Supporting information
Crystallographic Information File (CIF) https://doi.org/10.1107/S2053229614002459/ky3047sup1.cif | |
Structure factor file (CIF format) https://doi.org/10.1107/S2053229614002459/ky3047Isup2.hkl | |
Structure factor file (CIF format) https://doi.org/10.1107/S2053229614002459/ky3047IIsup3.hkl | |
Structure factor file (CIF format) https://doi.org/10.1107/S2053229614002459/ky3047IIIsup4.hkl | |
Chemical Markup Language (CML) file https://doi.org/10.1107/S2053229614002459/ky3047Isup5.cml | |
Chemical Markup Language (CML) file https://doi.org/10.1107/S2053229614002459/ky3047IIsup6.cml | |
Chemical Markup Language (CML) file https://doi.org/10.1107/S2053229614002459/ky3047IIIsup7.cml |
CCDC references: 984839; 984840; 984841
The structures of the ammonium salts of aromatic carboxylic acids are of interest because of their ability to form polymeric hydrogen-bonded systems. The majority of the examples involving specifically benzoic acids are anhydrous salts: benzoic acid (Odendal et al., 2010), salicylic acid (Klepeis et al., 2009), 3-nitrobenzoic acid (Eppel & Bernstein, 2009) and 3,5-dichloroanthranilic acid (Rzaczyńska et al., 2000). The simplest member of this set, ammonium benzoate, is the lone ammonium salt described among a set of nine carboxylate salts with various amines (Odendal et al., 2010). These were considered along with other examples from the Cambridge Structural Database (CSD; Allen, 2002) in a study of the packing motifs of these salts, which indicated that two-dimensional hydrogen-bonded nets, ladders or cubane-type structures could be predicted on the basis of size and conformation of the ions. These structures were often stabilized by π–π aromatic ring interactions. It is of interest also that in this work, crystalline products were often obtainable only by the solid-state interaction of the acid with the amine reactants followed by extraction of the resultant product into a suitable solvent. This procedure has previously been reported for some chemical preparations with cocrystals (Etter & Frankenbach, 1989; Etter, 1991). The problem with obtaining good crystals of the ammonium salts of the carboxylic acid analogues may be the reason for the paucity of crystal data on these benzoic acid salts in the crystallographic literature.
Crystals of the ammonium salts of the substituted benzoic acids reported in this work were obtained from aqueous ethanol solutions using the conventional reaction of the acid with aqueous ammonia solution. These salts are with 3,5-dinitrobenzoic acid (3,5-DNBA), 4-nitrobenzoic acid (4-NBA) and 2,4-dichlorobenzoic acid (2,4-DCBA), providing both an anhydrous salt ammonium 3,5-dinitrobenzoate, (I) (with 3,5-DNBA), and two hydrated salts, ammonium 4-nitrobenzoate dihydrate, (II) (with 4-NBA), and ammonium 2,4-dichlorobenzoate hemihydrate, (III) (with 2,4-DCBA), and their hydrogen-bonded structures are described herein. The presence or absence of the ring-stacking and ring-laddering models for the ammonium carboxylate structures (Odendal et al., 2010) is also tested particularly with respect to the hydrated examples.
The title salts were prepared by the dropwise addition of an excess of 1 M aqueous ammonia solution to a hot solution of 1 mmol of either 3,5-dinitrobenzoic acid (210 mg) [for (I)], 4-nitrobenzoic (160 mg) [for (II)] or 2,4-dichlorobenzoic acid (190 mg) [for (III)] in an ethanol–water mixture (15 ml, 1:2 v/v). Room-temperature evaporation of the solutions gave colourless plates in all cases, from which suitable specimens were cleaved for the X-ray analyses.
Crystal data, data collection and structure refinement details are summarized in Table 1. The ammonium and water H atoms were located in difference Fourier analyses and were then allowed to ride in the refinements, with Uiso(H) = 1.2Ueq(N) or 1.5Ueq(O). Other H atoms were included in the refinements in calculated positions, with C—H = 0.95 Å, and were also allowed to ride, with Uiso(H) = 1.2Ueq(C). Careful examination of the anisotropic displacement parameters of (III) shows some small anomalous features about atoms N1 and O1W, possible models featuring minor disorder components were considered but rejected as unhelpful.
In the structure of the anhydrous salt with 3,5-DNBA, (I) (Fig. 1), the ammonium cations and the anions are linked through a cyclic N—H···O hydrogen-bonding association, involving two cations, a carboxylate group with both O atoms contributing to the hydrogen bonds (denoted O,O'-carboxylate) on one side and a carboxylate group with one O atom involved in two hydrogen bonds (denoted O-carboxylate) on the other, giving an R43(10) motif (Etter et al., 1990) (Table 2 and Fig. 2). These motifs are joined giving a one-dimensional ribbon substructure extending parallel to the a axis. The dimensionality of the hydrogen-bonded network is then expanded in two more directions through an N1—H11···O12i hydrogen bond to a carboxylate O-atom acceptor and an N1—H13···O52ii hydrogen bond to a single nitro O-atom acceptor (see Table 2 for symmetry codes), generating a three-dimensional structure (Fig. 3), which does not display any ring-laddering effects as described previously as common in ammonium carboxylate structures (Odendal et al., 2010). No π–π ring associations are present [minimum ring centroid separation = 5.2417 (14) Å]. With the 3,5-DNBA- anion, the meta-related carboxylate and nitro groups are only slightly rotated out of the plane of the benzene ring [torsion angles C2—C1—C11—O11 = -168.4 (2)°, C2—C3—N3—O32 = 178.5 (2)° and C4—C5—N5—O52 = -171.2 (2)°]. This is similar to what is observed in both monoclinic polymorphs of the parent acid 3,5-DNBA (Prince et al., 1991).
In the structure of (II) (Fig. 4), the ammonium cation, the 4-NBA- anion and the two water molecules of solvation are involved in a primary hydrogen-bonded cyclic association [graph set R43(10)] (Fig. 4). This unit is propagated parallel to the a-axis direction through a conjoined centrosymmetric cyclic R42(8) hydrogen-bonding motif through N1—H···O1W hydrogen bonds (Table 3), giving one-dimensional ribbon structures. These are extended into two-dimensional layers lying parallel to (100) through N1—H11···O1Wiv and water O2W—H21W···O11vi hydrogen bonds (Fig. 5; see Table 3 for symmetry codes). The nitro group is not involved in any hydrogen bonding. The presence of the water molecules does not appear to alter the basic two-dimensional aspect of the structure which may be considered to be a variant of, but consistent with the ring-laddering concept proposed by Odendal et al. (2010), but no inter-ring π–π interactions are present in (II) [minimum ring centroid separation = 4.5041 (10) Å].
With the 4-NBA- anion in (II), the nitro group is essentially coplanar with the benzene ring [C3—C4—N4—O41 = 179.80 (16)°], while the carboxylate group is rotated slightly out of the plane [C2—C1—C11—O12 = -165.50 (14)°]. In both polymorphs of the parent acid, the carboxylic acid group is essentially coplanar with the benzene ring, but the nitro group lies out of the plane [monoclinic, C2/c, corresponding torsion angles = 177.9 (1) and 166.3 (1)° (Tonogaki et al., 1993); monoclinic, P21/n, corresponding torsion angles = 179.16 (16) and -168.32 (16)° (Bolte, 2009)].
In the structure of (III), the asymmetric unit comprises an ammonium cation, a 2,4-DCBA- anion and half a water molecule of solvation which lies on a twofold rotation axis (Fig. 6). The anions are interlinked across inversion centres through cation N—H···O hydrogen bonds to carboxylate O-atom acceptors (Table 4), giving cyclic R42(8) motifs. Secondary propagation is through a conjoined R43(10) ring system involving N—H···O and water O—H···O hydrogen bonds to carboxylate O-atom acceptors (Fig. 7). Present also is an N?—H??···Cl2ix interaction [3.368 (2) Å; symmetry code: (ix) -x+1, -y+2, -z]. A two-dimensional sheet structure is formed, lying parallel to (100), between which there are relatively short Cl···Cl interactions [Cl4···Cl4x = 3.5868 (13) Å; symmetry code: (x) x+1/2, -y+1/2, -z]. Although the benzene rings form a layer along the b-axis direction, no inter-ring π–π stacking is present [minimum ring centroid separation = 4.356 (2) Å, i.e. the b cell parameter].
The carboxylate group in the 2,4-DCBA- anion in (III) is also significantly rotated out of the benzene plane [C2—C1—C11—O12 = -137.2 (3)°] due to the steric influence of the 2-chloro ring substituent. The crystal structure of the parent acid is unreported but the stereochemistry of the analogous 2,4-dichloro-5-fluorobenzoic acid (Zhao, 2007) and that of the 2,4-DCBA- anion in the potassium salt (Smith, 2014) are comparable with that in (III) [equivalent torsion angles = 131.5 (3) and 138.2 (2)°, respectively].
It is apparent from the structures of the hydrated ammonium salts of (II) and (III) that the cation–anion–water interaction with the formation of two-dimensional layered arrays through conjoined hydrogen-bonded ring systems follows the relatively predictable trend reported by Odendal et al. (2010) for commonly anhydrous ammonium and aminium carboxylate salts. However, in the case of the anhydrous 3,5-dinitrobenzoate salt, (I), there is an absence of this form of propagation in the three-dimensional structure and in none of the examples are there any π–π ring-stacking effects.
For all compounds, data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis PRO (Agilent, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008) within WinGX (Farrugia, 2012); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: PLATON (Spek, 2009).
NH4+·C7H3N2O6− | F(000) = 472 |
Mr = 229.16 | Dx = 1.703 Mg m−3 |
Orthorhombic, P212121 | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: P 2ac 2ab | Cell parameters from 931 reflections |
a = 5.8050 (5) Å | θ = 4.1–27.8° |
b = 10.0561 (8) Å | µ = 0.15 mm−1 |
c = 15.3077 (11) Å | T = 200 K |
V = 893.60 (12) Å3 | Needle, colourless |
Z = 4 | 0.40 × 0.10 × 0.08 mm |
Oxford Diffraction Gemini-S CCD-detector diffractometer | 2019 independent reflections |
Radiation source: Enhance (Mo) X-ray source | 1721 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.029 |
Detector resolution: 16.077 pixels mm-1 | θmax = 29.0°, θmin = 3.3° |
ω scans | h = −7→6 |
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2012) | k = −8→13 |
Tmin = 0.901, Tmax = 0.990 | l = −20→13 |
3354 measured reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.044 | H-atom parameters constrained |
wR(F2) = 0.101 | w = 1/[σ2(Fo2) + (0.0481P)2] where P = (Fo2 + 2Fc2)/3 |
S = 1.01 | (Δ/σ)max < 0.001 |
2019 reflections | Δρmax = 0.26 e Å−3 |
145 parameters | Δρmin = −0.21 e Å−3 |
0 restraints | Absolute structure: Flack (1983): 975 Friedel pairs |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: 0.1 (15) |
NH4+·C7H3N2O6− | V = 893.60 (12) Å3 |
Mr = 229.16 | Z = 4 |
Orthorhombic, P212121 | Mo Kα radiation |
a = 5.8050 (5) Å | µ = 0.15 mm−1 |
b = 10.0561 (8) Å | T = 200 K |
c = 15.3077 (11) Å | 0.40 × 0.10 × 0.08 mm |
Oxford Diffraction Gemini-S CCD-detector diffractometer | 2019 independent reflections |
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2012) | 1721 reflections with I > 2σ(I) |
Tmin = 0.901, Tmax = 0.990 | Rint = 0.029 |
3354 measured reflections |
R[F2 > 2σ(F2)] = 0.044 | H-atom parameters constrained |
wR(F2) = 0.101 | Δρmax = 0.26 e Å−3 |
S = 1.01 | Δρmin = −0.21 e Å−3 |
2019 reflections | Absolute structure: Flack (1983): 975 Friedel pairs |
145 parameters | Absolute structure parameter: 0.1 (15) |
0 restraints |
Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O11 | 0.3761 (3) | 0.62300 (14) | 0.59945 (11) | 0.0238 (5) | |
O12 | 0.0775 (3) | 0.49744 (16) | 0.56241 (12) | 0.0308 (6) | |
O31 | 0.1446 (3) | 0.01760 (17) | 0.55907 (12) | 0.0316 (5) | |
O32 | 0.4381 (3) | −0.07996 (15) | 0.61815 (13) | 0.0328 (6) | |
O51 | 1.0287 (3) | 0.17619 (17) | 0.75466 (11) | 0.0302 (5) | |
O52 | 0.9852 (3) | 0.38796 (16) | 0.77286 (12) | 0.0317 (6) | |
N3 | 0.3311 (3) | 0.01978 (18) | 0.59651 (13) | 0.0240 (6) | |
N5 | 0.9245 (3) | 0.28098 (19) | 0.74308 (12) | 0.0212 (6) | |
C1 | 0.4054 (4) | 0.3880 (2) | 0.61698 (14) | 0.0171 (6) | |
C2 | 0.3170 (4) | 0.2651 (2) | 0.59352 (14) | 0.0194 (6) | |
C3 | 0.4307 (4) | 0.1497 (2) | 0.61880 (15) | 0.0191 (6) | |
C4 | 0.6319 (4) | 0.1519 (2) | 0.66704 (15) | 0.0196 (6) | |
C5 | 0.7133 (3) | 0.2758 (2) | 0.68941 (14) | 0.0188 (6) | |
C6 | 0.6078 (4) | 0.3944 (2) | 0.66573 (14) | 0.0179 (6) | |
C11 | 0.2772 (4) | 0.5131 (2) | 0.59083 (14) | 0.0198 (6) | |
N1 | 0.8114 (3) | 0.72590 (19) | 0.56048 (13) | 0.0223 (5) | |
H2 | 0.17920 | 0.25980 | 0.56030 | 0.0230* | |
H4 | 0.70930 | 0.07260 | 0.68370 | 0.0230* | |
H6 | 0.67180 | 0.47760 | 0.68230 | 0.0220* | |
H11 | 0.89510 | 0.66220 | 0.56190 | 0.0270* | |
H12 | 0.66240 | 0.69090 | 0.56880 | 0.0270* | |
H13 | 0.83160 | 0.78600 | 0.59900 | 0.0270* | |
H14 | 0.82020 | 0.76560 | 0.50570 | 0.0270* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O11 | 0.0231 (8) | 0.0162 (8) | 0.0322 (9) | −0.0003 (7) | 0.0033 (7) | 0.0046 (7) |
O12 | 0.0242 (9) | 0.0252 (9) | 0.0429 (11) | 0.0056 (7) | −0.0124 (7) | −0.0012 (8) |
O31 | 0.0319 (9) | 0.0294 (9) | 0.0335 (10) | −0.0069 (8) | −0.0102 (8) | −0.0005 (8) |
O32 | 0.0417 (10) | 0.0160 (8) | 0.0407 (11) | 0.0030 (7) | −0.0043 (9) | 0.0003 (8) |
O51 | 0.0294 (9) | 0.0286 (9) | 0.0327 (10) | 0.0087 (8) | −0.0072 (7) | 0.0019 (8) |
