)
C6—C3—C4—C5179.2 (5)Cu1—O3—C16—C17174.7 (4)
Symmetry codes: (i) x+7/4, y1/4, z3/4; (ii) x+7/4, y+1/4, z+3/4.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H1W···O20.831.962.663 (8)142
O5—H2W···O6iii0.831.992.795 (8)164
O6—H3W···O40.831.962.730 (7)154
O6—H4W···O1iv0.852.072.916 (7)180
Symmetry codes: (iii) x+7/4, y+1/4, z1/4; (iv) x1/4, y+1/4, z1/4.

Experimental details

Crystal data
Chemical formula[Cu(C2H3O2)2(C13H14N2)(H2O)]·H2O
Mr415.92
Crystal system, space groupOrthorhombic, Fdd2
Temperature (K)291
a, b, c (Å)18.988 (3), 32.249 (6), 12.883 (2)
V3)7889 (2)
Z16
Radiation typeMo Kα
µ (mm1)1.14
Crystal size (mm)0.26 × 0.18 × 0.10
Data collection
DiffractometerBruker APEX II CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.757, 0.895
No. of measured, independent and
observed [I > 2σ(I)] reflections
11662, 3599, 2517
Rint0.062
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.118, 1.03
No. of reflections3599
No. of parameters238
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.37, 0.34
Absolute structureFlack (1983), 1675 Friedel pairs
Absolute structure parameter0.03 (2)

Computer programs: APEX2 (Bruker, 2004), APEX2, SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Bruker, 2004), SHELXTL.

Selected geometric parameters (Å, º) top
Cu1—O31.952 (4)Cu1—N2i2.037 (4)
Cu1—O11.960 (4)Cu1—O52.371 (5)
Cu1—N12.011 (4)
O3—Cu1—O1172.88 (18)O1—Cu1—O596.93 (19)
O1—Cu1—N191.35 (17)N1—Cu1—O589.59 (17)
O1—Cu1—N2i89.17 (17)N2i—Cu1—O598.15 (18)
O3—Cu1—O590.03 (17)
Symmetry code: (i) x+7/4, y1/4, z3/4.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H1W···O20.831.962.663 (8)141.5
O5—H2W···O6ii0.831.992.795 (8)163.6
O6—H3W···O40.831.962.730 (7)153.8
O6—H4W···O1iii0.852.072.916 (7)179.7
Symmetry codes: (ii) x+7/4, y+1/4, z1/4; (iii) x1/4, y+1/4, z1/4.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds