Supporting information
Crystallographic Information File (CIF) https://doi.org/10.1107/S2053229614000576/lg3130sup1.cif | |
Structure factor file (CIF format) https://doi.org/10.1107/S2053229614000576/lg3130Isup2.hkl | |
Structure factor file (CIF format) https://doi.org/10.1107/S2053229614000576/lg3130IIsup3.hkl | |
Chemical Markup Language (CML) file https://doi.org/10.1107/S2053229614000576/lg3130Isup4.cml | |
Portable Document Format (PDF) file https://doi.org/10.1107/S2053229614000576/lg3130sup5.pdf |
CCDC references: 980747; 980748
Hirshfeld surface analysis is a very useful tool for the investigation of intermolecular interactions in crystal structures, allowing easy comparison of intermolecular contacts relative to van der Waals radii by a strategy based on a simple colouring scheme (Rohl et al., 2008; Tarahhomi et al., 2013). Such an analysis may be used in the case of symmetry-independent molecules within one structure, analogous structures, cation–anion compounds and polymorphs (Tarahhomi et al., 2013; Ling et al., 2010).
When comparing the crystal structures of cation–anion compounds with one identical component (cation or anion), Hirshfeld surfaces (HSs; Spackman & Byrom, 1997; Spackman & Jayatilaka, 2009; McKinnon et al., 2004) and fingerprint plots (FPs; Spackman & McKinnon, 2002; McKinnon et al., 2004) may be used for elucidating and comparing the intermolecular interactions involved in the crystal packing.
In organic synthesis, some cation–anion compounds based on organic cations and oxidant anions can be employed to improve the selectivity, the mildness and, therefore, the effectiveness of the oxidant species, especially in the oxidation of complex and highly sensitive compounds (Bobbitt, 1998). There are some reported structures of such cation–anion compounds, for example, the 1,1'-(ethane-1,2-diyl)dipyridinium dication with dichromate(VI) (Gholizadeh et al., 2012) and iodate anions (Gholizadeh et al., 2011).
Here, we present the syntheses and crystal structures of two new salts of the 1,1'-(ethane-1,2-diyl)dipyridinium dication, namely the bis(diperchlorate) salt, (I), and the hexaoxo-µ-peroxo-disulfate(2-) (also known as peroxodisulfate) salt, (II). Furthermore, Hirshfeld surface analysis, using the CrystalExplorer software (Wolff et al., 2012), was used to investigate and compare the intermolecular interactions, viz. the H···H, H···O, H···C and C···H contacts, in (I) and (II).
(C14H18N2)Br2 was prepared as described previously (Gholizadeh et al., 2011). The preparation of both (I) and (II) is identical, with the exception of the salts used for providing the counter-anions. To a solution of (C14H18N2)Br2 (10 mmol) in water (25 ml), an aqueous solution (25 ml) of KClO4 (20 mmol) for (I), or a solution of K2S2O8 (10 mmol) for (II), was added and the resulting solution stirred at room temperature. For both compounds, after 1 h, the precipitate was filtered off, washed with water and recrystallized from H2O–dimethylformamide (1:1 v/v) at room temperature.
Crystal data, data collection and structure refinement details are summarized in Table 1. For (I) and (II), all H atoms were placed in calculated positions, with C—H = 0.96 Å (aromatic and CH2) and Uiso(H) = 1.2Ueq(C). The data-reduction program CrysAlis PRO (Agilent, 2010) discarded two low-angle reflections [001 for (I) and 100 for (II)]. They were recorded in positions close to the beam stop or the Lorentz area of the CCD detector.
In the title bis(diperchlorate), (I) (Fig. 1), and peroxodisulfate, (II) (Fig. 2), salts, the dications are organized around an inversion centre located at the centre of the –CH2CH2– bridge and the two pyridine segments are anti with respect to one another. The pyridinium rings are parallel in both cases, but the perpendicular distances between their planes are 1.486 (2) Å for (I) and 1.309 (4) Å for (II). This difference in the perpendicular distances of (I) and (II) is related to the difference in the angle between the plane of the pyridinium ring and the plane defined by atoms N2/C1/C1i/Ni for (I) [symmetry code: (i) -x, -y + 1, -z] and N2/C1/C1ii/Nii for (II) [symmetry code: (ii) -x + 1, -y + 1, -z]. The angle between the planes of the rings of 83.76 (15)° in (I) is closer to 90° than that of 73.88 (14)° in (II), thus allowing for a larger separation of the pyridinium rings. The peroxodisulfate anion in (II) also exhibits inversion symmetry. The Cl atom in (I) and the S atom in (II) are in tetrahedral environments. Selected bond lengths and angles for (I) and (II) are given in Tables 2 and 4, respectively. The crystal packing of both structures are stabilized by C—H···O hydrogen bonds (Tables 3 and 5).
