Download citation
Download citation
link to html
In the title compound, [Mn(C9H7Br2NO2)2]·0.5CH4O·H2O, the MnIV atom is coordinated in a distorted octa­hedral geometry by two N and four O atoms from two different tridentate 2,4-dibromo-6-[(2-oxidoethyl­imino)meth­yl]phenolate ligands. In the crystal structure, the methanol solvent mol­ecule is disordered over two positions with equal occupancies. The crystal packing reveals a three-dimensional network generated by short Br...Br inter­actions [Br...Br = 3.555 (5)–3.742 (5) Å], and O—H...O and O—H...Br hydrogen bonds.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807041037/kp2132sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807041037/kp2132Isup2.hkl
Contains datablock I

CCDC reference: 660164

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.014 Å
  • Some non-H atoms missing
  • Disorder in solvent or counterion
  • R factor = 0.051
  • wR factor = 0.133
  • Data-to-parameter ratio = 14.1

checkCIF/PLATON results

No syntax errors found



Alert level B ABSTM02_ALERT_3_B The ratio of Tmax/Tmin expected RT(exp) is > 1.20 Absorption corrections should be applied. Tmin and Tmax expected: 0.311 0.392 RT(exp) = 1.263 PLAT057_ALERT_3_B Correction for Absorption Required RT(exp) ... 1.26 PLAT417_ALERT_2_B Short Inter D-H..H-D H1WA .. H5A .. 1.38 Ang. PLAT420_ALERT_2_B D-H Without Acceptor O1W - H1WB ... ? PLAT430_ALERT_2_B Short Inter D...A Contact O2 .. O4 .. 2.76 Ang.
Alert level C ABSTY03_ALERT_1_C The _exptl_absorpt_correction_type has been given as none. However values have been given for Tmin and Tmax. Remove these if an absorption correction has not been applied. From the CIF: _exptl_absorpt_correction_T_min 0.357 From the CIF: _exptl_absorpt_correction_T_max 0.455 CHEMW01_ALERT_1_C The difference between the given and expected weight for compound is greater 1 mass unit. Check that all hydrogen atoms have been taken into account. CRYSC01_ALERT_1_C The word below has not been recognised as a standard identifier. deep PLAT029_ALERT_3_C _diffrn_measured_fraction_theta_full Low ....... 0.96 PLAT041_ALERT_1_C Calc. and Rep. SumFormula Strings Differ .... ? PLAT042_ALERT_1_C Calc. and Rep. MoietyFormula Strings Differ .... ? PLAT045_ALERT_1_C Calculated and Reported Z Differ by ............ 0.50 Ratio PLAT094_ALERT_2_C Ratio of Maximum / Minimum Residual Density .... 2.84 PLAT125_ALERT_4_C No _symmetry_space_group_name_Hall Given ....... ? PLAT152_ALERT_1_C Supplied and Calc Volume s.u. Inconsistent ..... ? PLAT241_ALERT_2_C Check High Ueq as Compared to Neighbors for O3 PLAT302_ALERT_4_C Anion/Solvent Disorder ......................... 33.00 Perc. PLAT341_ALERT_3_C Low Bond Precision on C-C Bonds (x 1000) Ang ... 14 PLAT431_ALERT_2_C Short Inter HL..A Contact Br3 .. Br3 .. 3.56 Ang. PLAT432_ALERT_2_C Short Inter X...Y Contact O1W .. C19 .. 2.98 Ang. PLAT480_ALERT_4_C Long H...A H-Bond Reported H5A .. BR1 .. 3.04 Ang. PLAT481_ALERT_4_C Long D...A H-Bond Reported O5 .. BR1 .. 3.89 Ang. PLAT720_ALERT_4_C Number of Unusual/Non-Standard Label(s) ........ 2
Alert level G FORMU01_ALERT_1_G There is a discrepancy between the atom counts in the _chemical_formula_sum and _chemical_formula_moiety. This is usually due to the moiety formula being in the wrong format. Atom count from _chemical_formula_sum: C18.4 H18 Br4 Mn1 N2 O5.5 Atom count from _chemical_formula_moiety:C18.5 H18 Br4 Mn1 N2 O5.5 FORMU01_ALERT_2_G There is a discrepancy between the atom counts in the _chemical_formula_sum and the formula from the _atom_site* data. Atom count from _chemical_formula_sum:C18.4 H18 Br4 Mn1 N2 O5.5 Atom count from the _atom_site data: C18.5 H18 Br4 Mn1 N2 O5.5 CELLZ01_ALERT_1_G Difference between formula and atom_site contents detected. CELLZ01_ALERT_1_G ALERT: Large difference may be due to a symmetry error - see SYMMG tests From the CIF: _cell_formula_units_Z 16 From the CIF: _chemical_formula_sum C18.4 H18 Br4 Mn1 N2 O5.5 TEST: Compare cell contents of formula and atom_site data atom Z*formula cif sites diff C 294.40 296.00 -1.60 H 288.00 288.00 0.00 Br 64.00 64.00 0.00 Mn 16.00 16.00 0.00 N 32.00 32.00 0.00 O 88.00 88.00 0.00 REFLT03_ALERT_1_G ALERT: Expected hkl max differ from CIF values From the CIF: _diffrn_reflns_theta_max 25.99 From the CIF: _reflns_number_total 4075 From the CIF: _diffrn_reflns_limit_ max hkl 14. 38. 12. From the CIF: _diffrn_reflns_limit_ min hkl -32. -38. -13. TEST1: Expected hkl limits for theta max Calculated maximum hkl 32. 40. 13. Calculated minimum hkl -32. -40. -13. REFLT03_ALERT_4_G Please check that the estimate of the number of Friedel pairs is correct. If it is not, please give the correct count in the _publ_section_exptl_refinement section of the submitted CIF. From the CIF: _diffrn_reflns_theta_max 25.99 From the CIF: _reflns_number_total 4075 Count of symmetry unique reflns 2503 Completeness (_total/calc) 162.80% TEST3: Check Friedels for noncentro structure Estimate of Friedel pairs measured 1572 Fraction of Friedel pairs measured 0.628 Are heavy atom types Z>Si present yes PLAT033_ALERT_2_G Flack Parameter Value Deviates 2 * su from zero. 0.05 PLAT199_ALERT_1_G Check the Reported _cell_measurement_temperature 293 K PLAT200_ALERT_1_G Check the Reported _diffrn_ambient_temperature . 293 K PLAT860_ALERT_3_G Note: Number of Least-Squares Restraints ....... 20
0 ALERT level A = In general: serious problem 5 ALERT level B = Potentially serious problem 18 ALERT level C = Check and explain 10 ALERT level G = General alerts; check 13 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 9 ALERT type 2 Indicator that the structure model may be wrong or deficient 5 ALERT type 3 Indicator that the structure quality may be low 6 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