O52 | 0.0324 (9) | 0.0238 (9) | 0.0388 (11) | −0.0019 (8) | −0.0097 (8) | −0.0059 (8) |
N3 | 0.0312 (11) | 0.0182 (9) | 0.0225 (10) | −0.0023 (9) | 0.0000 (8) | −0.0006 (8) |
N5 | 0.0204 (10) | 0.0235 (10) | 0.0198 (9) | 0.0025 (8) | 0.0004 (8) | 0.0005 (8) |
C1 | 0.0187 (10) | 0.0163 (10) | 0.0164 (10) | 0.0009 (9) | 0.0015 (8) | 0.0032 (9) |
C2 | 0.0177 (11) | 0.0214 (11) | 0.0191 (10) | 0.0018 (9) | −0.0012 (8) | 0.0023 (9) |
C3 | 0.0226 (11) | 0.0170 (10) | 0.0177 (11) | −0.0008 (9) | 0.0019 (9) | 0.0006 (9) |
C4 | 0.0228 (11) | 0.0152 (10) | 0.0207 (11) | 0.0032 (9) | 0.0012 (9) | 0.0021 (9) |
C5 | 0.0170 (10) | 0.0225 (10) | 0.0170 (10) | −0.0008 (9) | −0.0010 (8) | 0.0017 (10) |
C6 | 0.0189 (11) | 0.0163 (10) | 0.0186 (11) | −0.0007 (9) | 0.0024 (9) | 0.0000 (9) |
C11 | 0.0220 (11) | 0.0205 (11) | 0.0169 (10) | 0.0039 (9) | 0.0048 (9) | 0.0011 (9) |
N1 | 0.0203 (9) | 0.0215 (9) | 0.0252 (9) | 0.0031 (8) | −0.0014 (8) | 0.0004 (9) |
O11—C11 | 1.252 (3) | N1—H14 | 0.9300 |
O12—C11 | 1.248 (3) | C1—C6 | 1.393 (3) |
O31—N3 | 1.225 (3) | C1—C11 | 1.516 (3) |
O32—N3 | 1.225 (2) | C1—C2 | 1.386 (3) |
O51—N5 | 1.228 (3) | C2—C3 | 1.390 (3) |
O52—N5 | 1.220 (3) | C3—C4 | 1.382 (3) |
N3—C3 | 1.469 (3) | C4—C5 | 1.376 (3) |
N5—C5 | 1.477 (3) | C5—C6 | 1.389 (3) |
N1—H11 | 0.8000 | C2—H2 | 0.9500 |
N1—H12 | 0.9400 | C4—H4 | 0.9500 |
N1—H13 | 0.8500 | C6—H6 | 0.9500 |
O31—N3—O32 | 124.04 (19) | N3—C3—C2 | 119.4 (2) |
O31—N3—C3 | 118.19 (18) | C2—C3—C4 | 122.46 (19) |
O32—N3—C3 | 117.76 (18) | C3—C4—C5 | 115.96 (19) |
O51—N5—O52 | 124.08 (19) | N5—C5—C4 | 117.10 (18) |
O51—N5—C5 | 117.32 (18) | C4—C5—C6 | 124.14 (19) |
O52—N5—C5 | 118.60 (18) | N5—C5—C6 | 118.75 (18) |
H11—N1—H13 | 118.00 | C1—C6—C5 | 118.16 (19) |
H11—N1—H14 | 109.00 | O11—C11—C1 | 118.7 (2) |
H12—N1—H13 | 107.00 | O11—C11—O12 | 125.0 (2) |
H12—N1—H14 | 109.00 | O12—C11—C1 | 116.32 (18) |
H13—N1—H14 | 108.00 | C3—C2—H2 | 120.00 |
H11—N1—H12 | 105.00 | C1—C2—H2 | 120.00 |
C2—C1—C11 | 119.4 (2) | C3—C4—H4 | 122.00 |
C2—C1—C6 | 119.49 (19) | C5—C4—H4 | 122.00 |
C6—C1—C11 | 121.15 (18) | C5—C6—H6 | 121.00 |
C1—C2—C3 | 119.8 (2) | C1—C6—H6 | 121.00 |
N3—C3—C4 | 118.10 (18) | ||
O31—N3—C3—C2 | −2.9 (3) | C2—C1—C11—O11 | −168.4 (2) |
O31—N3—C3—C4 | 175.0 (2) | C2—C1—C11—O12 | 12.0 (3) |
O32—N3—C3—C2 | 178.5 (2) | C6—C1—C11—O11 | 13.0 (3) |
O32—N3—C3—C4 | −3.6 (3) | C6—C1—C11—O12 | −166.6 (2) |
O51—N5—C5—C4 | 9.0 (3) | C1—C2—C3—N3 | 177.7 (2) |
O51—N5—C5—C6 | −171.87 (19) | C1—C2—C3—C4 | −0.1 (4) |
O52—N5—C5—C4 | −171.2 (2) | N3—C3—C4—C5 | −177.38 (19) |
O52—N5—C5—C6 | 7.9 (3) | C2—C3—C4—C5 | 0.5 (3) |
C6—C1—C2—C3 | 0.0 (3) | C3—C4—C5—N5 | 178.33 (19) |
C11—C1—C2—C3 | −178.6 (2) | C3—C4—C5—C6 | −0.8 (3) |
C2—C1—C6—C5 | −0.3 (3) | N5—C5—C6—C1 | −178.39 (19) |
C11—C1—C6—C5 | 178.4 (2) | C4—C5—C6—C1 | 0.7 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H11···O12i | 0.80 | 1.97 | 2.769 (2) | 175 |
N1—H12···O11 | 0.94 | 1.86 | 2.795 (2) | 173 |
N1—H13···O52ii | 0.85 | 2.46 | 3.249 (3) | 155 |
N1—H14···O11iii | 0.93 | 1.99 | 2.906 (3) | 169 |
Symmetry codes: (i) x+1, y, z; (ii) −x+2, y+1/2, −z+3/2; (iii) x+1/2, −y+3/2, −z+1. |
NH4+·C7H4NO4−·2H2O | F(000) = 464 |
Mr = 220.19 | Dx = 1.481 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2yn | Cell parameters from 1584 reflections |
a = 5.9948 (4) Å | θ = 4.1–28.4° |
b = 6.9049 (5) Å | µ = 0.13 mm−1 |
c = 23.8977 (15) Å | T = 200 K |
β = 93.523 (6)° | Plate, colourless |
V = 987.34 (12) Å3 | 0.40 × 0.25 × 0.10 mm |
Z = 4 |
Oxford Diffraction Gemini-S CCD-detector diffractometer | 1941 independent reflections |
Radiation source: Enhance (Mo) X-ray source | 1573 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.024 |
Detector resolution: 16.077 pixels mm-1 | θmax = 26.0°, θmin = 3.4° |
ω scans | h = −7→7 |
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2012) | k = −8→8 |