For the dications of (I) and (II), the three-dimensional Hirshfeld surface (HS) maps are given in Fig. 3; contacts with distances equal to the sum of the van der Waals radii are shown in white, and contacts with distances shorter than or longer than the related sum values are shown in red (highlight contacts) or blue, respectively. Tables 3 and 5 list the short intermolecular contacts with distances shorter than the sum of van der Waals radii, and these are identified with red spots on the HSs and labels as defined in Fig. 3. The shapes of the HSs of the dications in both structures are similar, reflecting similar intermolecular contacts (Tables 3 and 5) and similar conformations.
In the crystal packing, the dication of (I) takes part in different intermolecular contacts, viz. C—H···O (labels 1–6, 9 and 11 in Fig. 3), C···O (label 7), C···C (labels 10 and 12) and N···O (label 8), and the dication of (II) is involved in intermolecular C—H···O interactions (all labels except 7) and N···O (label 7) contacts. In both structures, each dication participates in some similar C—H···O hydrogen bonds, labelled in Fig. 3 as 2, 3, 5, 6 and 9 (Tables 3 and 5). The dark-red spots are related to the shorter C—H···O hydrogen bonds for both structures, and also to the unique Csp2···O interaction for (I). The light-red spots on the HSs include other intermolecular interactions (Fig. 3, and Tables 3 and 5).
Fig. 4 illustrates the analysis of the two-dimensional fingerprint plots (FPs) for the dications of (I) and (II). FPs are the two-dimensional representations of the information provided by visual inspection of the HSs, in which the distances of the nearest atoms outside, de, and inside, di, from the related HSs are plotted for evenly spaced points on the HSs. For a better identification of different H···X or X···H (X = H, O or C) contacts, the FP of each dication in (I) and (II) is decomposed into H···X-interactions-only fingerprints.
The two-dimensional fingerprint plots in Fig. 4 are quite asymmetric; this is expected, since interactions occur between two different species (cation and anion). In other words, the asymmetry about the plot diagonal is typical of structures that contain more than one component (molecule/ion) (Fabbiani et al., 2011).
In FPs of cation–anion compounds, the contact regions between the HSs of the two species (cation and anion) in the asymmetric unit are visible, and it is possible to identify complementary regions in the FPs, where one component (cation) acts as an H-atom donor (de > di) and the other as an acceptor (de < di). The most striking of these complementary features is the broad green spike in the region de > di on each of the full plots, resulting from the H···O contacts; similar spikes are not visible in the region de < di, due to the absence of O···H contacts. Moreover, the FPs in Fig. 4 clearly show the similarities, as well as the minor differences, between the distributions of interactions of the dications in (I) and (II).
Fig. 5 shows the relative contributions of the H···H, H···O, H···C and C···H contacts to the HS areas for the respective dications. By comparing the results in Fig. 5, it is seen that the H···O interactions outnumber the other contacts in the crystal structures (versus 0% area for the O···H interactions). Moreover, the percentages of the areas in Fig. 5 reveal that there are minor differences in the distribution of H···H and C···H interactions for the dications of (I) and (II).
For both compounds, data collection: CrysAlis PRO (Agilent, 2010); cell refinement: CrysAlis PRO (Agilent, 2010); data reduction: CrysAlis PRO (Agilent, 2010); program(s) used to solve structure: SIR2002 (Burla et al., 2003); program(s) used to refine structure: JANA2006 (Petříček et al., 2006); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: JANA2006 (Petříček et al., 2006), enCIFer (Allen, et al., 2004) and PLATON (Spek, 2009).
Fig. 1. The molecular structure of (I), showing the atom-labelling scheme.
Displacement ellipsoids are drawn at the 50% probability level.
Symmetry-related atoms are generated by a crystallographic inversion centre.