Interest on packing arrangements of halogenated compounds goes back many years to what Schmidt called the 'chloro effect', where the presence of chloro substituents on aromatic compounds frequently results in stacking arrangements with a short (ca 4 Å) crystallographic axis (Cohen et al., 1964; Zordan et al., 2005; Desiraju, 1989). The title compound, (I), contains the dibrominated ligand L- with two Br atoms accessible at the periphery of each ligand.

In (I) the MnIV atom is coordinated by two N and four O atoms from two different tridentate ligands L2- forming a distorted octahedral geometry (Fig. 1 and Table 1). The shortest Br···Br contacts (Zordan et al., 2005; Zaman et al., 2004; Sarma & Desiraju, 1986) are Br3i···Br3ii = 3.555 (5) Å, Br3i···Br4iii = 3.742 (5) Å, and Br4i···Br2iv = 3.631 (5) Å, [symmetry codes: (i) 1/2 - x, -1/2 - y, z; (ii) x, -1 + y, z; (iii) 1/4 + x,-1/4 - y, -1/4 + z; (iv) 1/4 - x, -3/4 - y, 1/4 + z]. The molecules of (I) are connected into a 3-D network through short Br···Br interactions, very strong O–H···O hydrogen bond and O–H···Br hydrogen bond (Table 2 and Fig. 2).