Tmin = 0.96, Tmax = 0.99 | l = −28→29 |
6207 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.040 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.108 | H-atom parameters constrained |
S = 1.05 | w = 1/[σ2(Fo2) + (0.0473P)2 + 0.3271P] where P = (Fo2 + 2Fc2)/3 |
1941 reflections | (Δ/σ)max = 0.001 |
136 parameters | Δρmax = 0.19 e Å−3 |
0 restraints | Δρmin = −0.22 e Å−3 |
NH4+·C7H4NO4−·2H2O | V = 987.34 (12) Å3 |
Mr = 220.19 | Z = 4 |
Monoclinic, P21/n | Mo Kα radiation |
a = 5.9948 (4) Å | µ = 0.13 mm−1 |
b = 6.9049 (5) Å | T = 200 K |
c = 23.8977 (15) Å | 0.40 × 0.25 × 0.10 mm |
β = 93.523 (6)° |
Oxford Diffraction Gemini-S CCD-detector diffractometer | 1941 independent reflections |
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2012) | 1573 reflections with I > 2σ(I) |
Tmin = 0.96, Tmax = 0.99 | Rint = 0.024 |
6207 measured reflections |
R[F2 > 2σ(F2)] = 0.040 | 0 restraints |
wR(F2) = 0.108 | H-atom parameters constrained |
S = 1.05 | Δρmax = 0.19 e Å−3 |
1941 reflections | Δρmin = −0.22 e Å−3 |
136 parameters |
Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O11 | 0.8376 (2) | 0.62740 (19) | 0.36834 (5) | 0.0365 (4) | |
O12 | 0.5622 (2) | 0.4360 (2) | 0.39276 (5) | 0.0414 (4) | |
O41 | 0.1286 (3) | 0.4170 (3) | 0.12026 (6) | 0.0596 (6) | |
O42 | 0.4351 (2) | 0.5344 (2) | 0.09225 (5) | 0.0444 (5) | |
N4 | 0.3168 (3) | 0.4827 (2) | 0.12920 (6) | 0.0325 (5) | |
C1 | 0.5707 (3) | 0.5232 (2) | 0.29741 (7) | 0.0213 (4) | |
C2 | 0.6990 (3) | 0.5862 (2) | 0.25423 (7) | 0.0232 (5) | |
C3 | 0.6181 (3) | 0.5730 (2) | 0.19882 (7) | 0.0244 (5) | |
C4 | 0.4059 (3) | 0.4985 (2) | 0.18788 (7) | 0.0235 (5) | |
C5 | 0.2727 (3) | 0.4392 (2) | 0.22967 (7) | 0.0262 (5) | |
C6 | 0.3573 (3) | 0.4510 (2) | 0.28464 (7) | 0.0245 (5) | |
C11 | 0.6643 (3) | 0.5301 (2) | 0.35773 (7) | 0.0264 (5) | |
O1W | 0.70404 (19) | 0.23170 (17) | 0.48556 (5) | 0.0311 (4) | |
O2W | 0.8364 (2) | 0.51793 (18) | 0.55934 (5) | 0.0332 (4) | |
N1 | 0.7379 (2) | 0.8186 (2) | 0.47621 (6) | 0.0265 (4) | |
H2 | 0.84350 | 0.63870 | 0.26290 | 0.0280* | |
H3 | 0.70580 | 0.61400 | 0.16920 | 0.0290* | |
H5 | 0.12610 | 0.39140 | 0.22090 | 0.0310* | |
H6 | 0.26870 | 0.40930 | 0.31400 | 0.0290* | |
H11W | 0.68170 | 0.30060 | 0.45300 | 0.0470* | |
H12W | 0.74690 | 0.31610 | 0.51070 | 0.0470* | |
H21W | 0.94010 | 0.47790 | 0.58120 | 0.0500* | |
H22W | 0.71480 | 0.52940 | 0.57960 | 0.0500* | |
H11 | 0.60000 | 0.80090 | 0.48200 | 0.0320* | |
H12 | 0.81960 | 0.75690 | 0.50060 | 0.0320* | |
H13 | 0.75760 | 0.77220 | 0.44130 | 0.0320* | |
H14 | 0.75520 | 0.94290 | 0.48060 | 0.0320* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O11 | 0.0409 (7) | 0.0410 (7) | 0.0263 (7) | −0.0051 (6) | −0.0091 (6) | −0.0005 (6) |
O12 | 0.0398 (7) | 0.0602 (9) | 0.0243 (7) | 0.0055 (7) | 0.0035 (6) | 0.0156 (6) |
O41 | 0.0507 (9) | 0.0889 (12) | 0.0372 (9) | −0.0196 (9) | −0.0134 (7) | −0.0109 (8) |
O42 | 0.0592 (9) | 0.0541 (9) | 0.0198 (7) | 0.0015 (7) | 0.0010 (6) | 0.0048 (6) |
N4 | 0.0421 (9) | 0.0309 (8) | 0.0238 (8) | 0.0029 (7) | −0.0046 (7) | −0.0042 (6) |
C1 | 0.0276 (8) | 0.0155 (7) | 0.0207 (8) | 0.0032 (6) | 0.0015 (6) | −0.0004 (6) |
C2 | 0.0227 (8) | 0.0216 (8) | 0.0252 (9) | −0.0008 (7) | 0.0009 (7) | −0.0007 (7) |
C3 | 0.0298 (8) | 0.0232 (8) | 0.0207 (9) | −0.0002 (7) | 0.0055 (7) | 0.0017 (7) |
C4 | 0.0312 (9) | 0.0193 (8) | 0.0196 (9) | 0.0026 (7) | −0.0021 (7) | −0.0027 (6) |
C5 | 0.0248 (8) | 0.0232 (8) | 0.0304 (10) | −0.0025 (7) | −0.0006 (7) | −0.0037 (7) |
C6 | 0.0298 (9) | 0.0215 (8) | 0.0228 (9) | −0.0016 (7) | 0.0067 (7) | 0.0003 (6) |
C11 | 0.0328 (9) | 0.0261 (8) | 0.0201 (9) | 0.0087 (7) | 0.0010 (7) | 0.0011 (7) |
O1W | 0.0434 (7) | 0.0275 (6) | 0.0224 (6) | 0.0001 (5) | 0.0012 (5) | 0.0028 (5) |
O2W | 0.0323 (7) | 0.0397 (7) | 0.0272 (7) | 0.0010 (6) | −0.0010 (5) | 0.0040 (5) |
N1 | 0.0306 (7) | 0.0269 (7) | 0.0218 (7) | 0.0013 (6) | 0.0000 (6) | −0.0009 (6) |