[Symmetry code: (i) -x, -y + 1, -z.] Fig. 2. The molecular structure of (II), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. Symmetry-related atoms are generated by a crystallographic inversion centre. [Symmetry codes: (i) -x + 1, -y, -z; (ii) -x + 1, -y + 1, -z.] Fig. 3. Views of the Hirshfeld surfaces (HSs) in two orientations for the dications of (I) and (II) (HSs mapped with dnorm). The labels on the HSs are as follows. For (I), (1) C3—H1C3···O2; (2) C7—H1C7···O2i; (3) C1—H2C1···O2i; (4) C3—H1C3···O3; (5) C4—H1C4···O3ii; (6) C1—H1C1···O2iii; (7) C3···O4iv; (8) N2···O4iv; (9) C1—H1C1···O4iv; (10) C5···C5v; (11) C5—H1C5···O3vi; (12) C5···C4vi. For (II), (1) C1—H2C1···O1i; (2) C7—H1C7···O4i; (3) C3—H1C3···O2; (4) C3—H1C3···O1ii; (5) C7—H1C7···O4iii; (6) C1—H1C1···O2; (7) N2···O2iv; (8) C5—H1C5···O1v; (9) C5—H1C5···O3vi; (10) C4—H1C4···O3vi. The symmetry codes are as in Tables 3 and 5. Fig. 4. Full fingerprint plots (FPs) for the dications of (I) and (II), and FPs resolved into H···H, H···O, H···C and C···H close contacts. The first two rows are related to the dication of (I), and the third and fourth rows are related to the dication of (II). Fig. 5. Relative contributions to the Hirshfeld surface areas for the various intermolecular contacts (H···H, H···O, H···C and C···H) in the dications of (I) (dark-blue columns) and (II) (light-blue columns). The N···O and C···O contacts (with negligible percentage of contact contributions) are not considered. |
C12H14N22+·2ClO4− | Z = 1 |
Mr = 385.15 | F(000) = 198 |
Triclinic, P1 | Dx = 1.655 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.7107 Å |
a = 6.0687 (3) Å | Cell parameters from 4357 reflections |
b = 6.7263 (4) Å | θ = 3.1–29.3° |
c = 9.8005 (3) Å | µ = 0.47 mm−1 |
α = 97.858 (4)° | T = 120 K |
β = 95.503 (4)° | Prism, colourless |
γ = 100.655 (4)° | 0.57 × 0.31 × 0.17 mm |
V = 386.44 (3) Å3 |
Agilent Xcalibur Gemini Ultra diffractometer with Atlas detector | 1904 independent reflections |
Radiation source: Enhance (Mo) X-ray Source | 1717 reflections with I > 3σ(I) |
Graphite monochromator | Rint = 0.019 |
Detector resolution: 10.3784 pixels mm-1 | θmax = 29.3°, θmin = 3.1° |
ω scans | h = −8→7 |
Absorption correction: analytical (CrysAlis PRO; Agilent, 2010) | k = −8→9 |
Tmin = 0.88, Tmax = 0.946 | l = −12→13 |
6178 measured reflections |
Refinement on F2 | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.030 | Weighting scheme based on measured s.u.'s w = 1/(σ2(I) + 0.0016I2) |
wR(F2) = 0.104 | (Δ/σ)max = 0.010 |
S = 1.79 | Δρmax = 0.29 e Å−3 |
1904 reflections | Δρmin = −0.33 e Å−3 |
110 parameters | Extinction correction: B–C type 1 Gaussian isotropic (Becker & Coppens, 1974) Becker, P. J. & Coppens, P. (1974). Acta Cryst. A30, 129–147. |
0 restraints | Extinction coefficient: 1600 (400) |
28 constraints |
C12H14N22+·2ClO4− | γ = 100.655 (4)° |
Mr = 385.15 | V = 386.44 (3) Å3 |
Triclinic, P1 | Z = 1 |
a = 6.0687 (3) Å | Mo Kα radiation |
b = 6.7263 (4) Å | µ = 0.47 mm−1 |
c = 9.8005 (3) Å | T = 120 K |
α = 97.858 (4)° | 0.57 × 0.31 × 0.17 mm |