Related literature top

A similar manganese (II) complex also has a distorted octahedral geometry (Kessissoglou et al., 1986). For related literature, see: Cohen et al. (1964); Zordan et al. (2005); Desiraju (1989); Zaman et al. (2004); Sarma & Desiraju (1986).

Experimental top

A solution of 2-amino-ethanol (0.061 g, 1 mmol) and caustic potash (0.112 g, 2 mmol) in methanol (10 ml) was added slowly to a solution of 3,5-dibromo-2-hydroxybenzaldehyde (1 mmol, 0.280 g) in methanol (20 ml). The mixture was stirred for 1 h at 323 K, then added slowly to a solution of MnCl2 (2 mmol, 0.396 g) in methanol (10 ml). This mixture was stirred and refluxed for 2 h at 323 K. The solution was filtered and the filtrate was left to stand at room temperature. Deep purple suitable for X-ray diffraction were obtained in a yield of 38% (based on manganese).

Refinement top

H atoms of the water molecule were located in a difference Fourier map. The O—H distances were normalized to 0.85 Å and the H atoms were allowed to ride on the O atom, with Uiso(H) = 1.5 Ueq(O). All other H atoms were positioned geometrically and refined as riding, with C–H distances of 0.93–0.97 Å and Uiso(H) = 1.2 Ueq(C).

Structure description top

Interest on packing arrangements of halogenated compounds goes back many years to what Schmidt called the 'chloro effect', where the presence of chloro substituents on aromatic compounds frequently results in stacking arrangements with a short (ca 4 Å) crystallographic axis (Cohen et al., 1964; Zordan et al., 2005; Desiraju, 1989). The title compound, (I), contains the dibrominated ligand L- with two Br atoms accessible at the periphery of each ligand.

In (I) the MnIV atom is coordinated by two N and four O atoms from two different tridentate ligands L2- forming a distorted octahedral geometry (Fig. 1 and Table 1). The shortest Br···Br contacts (Zordan et al., 2005; Zaman et al., 2004; Sarma & Desiraju, 1986) are Br3i···Br3ii = 3.555 (5) Å, Br3i···Br4iii = 3.742 (5) Å, and Br4i···Br2iv = 3.631 (5) Å, [symmetry codes: (i) 1/2 - x, -1/2 - y, z; (ii) x, -1 + y, z; (iii) 1/4 + x,-1/4 - y, -1/4 + z; (iv) 1/4 - x, -3/4 - y, 1/4 + z]. The molecules of (I) are connected into a 3-D network through short Br···Br interactions, very strong O–H···O hydrogen bond and O–H···Br hydrogen bond (Table 2 and Fig. 2).