O11—C11 | 1.250 (2) | N1—H11 | 0.8600 |
O12—C11 | 1.249 (2) | C1—C2 | 1.394 (2) |
O41—N4 | 1.223 (3) | C1—C6 | 1.389 (2) |
O42—N4 | 1.220 (2) | C1—C11 | 1.515 (2) |
O1W—H12W | 0.8600 | C2—C3 | 1.385 (2) |
O1W—H11W | 0.9100 | C3—C4 | 1.382 (2) |
O2W—H21W | 0.8300 | C4—C5 | 1.379 (2) |
O2W—H22W | 0.9000 | C5—C6 | 1.381 (2) |
N4—C4 | 1.474 (2) | C2—H2 | 0.9500 |
N1—H12 | 0.8500 | C3—H3 | 0.9500 |
N1—H13 | 0.9100 | C5—H5 | 0.9500 |
N1—H14 | 0.8700 | C6—H6 | 0.9500 |
H11W—O1W—H12W | 105.00 | N4—C4—C3 | 118.89 (15) |
H21W—O2W—H22W | 107.00 | N4—C4—C5 | 118.37 (16) |
O41—N4—C4 | 118.06 (15) | C3—C4—C5 | 122.74 (16) |
O41—N4—O42 | 123.61 (15) | C4—C5—C6 | 118.44 (16) |
O42—N4—C4 | 118.33 (16) | C1—C6—C5 | 120.63 (16) |
H11—N1—H12 | 110.00 | O11—C11—O12 | 125.38 (16) |
H11—N1—H13 | 106.00 | O11—C11—C1 | 117.68 (14) |
H12—N1—H13 | 111.00 | O12—C11—C1 | 116.95 (15) |
H12—N1—H14 | 111.00 | C3—C2—H2 | 120.00 |
H11—N1—H14 | 103.00 | C1—C2—H2 | 120.00 |
H13—N1—H14 | 116.00 | C4—C3—H3 | 121.00 |
C2—C1—C11 | 120.37 (15) | C2—C3—H3 | 121.00 |
C6—C1—C11 | 120.16 (15) | C4—C5—H5 | 121.00 |
C2—C1—C6 | 119.46 (16) | C6—C5—H5 | 121.00 |
C1—C2—C3 | 120.70 (16) | C1—C6—H6 | 120.00 |
C2—C3—C4 | 118.00 (16) | C5—C6—H6 | 120.00 |
O41—N4—C4—C3 | −179.80 (16) | C2—C1—C11—O12 | −165.50 (14) |
O41—N4—C4—C5 | −0.2 (2) | C6—C1—C11—O11 | −167.18 (14) |
O42—N4—C4—C3 | 0.7 (2) | C6—C1—C11—O12 | 13.5 (2) |
O42—N4—C4—C5 | −179.69 (14) | C1—C2—C3—C4 | 1.0 (2) |
C6—C1—C2—C3 | −1.6 (2) | C2—C3—C4—N4 | −179.84 (13) |
C11—C1—C2—C3 | 177.35 (13) | C2—C3—C4—C5 | 0.6 (2) |
C2—C1—C6—C5 | 0.7 (2) | N4—C4—C5—C6 | 178.98 (13) |
C11—C1—C6—C5 | −178.24 (13) | C3—C4—C5—C6 | −1.5 (2) |
C2—C1—C11—O11 | 13.9 (2) | C4—C5—C6—C1 | 0.8 (2) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H11···O1Wi | 0.86 | 2.04 | 2.8761 (17) | 167 |
N1—H12···O2W | 0.85 | 2.16 | 2.9088 (19) | 146 |
N1—H13···O11 | 0.91 | 2.09 | 2.9891 (19) | 170 |
N1—H14···O1Wii | 0.87 | 2.02 | 2.8693 (18) | 164 |
O1W—H11W···O12 | 0.91 | 1.83 | 2.7202 (17) | 165 |
O1W—H12W···O2W | 0.86 | 1.87 | 2.7336 (17) | 174 |
O2W—H21W···O11iii | 0.83 | 1.89 | 2.7200 (17) | 176 |
O2W—H22W···O12i | 0.90 | 1.84 | 2.7309 (17) | 168 |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) x, y+1, z; (iii) −x+2, −y+1, −z+1. |
NH4+·C7H3Cl2O2−·0.5H2O | F(000) = 888 |
Mr = 217.05 | Dx = 1.589 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -C 2yc | Cell parameters from 812 reflections |
a = 31.968 (4) Å | θ = 3.8–27.3° |
b = 4.3558 (7) Å | µ = 0.68 mm−1 |
c = 13.0458 (14) Å | T = 200 K |
β = 92.763 (12)° | Plate, colourless |
V = 1814.5 (4) Å3 | 0.15 × 0.10 × 0.04 mm |
Z = 8 |
Oxford Diffraction Gemini-S CCD-detector diffractometer | 1780 independent reflections |
Radiation source: Enhance (Mo) X-ray source | 1414 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.026 |
Detector resolution: 16.077 pixels mm-1 | θmax = 26.0°, θmin = 3.1° |
ω scans | h = −38→38 |
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2012) | k = −4→5 |
Tmin = 0.83, Tmax = 0.99 | l = −11→16 |
2835 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.045 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.117 | H-atom parameters constrained |
S = 0.95 | w = 1/[σ2(Fo2) + (0.056P)2 + 4.0382P] where P = (Fo2 + 2Fc2)/3 |
1780 reflections | (Δ/σ)max = 0.001 |
114 parameters | Δρmax = 0.35 e Å−3 |
0 restraints | Δρmin = −0.44 e Å−3 |
NH4+·C7H3Cl2O2−·0.5H2O | V = 1814.5 (4) Å3 |
Mr = 217.05 | Z = 8 |
Monoclinic, C2/c | Mo Kα radiation |
a = 31.968 (4) Å | µ = 0.68 mm−1 |
b = 4.3558 (7) Å | T = 200 K |
c = 13.0458 (14) Å | 0.15 × 0.10 × 0.04 mm |
β = 92.763 (12)° |
Oxford Diffraction Gemini-S CCD-detector diffractometer | 1780 independent reflections |
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2012) | 1414 reflections with I > 2σ(I) |
Tmin = 0.83, Tmax = 0.99 | Rint = 0.026 |