β = 95.503 (4)° |
Agilent Xcalibur Gemini Ultra diffractometer with Atlas detector | 1904 independent reflections |
Absorption correction: analytical (CrysAlis PRO; Agilent, 2010) | 1717 reflections with I > 3σ(I) |
Tmin = 0.88, Tmax = 0.946 | Rint = 0.019 |
6178 measured reflections |
R[F2 > 2σ(F2)] = 0.030 | 0 restraints |
wR(F2) = 0.104 | H-atom parameters constrained |
S = 1.79 | Δρmax = 0.29 e Å−3 |
1904 reflections | Δρmin = −0.33 e Å−3 |
110 parameters |
x | y | z | Uiso*/Ueq | ||
Cl1 | 0.51205 (6) | 0.20569 (6) | 0.21529 (3) | 0.01404 (14) | |
O1 | 0.75374 (18) | 0.23345 (19) | 0.24274 (12) | 0.0210 (4) | |
O2 | 0.45627 (19) | 0.32895 (18) | 0.11147 (11) | 0.0195 (4) | |
O3 | 0.4230 (2) | 0.2722 (2) | 0.34055 (12) | 0.0296 (5) | |
O4 | 0.4163 (2) | −0.0060 (2) | 0.16526 (14) | 0.0328 (5) | |
N2 | 0.0120 (2) | 0.66514 (19) | 0.17194 (12) | 0.0120 (4) | |
C6 | −0.2013 (3) | 0.7874 (2) | 0.34153 (16) | 0.0170 (5) | |
C4 | 0.1380 (3) | 0.6737 (2) | 0.40854 (15) | 0.0163 (5) | |
C5 | −0.0477 (3) | 0.7514 (2) | 0.44444 (15) | 0.0167 (5) | |
C1 | 0.0473 (2) | 0.6135 (2) | 0.02463 (14) | 0.0141 (5) | |
C3 | 0.1645 (3) | 0.6299 (2) | 0.27022 (15) | 0.0145 (5) | |
C7 | −0.1676 (3) | 0.7436 (2) | 0.20407 (15) | 0.0148 (5) | |
H1C6 | −0.330164 | 0.842353 | 0.365405 | 0.0204* | |
H1C4 | 0.247221 | 0.650526 | 0.479091 | 0.0195* | |
H1C5 | −0.070031 | 0.780266 | 0.540231 | 0.0201* | |
H1C1 | 0.206125 | 0.642718 | 0.016718 | 0.017* | |
H2C1 | −0.02975 | 0.692644 | −0.030912 | 0.017* | |
H1C3 | 0.291729 | 0.574231 | 0.243952 | 0.0174* | |
H1C7 | −0.272253 | 0.769263 | 0.13189 | 0.0178* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl1 | 0.0130 (2) | 0.0157 (2) | 0.0137 (2) | 0.00278 (15) | 0.00156 (14) | 0.00366 (14) |
O1 | 0.0123 (6) | 0.0268 (7) | 0.0249 (6) | 0.0045 (5) | −0.0001 (4) | 0.0082 (5) |
O2 | 0.0218 (6) | 0.0236 (7) | 0.0160 (6) | 0.0092 (5) | 0.0022 (4) | 0.0071 (5) |
O3 | 0.0281 (7) | 0.0511 (9) | 0.0160 (6) | 0.0188 (6) | 0.0093 (5) | 0.0087 (6) |
O4 | 0.0323 (8) | 0.0164 (7) | 0.0439 (8) | −0.0064 (6) | −0.0035 (6) | 0.0053 (6) |
N2 | 0.0138 (6) | 0.0111 (6) | 0.0099 (6) | −0.0003 (5) | 0.0017 (4) | 0.0009 (5) |
C6 | 0.0177 (8) | 0.0154 (8) | 0.0189 (8) | 0.0049 (6) | 0.0063 (6) | 0.0012 (6) |
C4 | 0.0195 (8) | 0.0145 (8) | 0.0129 (7) | 0.0004 (6) | −0.0026 (6) | 0.0026 (6) |
C5 | 0.0223 (9) | 0.0137 (8) | 0.0122 (7) | −0.0007 (6) | 0.0036 (6) | 0.0000 (6) |
C1 | 0.0168 (8) | 0.0149 (8) | 0.0098 (7) | 0.0009 (6) | 0.0033 (5) | 0.0010 (6) |
C3 | 0.0135 (8) | 0.0132 (7) | 0.0165 (7) | 0.0024 (6) | 0.0015 (6) | 0.0027 (6) |
C7 | 0.0132 (8) | 0.0150 (8) | 0.0156 (8) | 0.0026 (6) | −0.0003 (5) | 0.0017 (6) |
Cl1—O1 | 1.4381 (12) | C4—C5 | 1.382 (2) |
Cl1—O2 | 1.4510 (13) | C4—C3 | 1.379 (2) |
Cl1—O3 | 1.4374 (13) | C4—H1C4 | 0.96 |
Cl1—O4 | 1.4332 (13) | C5—H1C5 | 0.96 |
N2—C1 | 1.4835 (18) | C1—C1i | 1.5211 (19) |
N2—C3 | 1.347 (2) | C1—H1C1 | 0.96 |
N2—C7 | 1.341 (2) | C1—H2C1 | 0.96 |
C6—C5 | 1.383 (2) | C3—H1C3 | 0.96 |
C6—C7 | 1.382 (2) | C7—H1C7 | 0.96 |
C6—H1C6 | 0.96 | ||