A similar manganese (II) complex also has a distorted octahedral geometry (Kessissoglou et al., 1986). For related literature, see: Cohen et al. (1964); Zordan et al. (2005); Desiraju (1989); Zaman et al. (2004); Sarma & Desiraju (1986).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1997); software used to prepare material for publication: SHELXTL (Bruker, 1997).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of (I) with displacement ellipsoids drawn at the 30% probability level. Non-solution H atoms have been omitted.
[Figure 2] Fig. 2. The 3-D network of (I): dashed lines denote hydrogen bonds and Br···Br interactions. Non-solution H atoms have been omitted.
Bis{2,4-dibromo-6-[(2-oxidoethylimino)methyl]phenolato-κ3O,N,O'}manganese(IV) methanol hemisolvate monohydrate top
Crystal data top
C18H14Br4MnN2O4·0.5CH4O·H2ODx = 2.010 Mg m3
Mr = 730.89Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, Fdd2Cell parameters from 4075 reflections
a = 26.286 (4) Åθ = 2.5–26.0°
b = 32.908 (5) ŵ = 7.20 mm1
c = 11.1681 (17) ÅT = 293 K
V = 9661 (2) Å3Block, deep purple
Z = 160.18 × 0.14 × 0.13 mm
F(000) = 5632
Data collection top
Bruker SMART CCD area-detector
diffractometer
4075 independent reflections
Radiation source: fine-focus sealed tube3143 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
φ and ω scansθmax = 26.0°, θmin = 2.5°
Absorption correction: multi-scan
SADABS (Sheldrick, 1996)
h = 3214
Tmin = 0.357, Tmax = 0.455k = 3838
8149 measured reflectionsl = 1312
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.051H-atom parameters constrained
wR(F2) = 0.133 w = 1/[σ2(Fo2) + (0.0654P)2 + 43.5887P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
4075 reflectionsΔρmax = 1.09 e Å3
290 parametersΔρmin = 0.39 e Å3
20 restraintsAbsolute structure: Flack (1983), 1669 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.045 (19)
Crystal data top
C18H14Br4MnN2O4·0.5CH4O·H2OV = 9661 (2) Å3
Mr = 730.89Z = 16
Orthorhombic, Fdd2Mo Kα radiation
a = 26.286 (4) ŵ = 7.20 mm1
b = 32.908 (5) ÅT = 293 K
c = 11.1681 (17) Å0.18 × 0.14 × 0.13 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
4075 independent reflections
Absorption correction: multi-scan
SADABS (Sheldrick, 1996)
3143 reflections with I > 2σ(I)
Tmin = 0.357, Tmax = 0.455Rint = 0.029
8149 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.051H-atom parameters constrained
wR(F2) = 0.133 w = 1/[σ2(Fo2) + (0.0654P)2 + 43.5887P]
where P = (Fo2 + 2Fc2)/3
S = 1.05Δρmax = 1.09 e Å3
4075 reflectionsΔρmin = 0.39 e Å3
290 parametersAbsolute structure: Flack (1983), 1669 Friedel pairs
20 restraintsAbsolute structure parameter: 0.045 (19)
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Mn10.04388 (5)0.25185 (4)0.55027 (13)0.0418 (3)
Br10.14995 (5)0.31726 (4)0.25588 (13)0.0797 (4)
Br20.21088 (5)0.16499 (5)0.07739 (14)0.1024 (5)
Br30.18568 (5)0.26672 (3)0.84250 (12)0.0769 (4)
Br40.09302 (5)0.40746 (4)1.02880 (13)0.0909 (5)
C10.1120 (3)0.2418 (3)0.3450 (9)0.045 (2)
C20.1451 (4)0.2600 (3)0.2601 (11)0.063 (3)
C30.1729 (4)0.2370 (4)0.1815 (12)0.074 (3)
H30.19390.24930.12530.089*