2835 measured reflections |
R[F2 > 2σ(F2)] = 0.045 | 0 restraints |
wR(F2) = 0.117 | H-atom parameters constrained |
S = 0.95 | Δρmax = 0.35 e Å−3 |
1780 reflections | Δρmin = −0.44 e Å−3 |
114 parameters |
Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cl2 | 0.36913 (2) | 0.9690 (2) | 0.56169 (6) | 0.0359 (3) | |
Cl4 | 0.24700 (2) | 0.3293 (2) | 0.36496 (6) | 0.0375 (3) | |
O11 | 0.44832 (6) | 0.7744 (5) | 0.45555 (15) | 0.0320 (7) | |
O12 | 0.43609 (7) | 0.8863 (6) | 0.29047 (16) | 0.0379 (8) | |
C1 | 0.38024 (9) | 0.6794 (7) | 0.3777 (2) | 0.0230 (8) | |
C2 | 0.35348 (9) | 0.7453 (7) | 0.4559 (2) | 0.0234 (8) | |
C3 | 0.31248 (9) | 0.6416 (7) | 0.4526 (2) | 0.0266 (9) | |
C4 | 0.29830 (9) | 0.4627 (7) | 0.3703 (2) | 0.0290 (9) | |
C5 | 0.32401 (10) | 0.3895 (8) | 0.2918 (2) | 0.0331 (10) | |
C6 | 0.36446 (9) | 0.5013 (7) | 0.2966 (2) | 0.0307 (9) | |
C11 | 0.42491 (9) | 0.7911 (7) | 0.3750 (2) | 0.0250 (8) | |
O1W | 0.50000 | 1.2895 (7) | 0.25000 | 0.0432 (11) | |
N1 | 0.53535 (7) | 0.7102 (5) | 0.40520 (16) | 0.0193 (7) | |
H3 | 0.29440 | 0.69220 | 0.50590 | 0.0320* | |
H5 | 0.31410 | 0.26540 | 0.23580 | 0.0400* | |
H6 | 0.38220 | 0.45440 | 0.24230 | 0.0370* | |
H11W | 0.48030 | 1.15200 | 0.26880 | 0.0650* | |
H11 | 0.50730 | 0.72160 | 0.41220 | 0.0230* | |
H12 | 0.54370 | 0.53810 | 0.44640 | 0.0230* | |
H13 | 0.54380 | 0.69330 | 0.33640 | 0.0230* | |
H14 | 0.54240 | 0.87260 | 0.43610 | 0.0230* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl2 | 0.0314 (4) | 0.0497 (5) | 0.0272 (4) | −0.0076 (4) | 0.0079 (3) | −0.0108 (4) |
Cl4 | 0.0227 (4) | 0.0533 (5) | 0.0365 (4) | −0.0068 (4) | 0.0015 (3) | 0.0004 (4) |
O11 | 0.0231 (11) | 0.0418 (13) | 0.0306 (11) | 0.0026 (10) | −0.0026 (9) | 0.0018 (10) |
O12 | 0.0297 (12) | 0.0563 (15) | 0.0284 (12) | −0.0047 (11) | 0.0103 (9) | 0.0032 (11) |
C1 | 0.0197 (14) | 0.0298 (15) | 0.0197 (14) | 0.0061 (12) | 0.0017 (11) | 0.0053 (12) |
C2 | 0.0249 (15) | 0.0274 (15) | 0.0180 (13) | 0.0017 (12) | 0.0015 (11) | 0.0017 (12) |
C3 | 0.0237 (15) | 0.0333 (16) | 0.0231 (14) | 0.0017 (13) | 0.0056 (11) | 0.0036 (13) |
C4 | 0.0191 (14) | 0.0374 (18) | 0.0303 (15) | 0.0001 (13) | −0.0008 (12) | 0.0055 (14) |
C5 | 0.0282 (16) | 0.0430 (19) | 0.0279 (16) | −0.0015 (15) | 0.0006 (13) | −0.0041 (15) |
C6 | 0.0253 (15) | 0.0415 (19) | 0.0257 (15) | 0.0030 (14) | 0.0068 (12) | −0.0019 (14) |
C11 | 0.0219 (14) | 0.0290 (15) | 0.0245 (15) | 0.0048 (13) | 0.0041 (11) | −0.0015 (13) |
O1W | 0.0376 (19) | 0.0328 (18) | 0.059 (2) | 0.0000 | 0.0016 (16) | 0.0000 |
N1 | 0.0161 (11) | 0.0258 (12) | 0.0163 (11) | 0.0006 (10) | 0.0029 (8) | 0.0032 (10) |
Cl2—C2 | 1.743 (3) | C1—C11 | 1.511 (4) |
Cl4—C4 | 1.738 (3) | C1—C6 | 1.387 (4) |
O11—C11 | 1.263 (3) | C1—C2 | 1.393 (4) |
O12—C11 | 1.247 (3) | C2—C3 | 1.385 (4) |
O1W—H11W | 0.9100 | C3—C4 | 1.385 (4) |
O1W—H11Wi | 0.9100 | C4—C5 | 1.381 (4) |
N1—H11 | 0.9100 | C5—C6 | 1.380 (4) |
N1—H14 | 0.8400 | C3—H3 | 0.9500 |
N1—H13 | 0.9500 | C5—H5 | 0.9500 |
N1—H12 | 0.9500 | C6—H6 | 0.9500 |
H11W—O1W—H11Wi | 98.00 | Cl4—C4—C5 | 119.2 (2) |
H11—N1—H13 | 115.00 | Cl4—C4—C3 | 119.5 (2) |
H11—N1—H14 | 99.00 | C3—C4—C5 | 121.4 (3) |
H11—N1—H12 | 104.00 | C4—C5—C6 | 118.3 (3) |
H12—N1—H14 | 109.00 | C1—C6—C5 | 122.5 (3) |
H13—N1—H14 | 116.00 | O11—C11—C1 | 119.0 (2) |
H12—N1—H13 | 113.00 | O11—C11—O12 | 124.9 (3) |
C2—C1—C6 | 117.4 (3) | O12—C11—C1 | 116.1 (2) |
C2—C1—C11 | 124.4 (3) | C2—C3—H3 | 121.00 |
C6—C1—C11 | 118.2 (2) | C4—C3—H3 | 121.00 |
Cl2—C2—C1 | 122.2 (2) | C4—C5—H5 | 121.00 |
Cl2—C2—C3 | 116.2 (2) | C6—C5—H5 | 121.00 |
C1—C2—C3 | 121.6 (3) | C1—C6—H6 | 119.00 |
C2—C3—C4 | 118.8 (3) | C5—C6—H6 | 119.00 |
C6—C1—C2—Cl2 | −179.5 (2) | C6—C1—C11—O12 | 42.2 (4) |
C6—C1—C2—C3 | −0.9 (4) | Cl2—C2—C3—C4 | −180.0 (2) |
C11—C1—C2—Cl2 | −0.1 (4) | C1—C2—C3—C4 | 1.4 (4) |
C11—C1—C2—C3 | 178.5 (3) | C2—C3—C4—Cl4 | 179.8 (2) |