O1—Cl1—O2 | 109.06 (7) | C6—C5—C4 | 119.62 (14) |
O1—Cl1—O3 | 109.45 (7) | C6—C5—H1C5 | 120.19 |
O1—Cl1—O4 | 109.70 (8) | C4—C5—H1C5 | 120.19 |
O2—Cl1—O3 | 108.85 (8) | N2—C1—C1i | 108.98 (12) |
O2—Cl1—O4 | 109.68 (7) | N2—C1—H1C1 | 109.47 |
O3—Cl1—O4 | 110.09 (8) | N2—C1—H2C1 | 109.47 |
C1—N2—C3 | 117.85 (13) | C1i—C1—H1C1 | 109.47 |
C1—N2—C7 | 120.22 (12) | C1i—C1—H2C1 | 109.47 |
C3—N2—C7 | 121.93 (13) | H1C1—C1—H2C1 | 109.95 |
C5—C6—C7 | 119.46 (16) | N2—C3—C4 | 120.04 (15) |
C5—C6—H1C6 | 120.27 | N2—C3—H1C3 | 119.98 |
C7—C6—H1C6 | 120.27 | C4—C3—H1C3 | 119.98 |
C5—C4—C3 | 119.21 (15) | N2—C7—C6 | 119.73 (14) |
C5—C4—H1C4 | 120.4 | N2—C7—H1C7 | 120.14 |
C3—C4—H1C4 | 120.4 | C6—C7—H1C7 | 120.14 |
C3—N2—C1—C1i | 83.48 (15) | C4—C3—N2—C1 | −179.44 (13) |
C7—N2—C1—C1i | −96.28 (15) | C6—C7—N2—C1 | 178.73 (13) |
Symmetry code: (i) −x, −y+1, −z. |
D—H···A | D—H | H···A | D···A | D—H···A |
C3—H1C3···O2 | 0.96 | 2.38 | 3.263 (2) | 152 |
C7—H1C7···O2i | 0.96 | 2.48 | 3.3322 (18) | 148 |
C1—H2C1···O2i | 0.96 | 2.60 | 3.326 (2) | 132 |
C3—H1C3···O3 | 0.96 | 2.58 | 3.220 (2) | 125 |
C4—H1C4···O3ii | 0.96 | 2.47 | 3.3792 (19) | 159 |
C1—H1C1···O2iii | 0.96 | 2.50 | 3.3888 (19) | 155 |
C3···O4iv | 3.000 (2) | |||
N2···O4iv | 2.997 (2) | |||
C1—H1C1···O4iv | 0.96 | 2.63 | 3.129 (2) | 113 |
C5···C5v | 3.297 (2) | |||
C5—H1C5···O3vi | 0.96 | 2.53 | 3.245 (2) | 132 |
C5···C4vi | 3.354 (2) |
Symmetry codes: (i) −x, −y+1, −z; (ii) −x+1, −y+1, −z+1; (iii) −x+1, −y+1, −z; (iv) x, y+1, z; (v) x, y+2, z+1; (vi) −x, −y+1, −z+1. |
C12H14N22+·S2O82− | F(000) = 392 |
Mr = 378.4 | Dx = 1.625 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.7107 Å |
Hall symbol: -P 2ycb | Cell parameters from 3143 reflections |
a = 8.2189 (5) Å | θ = 3.0–29.3° |
b = 9.6676 (6) Å | µ = 0.39 mm−1 |
c = 9.8361 (4) Å | T = 120 K |
β = 98.359 (4)° | Prism, colourless |
V = 773.24 (7) Å3 | 0.76 × 0.63 × 0.54 mm |
Z = 2 |
Agilent Xcalibur Gemini Ultra diffractometer with Atlas detector | 1848 independent reflections |
Radiation source: Enhance (Mo) X-ray Source | 1687 reflections with I > 3σ(I) |
Graphite monochromator | Rint = 0.017 |
Detector resolution: 10.3784 pixels mm-1 | θmax = 29.3°, θmin = 3.0° |
ω scans | h = −11→11 |
Absorption correction: analytical (CrysAlis PRO; Agilent, 2010) | k = −10→13 |
Tmin = 0.801, Tmax = 0.845 | l = −13→12 |
5426 measured reflections |
Refinement on F2 | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.028 | Weighting scheme based on measured s.u.'s w = 1/(σ2(I) + 0.0016I2) |
wR(F2) = 0.092 | (Δ/σ)max = 0.007 |
S = 1.71 | Δρmax = 0.31 e Å−3 |
1848 reflections | Δρmin = −0.27 e Å−3 |
110 parameters | Extinction correction: B–C type 1 Gaussian isotropic (Becker & Coppens, 1974) |
0 restraints | Extinction coefficient: 34400 (1600) |
28 constraints |
C12H14N22+·S2O82− | V = 773.24 (7) Å3 |
Mr = 378.4 | Z = 2 |
Monoclinic, P21/c | Mo Kα radiation |
a = 8.2189 (5) Å | µ = 0.39 mm−1 |
b = 9.6676 (6) Å | T = 120 K |
c = 9.8361 (4) Å | 0.76 × 0.63 × 0.54 mm |
β = 98.359 (4)° |