C40.1690 (5)0.1956 (4)0.1872 (11)0.073 (3)
C50.1366 (3)0.1763 (3)0.2602 (10)0.058 (3)
H50.13230.14830.25430.070*
C60.1091 (3)0.1988 (3)0.3463 (9)0.048 (2)
C70.0781 (3)0.1767 (3)0.4321 (10)0.049 (2)
H70.07560.14870.42380.059*
C80.0263 (4)0.1681 (3)0.6026 (11)0.062 (3)
H8A0.04810.16060.66900.075*
H8B0.01420.14350.56420.075*
C90.0180 (3)0.1932 (3)0.6464 (11)0.059 (3)
H9A0.04440.19440.58570.071*
H9B0.03230.18130.71830.071*
C100.0955 (3)0.3013 (3)0.7461 (9)0.046 (2)
C110.1330 (4)0.3063 (3)0.8315 (10)0.059 (3)
C120.1339 (4)0.3363 (3)0.9175 (8)0.052 (2)
H120.15920.33750.97580.062*
C130.0937 (4)0.3656 (3)0.9116 (10)0.061 (3)
C140.0584 (3)0.3634 (3)0.8245 (9)0.051 (2)
H140.03340.38340.82020.061*
C150.0581 (3)0.3327 (3)0.7422 (8)0.045 (2)
C160.0194 (3)0.3353 (3)0.6506 (9)0.046 (2)
H160.00190.35790.65360.055*
C170.0327 (4)0.3176 (3)0.4826 (10)0.063 (3)
H17A0.05750.33470.52240.075*
H17B0.02070.33170.41170.075*
C180.0569 (3)0.2783 (3)0.4473 (10)0.057 (3)
H18A0.07510.26710.51530.069*
H18B0.08130.28310.38380.069*
N10.0543 (2)0.1932 (2)0.5168 (8)0.0453 (17)
N20.0111 (3)0.3096 (2)0.5650 (7)0.0466 (17)
O10.0876 (2)0.26594 (18)0.4206 (6)0.0494 (15)
O20.0007 (2)0.23280 (19)0.6711 (6)0.0564 (17)
O30.0963 (3)0.2718 (2)0.6697 (7)0.0630 (19)
O40.0208 (2)0.2505 (2)0.4085 (6)0.0536 (16)
O50.0213 (4)0.4752 (5)0.7733 (17)0.081 (4)0.50
H5A0.03830.46570.71500.121*0.50
C190.0282 (5)0.4748 (6)0.759 (2)0.068 (6)0.50
H19A0.03780.49530.70220.102*0.50
H19B0.03880.44870.73050.102*0.50
H19C0.04440.48030.83460.102*0.50
O1W0.0549 (6)0.4146 (5)0.7965 (13)0.172 (6)
H1WA0.05720.44030.80210.257*
H1WB0.08570.41110.77600.257*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.0489 (6)0.0388 (7)0.0378 (7)0.0059 (6)0.0051 (6)0.0072 (6)
Br10.0789 (7)0.0729 (8)0.0871 (9)0.0109 (6)0.0038 (6)0.0148 (7)
Br20.0957 (9)0.1375 (13)0.0739 (10)0.0320 (8)0.0151 (7)0.0354 (9)
Br30.0814 (7)0.0637 (7)0.0855 (9)0.0061 (6)0.0389 (6)0.0095 (6)
Br40.0996 (8)0.0844 (8)0.0886 (11)0.0175 (7)0.0070 (7)0.0550 (8)
C10.040 (4)0.055 (6)0.041 (5)0.003 (4)0.003 (4)0.017 (5)
C20.080 (7)0.062 (6)0.046 (7)0.002 (5)0.002 (5)0.004 (5)
C30.061 (6)0.108 (11)0.054 (8)0.008 (6)0.013 (5)0.003 (7)
C40.085 (8)0.092 (9)0.043 (7)0.018 (7)0.013 (6)0.026 (6)
C50.050 (5)0.075 (7)0.049 (6)0.012 (5)0.008 (5)0.020 (6)
C60.035 (4)0.060 (6)0.050 (6)0.001 (4)0.003 (4)0.013 (5)
C70.056 (5)0.029 (5)0.063 (7)0.008 (4)0.003 (5)0.011 (5)
C80.069 (6)0.059 (6)0.059 (7)0.012 (5)0.002 (5)0.003 (5)
C90.048 (5)0.062 (7)0.067 (7)0.008 (5)0.004 (5)0.010 (5)
C100.050 (5)0.032 (5)0.055 (6)0.006 (4)0.001 (4)0.001 (4)
C110.077 (6)0.041 (5)0.058 (7)0.005 (4)0.012 (5)0.002 (5)
C120.065 (6)0.052 (6)0.039 (6)0.018 (5)0.007 (4)0.012 (4)
C130.064 (6)0.068 (7)0.050 (6)0.019 (5)0.010 (5)0.028 (5)
C140.056 (5)0.047 (5)0.050 (6)0.006 (4)0.009 (4)0.011 (4)
C150.054 (5)0.037 (5)0.043 (6)0.012 (4)0.009 (4)0.010 (4)
C160.058 (5)0.034 (5)0.045 (6)0.006 (4)0.000 (4)0.003 (4)
C170.072 (6)0.061 (7)0.056 (7)0.023 (5)0.018 (5)0.003 (5)
C180.043 (5)0.080 (7)0.050 (6)0.008 (5)0.002 (4)0.001 (5)
N10.034 (3)0.051 (4)0.050 (5)0.000 (3)0.005 (3)0.005 (4)
N20.054 (4)0.044 (4)0.042 (5)0.009 (3)0.009 (3)0.004 (4)