C2—C1—C6—C5 | −0.3 (5) | C2—C3—C4—C5 | −0.7 (5) |
C11—C1—C6—C5 | −179.7 (3) | Cl4—C4—C5—C6 | 179.1 (2) |
C2—C1—C11—O11 | 44.8 (4) | C3—C4—C5—C6 | −0.5 (5) |
C2—C1—C11—O12 | −137.2 (3) | C4—C5—C6—C1 | 1.0 (5) |
C6—C1—C11—O11 | −135.8 (3) |
Symmetry code: (i) −x+1, y, −z+1/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H11···O11 | 0.91 | 2.01 | 2.903 (3) | 169 |
N1—H12···O11ii | 0.95 | 1.88 | 2.817 (3) | 169 |
N1—H13···O12i | 0.95 | 1.99 | 2.857 (3) | 150 |
N1—H14···O11iii | 0.84 | 2.10 | 2.919 (3) | 165 |
O1W—H11W···O12 | 0.91 | 1.86 | 2.764 (3) | 172 |
Symmetry codes: (i) −x+1, y, −z+1/2; (ii) −x+1, −y+1, −z+1; (iii) −x+1, −y+2, −z+1. |
Experimental details
(I) | (II) | (III) | |
Crystal data | |||
Chemical formula | NH4+·C7H3N2O6− | NH4+·C7H4NO4−·2H2O | NH4+·C7H3Cl2O2−·0.5H2O |
Mr | 229.16 | 220.19 | 217.05 |
Crystal system, space group | Orthorhombic, P212121 | Monoclinic, P21/n | Monoclinic, C2/c |
Temperature (K) | 200 | 200 | 200 |
a, b, c (Å) | 5.8050 (5), 10.0561 (8), 15.3077 (11) | 5.9948 (4), 6.9049 (5), 23.8977 (15) | 31.968 (4), 4.3558 (7), 13.0458 (14) |
α, β, γ (°) | 90, 90, 90 | 90, 93.523 (6), 90 | 90, 92.763 (12), 90 |
V (Å3) | 893.60 (12) | 987.34 (12) | 1814.5 (4) |
Z | 4 | 4 | 8 |
Radiation type | Mo Kα | Mo Kα | Mo Kα |
µ (mm−1) | 0.15 | 0.13 | 0.68 |
Crystal size (mm) | 0.40 × 0.10 × 0.08 | 0.40 × 0.25 × 0.10 | 0.15 × 0.10 × 0.04 |
Data collection | |||
Diffractometer | Oxford Diffraction Gemini-S CCD-detector diffractometer | Oxford Diffraction Gemini-S CCD-detector diffractometer | Oxford Diffraction Gemini-S CCD-detector diffractometer |
Absorption correction | Multi-scan (CrysAlis PRO; Agilent, 2012) | Multi-scan (CrysAlis PRO; Agilent, 2012) | Multi-scan (CrysAlis PRO; Agilent, 2012) |
Tmin, Tmax | 0.901, 0.990 | 0.96, 0.99 | 0.83, 0.99 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 3354, 2019, 1721 | 6207, 1941, 1573 | 2835, 1780, 1414 |
Rint | 0.029 | 0.024 | 0.026 |
(sin θ/λ)max (Å−1) | 0.681 | 0.617 | 0.617 |
Refinement | |||
R[F2 > 2σ(F2)], wR(F2), S | 0.044, 0.101, 1.01 | 0.040, 0.108, 1.05 | 0.045, 0.117, 0.95 |
No. of reflections | 2019 | 1941 | 1780 |
No. of parameters | 145 | 136 | 114 |
H-atom treatment | H-atom parameters constrained | H-atom parameters constrained | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.26, −0.21 | 0.19, −0.22 | 0.35, −0.44 |
Absolute structure | Flack (1983): 975 Friedel pairs | ? | ? |
Absolute structure parameter | 0.1 (15) | ? | ? |
Computer programs: CrysAlis PRO (Agilent, 2012), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008) within WinGX (Farrugia, 2012), PLATON (Spek, 2009).
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H11···O12i | 0.80 | 1.97 | 2.769 (2) | 175 |
N1—H12···O11 | 0.94 | 1.86 | 2.795 (2) | 173 |
N1—H13···O52ii | 0.85 | 2.46 | 3.249 (3) | 155 |
N1—H14···O11iii | 0.93 | 1.99 | 2.906 (3) | 169 |
Symmetry codes: (i) x+1, y, z; (ii) −x+2, y+1/2, −z+3/2; (iii) x+1/2, −y+3/2, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H11···O1Wi | 0.86 | 2.04 | 2.8761 (17) | 167 |
N1—H12···O2W | 0.85 | 2.16 | 2.9088 (19) | 146 |
N1—H13···O11 | 0.91 | 2.09 | 2.9891 (19) | 170 |
N1—H14···O1Wii | 0.87 | 2.02 | 2.8693 (18) | 164 |
O1W—H11W···O12 | 0.91 | 1.83 | 2.7202 (17) | 165 |
O1W—H12W···O2W | 0.86 | 1.87 | 2.7336 (17) | 174 |
O2W—H21W···O11iii | 0.83 | 1.89 | 2.7200 (17) | 176 |
O2W—H22W···O12i | 0.90 | 1.84 | 2.7309 (17) | 168 |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) x, y+1, z; (iii) −x+2, −y+1, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H11···O11 | 0.91 | 2.01 | 2.903 (3) | 169 |
N1—H12···O11i | 0.95 | 1.88 | 2.817 (3) | 169 |
N1—H13···O12ii | 0.95 | 1.99 | 2.857 (3) | 150 |
N1—H14···O11iii | 0.84 | 2.10 | 2.919 (3) | 165 |
O1W—H11W···O12 | 0.91 | 1.86 | 2.764 (3) | 172 |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x+1, y, −z+1/2; (iii) −x+1, −y+2, −z+1. |