Agilent Xcalibur Gemini Ultra diffractometer with Atlas detector | 1848 independent reflections |
Absorption correction: analytical (CrysAlis PRO; Agilent, 2010) | 1687 reflections with I > 3σ(I) |
Tmin = 0.801, Tmax = 0.845 | Rint = 0.017 |
5426 measured reflections |
R[F2 > 2σ(F2)] = 0.028 | 0 restraints |
wR(F2) = 0.092 | H-atom parameters constrained |
S = 1.71 | Δρmax = 0.31 e Å−3 |
1848 reflections | Δρmin = −0.27 e Å−3 |
110 parameters |
x | y | z | Uiso*/Ueq | ||
S1 | 0.33725 (4) | 0.11885 (3) | 0.07649 (3) | 0.01224 (12) | |
O1 | 0.27332 (12) | 0.18207 (11) | −0.05252 (9) | 0.0201 (3) | |
O2 | 0.46015 (11) | 0.20123 (10) | 0.15908 (9) | 0.0176 (3) | |
O3 | 0.21787 (12) | 0.05361 (11) | 0.14885 (10) | 0.0211 (3) | |
O4 | 0.43319 (11) | −0.02305 (10) | 0.03799 (9) | 0.0182 (3) | |
N2 | 0.33808 (12) | 0.56967 (12) | 0.09676 (10) | 0.0121 (3) | |
C6 | 0.10858 (16) | 0.71905 (15) | 0.05622 (13) | 0.0203 (4) | |
C5 | 0.03187 (17) | 0.64228 (15) | 0.14892 (14) | 0.0195 (4) | |
C7 | 0.26360 (16) | 0.68040 (14) | 0.03245 (13) | 0.0170 (4) | |
C4 | 0.11152 (17) | 0.52957 (15) | 0.21390 (13) | 0.0183 (4) | |
C3 | 0.26629 (15) | 0.49407 (15) | 0.18680 (12) | 0.0147 (3) | |
C1 | 0.50530 (15) | 0.53315 (13) | 0.07117 (12) | 0.0136 (3) | |
H1C6 | 0.054444 | 0.797422 | 0.00978 | 0.0243* | |
H1C5 | −0.075686 | 0.667742 | 0.167356 | 0.0234* | |
H1C7 | 0.318515 | 0.732784 | −0.030259 | 0.0204* | |
H1C4 | 0.059549 | 0.476065 | 0.277688 | 0.022* | |
H1C3 | 0.322568 | 0.415913 | 0.231844 | 0.0176* | |
H1C1 | 0.553291 | 0.468653 | 0.139716 | 0.0163* | |
H2C1 | 0.571429 | 0.615268 | 0.074414 | 0.0163* |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.0108 (2) | 0.0126 (2) | 0.0138 (2) | 0.00277 (11) | 0.00332 (13) | −0.00073 (11) |
O1 | 0.0194 (5) | 0.0226 (6) | 0.0173 (5) | 0.0064 (4) | −0.0012 (4) | 0.0022 (4) |
O2 | 0.0179 (5) | 0.0183 (5) | 0.0162 (4) | −0.0024 (4) | 0.0010 (4) | −0.0024 (4) |
O3 | 0.0161 (5) | 0.0244 (6) | 0.0252 (5) | −0.0010 (4) | 0.0114 (4) | −0.0018 (4) |
O4 | 0.0165 (5) | 0.0113 (5) | 0.0306 (5) | 0.0007 (4) | 0.0160 (4) | 0.0013 (4) |
N2 | 0.0104 (5) | 0.0136 (6) | 0.0127 (5) | −0.0004 (4) | 0.0029 (4) | −0.0021 (4) |
C6 | 0.0180 (7) | 0.0177 (7) | 0.0258 (7) | 0.0058 (6) | 0.0058 (5) | 0.0064 (6) |
C5 | 0.0140 (6) | 0.0234 (8) | 0.0224 (7) | 0.0037 (5) | 0.0068 (5) | 0.0023 (6) |
C7 | 0.0179 (6) | 0.0145 (7) | 0.0198 (6) | 0.0005 (5) | 0.0064 (5) | 0.0029 (5) |
C4 | 0.0173 (6) | 0.0214 (7) | 0.0179 (6) | 0.0006 (6) | 0.0080 (5) | 0.0036 (5) |
C3 | 0.0149 (6) | 0.0160 (6) | 0.0131 (5) | 0.0021 (5) | 0.0021 (4) | 0.0017 (5) |
C1 | 0.0096 (5) | 0.0171 (7) | 0.0141 (5) | 0.0012 (5) | 0.0021 (4) | −0.0026 (5) |
S1—O1 | 1.4374 (10) | C5—C4 | 1.379 (2) |
S1—O2 | 1.4408 (9) | C5—H1C5 | 0.96 |
S1—O3 | 1.4388 (11) | C7—H1C7 | 0.96 |
O4—O4i | 1.4839 (13) | C4—C3 | 1.3805 (19) |
N2—C7 | 1.3447 (17) | C4—H1C4 | 0.96 |
N2—C3 | 1.3485 (17) | C3—H1C3 | 0.96 |
N2—C1 | 1.4757 (16) | C1—C1ii | 1.5308 (16) |
C6—C5 | 1.395 (2) | C1—H1C1 | 0.96 |
C6—C7 | 1.3800 (19) | C1—H2C1 | 0.96 |
C6—H1C6 | 0.96 | ||
O1—S1—O2 | 113.52 (6) | C6—C7—H1C7 | 119.86 |
O1—S1—O3 | 115.79 (6) | C5—C4—C3 | 119.70 (13) |
O2—S1—O3 | 115.85 (6) | C5—C4—H1C4 | 120.15 |
C7—N2—C3 | 121.85 (11) | C3—C4—H1C4 | 120.15 |
C7—N2—C1 | 118.80 (11) | N2—C3—C4 | 119.70 (12) |
C3—N2—C1 | 119.32 (11) | N2—C3—H1C3 | 120.15 |
C5—C6—C7 | 118.86 (13) | C4—C3—H1C3 | 120.15 |
C5—C6—H1C6 | 120.57 | N2—C1—C1ii | 109.00 (9) |
C7—C6—H1C6 | 120.57 | N2—C1—H1C1 | 109.47 |
C6—C5—C4 | 119.60 (13) | N2—C1—H2C1 | 109.47 |
C6—C5—H1C5 | 120.2 | C1ii—C1—H1C1 | 109.47 |
C4—C5—H1C5 | 120.2 | C1ii—C1—H2C1 | 109.47 |
N2—C7—C6 | 120.28 (13) | H1C1—C1—H2C1 | 109.94 |
N2—C7—H1C7 | 119.86 | ||
C3—N2—C1—C1ii | 107.08 (12) | O1—S1—O4—O4i | 61.05 (8) |
C7—N2—C1—C1ii | −74.94 (14) | O2—S1—O4—O4i | −59.71 (8) |
C4—C3—N2—C1 | 178.41 (12) | O3—S1—O4—O4i | −179.30 (7) |
C6—C7—N2—C1 | −178.69 (12) |
Symmetry codes: (i) −x+1, −y, −z; (ii) −x+1, −y+1, −z. |
D—H···A | D—H | H···A | D···A | D—H···A |
C1—H2C1···O1ii | 0.96 | 2.36 | 3.3198 (17) | 173 |
C7—H1C7···O2ii | 0.96 | 2.45 | 3.3552 (17) | 158 |
C3—H1C3···O2 | 0.96 | 2.52 | 3.279 (2) | 136 |
C3—H1C3···O1iii | 0.96 | 2.41 | 3.0715 (16) | 126 |
C7—H1C7···O4iv | 0.96 | 2.59 | 3.185 (2) | 120 |
C1—H1C1···O2 | 0.96 | 2.71 | 3.358 (2) | 125 |
N2···O2v | 2.996 (1) | |||
C5—H1C5···O1vi | 0.96 | 2.34 | 3.063 (2) | 131 |
C5—H1C5···O3vii | 0.96 | 2.54 | 3.177 (2) | 124 |
C4—H1C4···O3vii | 0.96 | 2.60 | 3.204 (2) | 121 |
Symmetry codes: (ii) −x+1, −y+1, −z; (iii) x, −y+1/2, z+1/2; (iv) x, y+1, z; (v) −x+1, y+1/2, −z+1/2; (vi) −x, −y+1, −z; (vii) −x, y+1/2, −z+1/2. |
Experimental details
(I) | (II) | |
Crystal data | ||
Chemical formula | C12H14N22+·2ClO4− | C12H14N22+·S2O82− |
Mr | 385.15 | 378.4 |
Crystal system, space group | Triclinic, P1 | Monoclinic, P21/c |
Temperature (K) | 120 | 120 |
a, b, c (Å) | 6.0687 (3), 6.7263 (4), 9.8005 (3) | 8.2189 (5), 9.6676 (6), 9.8361 (4) |
α, β, γ (°) | 97.858 (4), 95.503 (4), 100.655 (4) | 90, 98.359 (4), 90 |
V (Å3) | 386.44 (3) | 773.24 (7) |
Z | 1 | 2 |
Radiation type | Mo Kα | Mo Kα |
µ (mm−1) | 0.47 | 0.39 |
Crystal size (mm) | 0.57 × 0.31 × 0.17 | 0.76 × 0.63 × 0.54 |
Data collection | ||
Diffractometer | Agilent Xcalibur Gemini Ultra diffractometer with Atlas detector | Agilent Xcalibur Gemini Ultra diffractometer with Atlas detector |
Absorption correction | Analytical (CrysAlis PRO; Agilent, 2010) | Analytical (CrysAlis PRO; Agilent, 2010) |
Tmin, Tmax | 0.88, 0.946 | 0.801, 0.845 |
No. of measured, independent and observed [I > 3σ(I)] reflections | 6178, 1904, 1717 | 5426, 1848, 1687 |
Rint | 0.019 | 0.017 |
(sin θ/λ)max (Å−1) | 0.689 | 0.689 |
Refinement | ||
R[F2 > 2σ(F2)], wR(F2), S | 0.030, 0.104, 1.79 | 0.028, 0.092, 1.71 |
No. of reflections | 1904 | 1848 |
No. of parameters | 110 | 110 |
H-atom treatment | H-atom parameters constrained | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.29, −0.33 | 0.31, −0.27 |
Computer programs: CrysAlis PRO (Agilent, 2010), SIR2002 (Burla et al., 2003), DIAMOND (Brandenburg & Putz, 2005), JANA2006 (Petříček et al., 2006), enCIFer (Allen, et al., 2004) and PLATON (Spek, 2009).
Cl1—O1 | 1.4381 (12) | N2—C1 | 1.4835 (18) |
Cl1—O2 | 1.4510 (13) | N2—C3 | 1.347 (2) |
Cl1—O3 | 1.4374 (13) | N2—C7 | 1.341 (2) |
Cl1—O4 | 1.4332 (13) | ||
O1—Cl1—O2 | 109.06 (7) | O3—Cl1—O4 | 110.09 (8) |
O1—Cl1—O3 | 109.45 (7) | C1—N2—C3 | 117.85 (13) |
O1—Cl1—O4 | 109.70 (8) | C1—N2—C7 | 120.22 (12) |
O2—Cl1—O3 | 108.85 (8) | C3—N2—C7 | 121.93 (13) |
O2—Cl1—O4 | 109.68 (7) | ||
C3—N2—C1—C1i | 83.48 (15) | C4—C3—N2—C1 | −179.44 (13) |
C7—N2—C1—C1i | −96.28 (15) | C6—C7—N2—C1 | 178.73 (13) |
Symmetry code: (i) −x, −y+1, −z. |
D—H···A | D—H | H···A | D···A | D—H···A |
C3—H1C3···O2 | 0.96 | 2.38 | 3.263 (2) | 152 |
C7—H1C7···O2i | 0.96 | 2.48 | 3.3322 (18) | 148 |
C1—H2C1···O2i | 0.96 | 2.60 | 3.326 (2) | 132 |
C3—H1C3···O3 | 0.96 | 2.58 | 3.220 (2) | 125 |
C4—H1C4···O3ii | 0.96 | 2.47 | 3.3792 (19) | 159 |
C1—H1C1···O2iii | 0.96 | 2.50 | 3.3888 (19) | 155 |
C3···O4iv | . | . | 3.000 (2) | . |
N2···O4iv | . | . | 2.997 (2) | . |
C1—H1C1···O4iv | 0.96 | 2.63 | 3.129 (2) | 113 |
C5···C5v | . | . | 3.297 (2) | . |
C5—H1C5···O3vi | 0.96 | 2.53 | 3.245 (2) | 132 |
C5···C4vi | . | . | 3.354 (2) | . |
Symmetry codes: (i) −x, −y+1, −z; (ii) −x+1, −y+1, −z+1; (iii) −x+1, −y+1, −z; (iv) x, y+1, z; (v) x, y+2, z+1; (vi) −x, −y+1, −z+1. |
S1—O1 | 1.4374 (10) | N2—C7 | 1.3447 (17) |
S1—O2 | 1.4408 (9) | N2—C3 | 1.3485 (17) |
S1—O3 | 1.4388 (11) | N2—C1 | 1.4757 (16) |
O4—O4i | 1.4839 (13) | ||
O1—S1—O2 | 113.52 (6) | C7—N2—C3 | 121.85 (11) |
O1—S1—O3 | 115.79 (6) | C7—N2—C1 | 118.80 (11) |
O2—S1—O3 | 115.85 (6) | C3—N2—C1 | 119.32 (11) |
C3—N2—C1—C1ii | 107.08 (12) | O1—S1—O4—O4i | 61.05 (8) |
C7—N2—C1—C1ii | −74.94 (14) | O2—S1—O4—O4i | −59.71 (8) |
C4—C3—N2—C1 | 178.41 (12) | O3—S1—O4—O4i | −179.30 (7) |
C6—C7—N2—C1 | −178.69 (12) |
Symmetry codes: (i) −x+1, −y, −z; (ii) −x+1, −y+1, −z. |
D—H···A | D—H | H···A | D···A | D—H···A |
C1—H2C1···O1ii | 0.96 | 2.36 | 3.3198 (17) | 173 |
C7—H1C7···O2ii | 0.96 | 2.45 | 3.3552 (17) | 158 |
C3—H1C3···O2 | 0.96 | 2.52 | 3.279 (2) | 136 |
C3—H1C3···O1iii | 0.96 | 2.41 | 3.0715 (16) | 126 |
C7—H1C7···O4iv | 0.96 | 2.59 | 3.185 (2) | 120 |
C1—H1C1···O2 | 0.96 | 2.71 | 3.358 (2) | 125 |
N2···O2v | . | . | 2.996 (1) | . |
C5—H1C5···O1vi | 0.96 | 2.34 | 3.063 (2) | 131 |
C5—H1C5···O3vii | 0.96 | 2.54 | 3.177 (2) | 124 |
C4—H1C4···O3vii | 0.96 | 2.60 | 3.204 (2) | 121 |
Symmetry codes: (ii) −x+1, −y+1, −z; (iii) x, −y+1/2, z+1/2; (iv) x, y+1, z; (v) −x+1, y+1/2, −z+1/2; (vi) −x, −y+1, −z; (vii) −x, y+1/2, −z+1/2. |