O10.044 (3)0.047 (4)0.057 (4)0.002 (3)0.006 (3)0.001 (3)
O20.071 (4)0.055 (4)0.043 (4)0.008 (3)0.004 (3)0.005 (3)
O30.074 (4)0.054 (4)0.061 (5)0.013 (3)0.020 (3)0.028 (4)
O40.049 (3)0.057 (4)0.055 (4)0.012 (3)0.009 (3)0.007 (3)
O50.057 (7)0.105 (10)0.080 (11)0.003 (7)0.002 (8)0.013 (9)
C190.042 (9)0.074 (11)0.088 (14)0.019 (8)0.050 (9)0.032 (11)
O1W0.214 (12)0.196 (12)0.105 (11)0.067 (10)0.020 (9)0.009 (9)
Geometric parameters (Å, º) top
Mn1—O21.871 (7)C9—H9B0.9700
Mn1—O11.906 (7)C10—O31.292 (11)
Mn1—N11.984 (7)C10—C111.381 (14)
Mn1—O32.027 (7)C10—C151.426 (12)
Mn1—N22.094 (7)C11—C121.377 (14)
Mn1—O42.324 (6)C12—C131.432 (14)
Br1—C21.888 (10)C12—H120.9300
Br2—C41.931 (11)C13—C141.348 (14)
Br3—C111.905 (10)C14—C151.367 (13)
Br4—C131.900 (9)C14—H140.9300
C1—O11.326 (10)C15—C161.446 (13)
C1—C61.415 (13)C16—N21.295 (12)
C1—C21.419 (15)C16—H160.9300
C2—C31.370 (17)C17—C181.494 (14)
C3—C41.368 (18)C17—N21.496 (12)
C3—H30.9300C17—H17A0.9700
C4—C51.339 (17)C17—H17B0.9700
C5—C61.414 (13)C18—O41.388 (11)
C5—H50.9300C18—H18A0.9700
C6—C71.453 (14)C18—H18B0.9700
C7—N11.257 (12)O5—C191.312 (9)
C7—H70.9300O5—H5A0.8501
C8—N11.464 (13)C19—H19A0.9600
C8—C91.508 (14)C19—H19B0.9600
C8—H8A0.9700C19—H19C0.9600
C8—H8B0.9700O1W—H1WA0.8500
C9—O21.419 (11)O1W—H1WB0.8500
C9—H9A0.9700
O2—Mn1—O1174.3 (3)H9A—C9—H9B108.5
O2—Mn1—N183.9 (3)O3—C10—C11122.4 (8)
O1—Mn1—N190.6 (3)O3—C10—C15122.2 (8)
O2—Mn1—O392.7 (3)C11—C10—C15115.2 (8)
O1—Mn1—O390.6 (3)C12—C11—C10125.5 (9)
N1—Mn1—O3110.2 (3)C12—C11—Br3115.6 (8)
O2—Mn1—N289.9 (3)C10—C11—Br3118.7 (7)
O1—Mn1—N295.0 (3)C11—C12—C13115.9 (8)
N1—Mn1—N2162.6 (3)C11—C12—H12122.0
O3—Mn1—N286.2 (3)C13—C12—H12122.0
O2—Mn1—O492.3 (3)C14—C13—C12120.4 (8)
O1—Mn1—O485.9 (3)C14—C13—Br4122.0 (8)
N1—Mn1—O487.3 (3)C12—C13—Br4117.6 (7)
O3—Mn1—O4162.2 (3)C13—C14—C15121.9 (9)
N2—Mn1—O476.7 (3)C13—C14—H14119.0
O1—C1—C6124.4 (9)C15—C14—H14119.0
O1—C1—C2117.9 (8)C14—C15—C10120.8 (8)
C6—C1—C2117.6 (8)C14—C15—C16115.7 (8)
C3—C2—C1121.4 (10)C10—C15—C16123.5 (8)
C3—C2—Br1119.9 (9)N2—C16—C15126.9 (8)
C1—C2—Br1118.7 (8)N2—C16—H16116.5
C4—C3—C2118.7 (12)C15—C16—H16116.5
C4—C3—H3120.6C18—C17—N2109.8 (7)
C2—C3—H3120.6C18—C17—H17A109.7
C5—C4—C3123.2 (11)N2—C17—H17A109.7
C5—C4—Br2120.1 (9)C18—C17—H17B109.7
C3—C4—Br2116.6 (10)N2—C17—H17B109.7
C4—C5—C6119.4 (10)H17A—C17—H17B108.2
C4—C5—H5120.3O4—C18—C17111.2 (7)
C6—C5—H5120.3O4—C18—H18A109.4
C5—C6—C1119.2 (9)C17—C18—H18A109.4
C5—C6—C7118.3 (9)O4—C18—H18B109.4
C1—C6—C7122.5 (8)C17—C18—H18B109.4
N1—C7—C6124.0 (8)H18A—C18—H18B108.0
N1—C7—H7118.0C7—N1—C8119.9 (8)
C6—C7—H7118.0C7—N1—Mn1129.1 (7)
N1—C8—C9107.0 (8)C8—N1—Mn1110.8 (6)
N1—C8—H8A110.3C16—N2—C17118.0 (7)
C9—C8—H8A110.3C16—N2—Mn1125.6 (6)
N1—C8—H8B110.3C17—N2—Mn1115.3 (6)
C9—C8—H8B110.3C1—O1—Mn1129.1 (6)
H8A—C8—H8B108.6C9—O2—Mn1112.2 (6)
O2—C9—C8107.3 (7)C10—O3—Mn1131.9 (6)
O2—C9—H9A110.3C18—O4—Mn1105.9 (5)
C8—C9—H9A110.3C19—O5—H5A115.3
O2—C9—H9B110.3H1WA—O1W—H1WB94.9
C8—C9—H9B110.3
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5A···Br1i0.853.043.893 (18)179
O1W—H1WA···O50.851.522.19 (2)134
Symmetry code: (i) x1/4, y+3/4, z+1/4.

Experimental details

Crystal data
Chemical formulaC18H14Br4MnN2O4·0.5CH4O·H2O
Mr730.89
Crystal system, space groupOrthorhombic, Fdd2
Temperature (K)293
a, b, c (Å)26.286 (4), 32.908 (5), 11.1681 (17)
V3)9661 (2)
Z16
Radiation typeMo Kα
µ (mm1)7.20
Crystal size (mm)0.18 × 0.14 × 0.13
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correctionMulti-scan
SADABS (Sheldrick, 1996)
Tmin, Tmax0.357, 0.455
No. of measured, independent and
observed [I > 2σ(I)] reflections
8149, 4075, 3143
Rint0.029
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.133, 1.05
No. of reflections4075
No. of parameters290
No. of restraints20
H-atom treatmentH-atom parameters constrained
w = 1/[σ2(Fo2) + (0.0654P)2 + 43.5887P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)1.09, 0.39
Absolute structureFlack (1983), 1669 Friedel pairs
Absolute structure parameter0.045 (19)

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Bruker, 1997).

Selected geometric parameters (Å, º) top
Mn1—O21.871 (7)Mn1—O32.027 (7)
Mn1—O11.906 (7)Mn1—N22.094 (7)
Mn1—N11.984 (7)Mn1—O42.324 (6)
O2—Mn1—O1174.3 (3)N1—Mn1—N2162.6 (3)
O2—Mn1—N183.9 (3)O3—Mn1—N286.2 (3)
O1—Mn1—N190.6 (3)O2—Mn1—O492.3 (3)
O2—Mn1—O392.7 (3)O1—Mn1—O485.9 (3)
O1—Mn1—O390.6 (3)N1—Mn1—O487.3 (3)
N1—Mn1—O3110.2 (3)O3—Mn1—O4162.2 (3)
O2—Mn1—N289.9 (3)N2—Mn1—O476.7 (3)
O1—Mn1—N295.0 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5A···Br1i0.853.043.893 (18)179.3
O1W—H1WA···O50.851.522.19 (2)133.6
Symmetry code: (i) x1/4, y+3/4, z+1/4.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds