In the crystal structure of the title compound, [Cu(C7H3NO4)(NH3)2], the Cu atom is coordinated in a square-pyramidal geometry by a pyridine-2,6-dicarboxylate ligand acting in an N,O,O'-tridentate chelating mode, and by two N atoms from two ammine ligands. A further long Cu-O bond involving a symmetry-realated molecule generates chains of molecules in the a-axis direction.
Supporting information
CCDC reference: 296603
Key indicators
- Single-crystal X-ray study
- T = 295 K
- Mean (C-C) = 0.004 Å
- R factor = 0.037
- wR factor = 0.104
- Data-to-parameter ratio = 13.8
checkCIF/PLATON results
No syntax errors found
Alert level B
PLAT415_ALERT_2_B Short Inter D-H..H-X H2C .. H4 .. 2.02 Ang.
Alert level C
PLAT420_ALERT_2_C D-H Without Acceptor N3 - H3C ... ?
0 ALERT level A = In general: serious problem
1 ALERT level B = Potentially serious problem
1 ALERT level C = Check and explain
0 ALERT level G = General alerts; check
0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data
2 ALERT type 2 Indicator that the structure model may be wrong or deficient
0 ALERT type 3 Indicator that the structure quality may be low
0 ALERT type 4 Improvement, methodology, query or suggestion
Following the procedure described by Constable et al., (1990), H2PDC (0.083 g, 0.5 mmol) was added with 1 ml of concentrated ammine to an aqueous solution (15 ml) of copper(II) oxalate (0.075 g, 0.5 mmol). The mixture was placed in a 25 ml Teflon-lined Parr bomb and heated at 433 K for 38 h. The bomb was then cooled to room temperature at 5 K h−1. Crystals were obtained in about 30% yield. Analysis calculated for C7H9N3O4Cu: C 32.00, H 3.45, N 15.99%; found: C 31.98, H 3.50, N 16.02%. IR (KBr, cm−1): 3378 (m), 3065 (w), 1605 (vs), 1565 (m), 1556 (m), 1482 (s), 1417 (s).
H atoms were placed in calculated positions (C–H = 0.93 Å; Uiso(H) = 1.2UeqC and N—H = 0.89 Å; Uiso(H) = 1.5UeqN), and were included in the refinement in a riding-model approximation.
Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976) and PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97.
Diammine(pyridine-2,6-dicarboxylate)copper(II)
top
Crystal data top
[Cu(C7H3NO4)(NH3)2] | Z = 2 |
Mr = 262.72 | F(000) = 266 |
Triclinic, P1 | Dx = 2.006 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 4.8654 (6) Å | Cell parameters from 58 reflections |
b = 9.1161 (11) Å | θ = 2.2–26.0° |
c = 10.0916 (12) Å | µ = 2.51 mm−1 |
α = 76.927 (2)° | T = 295 K |
β = 86.987 (2)° | Needle, blue |
γ = 86.618 (2)° | 0.26 × 0.18 × 0.11 mm |
V = 434.88 (9) Å3 | |
Data collection top
Bruker APEX area-dectector diffractometer | 1901 independent reflections |
Radiation source: fine-focus sealed tube | 1772 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.014 |
ϕ and ω scans | θmax = 27.8°, θmin = 2.1° |
Absorption correction: multi-scan (SADABS; Bruker, 2002) | h = −6→5 |
Tmin = 0.558, Tmax = 0.755 | k = −11→11 |
2693 measured reflections | l = −12→13 |
Refinement top
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.037 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.104 | H-atom parameters constrained |
S = 1.08 | w = 1/[σ2(Fo2) + (0.0653P)2 + 0.365P] where P = (Fo2 + 2Fc2)/3 |
1901 reflections | (Δ/σ)max = 0.001 |
138 parameters | Δρmax = 0.83 e Å−3 |
0 restraints | Δρmin = −0.81 e Å−3 |
Crystal data top
[Cu(C7H3NO4)(NH3)2] | γ = 86.618 (2)° |
Mr = 262.72 | V = 434.88 (9) Å3 |
Triclinic, P1 | Z = 2 |
a = 4.8654 (6) Å | Mo Kα radiation |
b = 9.1161 (11) Å | µ = 2.51 mm−1 |
c = 10.0916 (12) Å | T = 295 K |
α = 76.927 (2)° | 0.26 × 0.18 × 0.11 mm |
β = 86.987 (2)° | |
Data collection top
Bruker APEX area-dectector diffractometer | 1901 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2002) | 1772 reflections with I > 2σ(I) |
Tmin = 0.558, Tmax = 0.755 | Rint = 0.014 |
2693 measured reflections | |
Refinement top
R[F2 > 2σ(F2)] = 0.037 | 0 restraints |
wR(F2) = 0.104 | H-atom parameters constrained |
S = 1.08 | Δρmax = 0.83 e Å−3 |
1901 reflections | Δρmin = −0.81 e Å−3 |
138 parameters | |
Special details top
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top | x | y | z | Uiso*/Ueq | |
Cu1 | 0.29849 (7) | 0.08868 (4) | 0.20886 (3) | 0.02474 (15) | |
N1 | 0.1509 (5) | 0.2770 (3) | 0.2411 (2) | 0.0209 (4) | |
N2 | 0.0104 (5) | −0.0765 (3) | 0.3523 (2) | 0.0235 (5) | |
H2A | −0.1284 | −0.0244 | 0.3841 | 0.035* | |
H2B | 0.1049 | −0.1301 | 0.4216 | 0.035* | |
H2C | −0.0560 | −0.1383 | 0.3064 | 0.035* | |
N3 | 0.5141 (6) | −0.0849 (3) | 0.1665 (3) | 0.0308 (6) | |
H3A | 0.6732 | −0.0545 | 0.1247 | 0.046* | |
H3B | 0.4199 | −0.1264 | 0.1124 | 0.046* | |
H3C | 0.5472 | −0.1526 | 0.2433 | 0.046* | |
O4 | 0.6084 (5) | 0.2681 (3) | 0.4977 (2) | 0.0357 (5) | |
O2 | 0.0093 (5) | 0.1358 (2) | 0.0668 (2) | 0.0304 (5) | |
O3 | 0.5501 (4) | 0.1156 (2) | 0.3573 (2) | 0.0276 (4) | |
O1 | −0.3591 (5) | 0.2906 (3) | 0.0091 (2) | 0.0375 (5) | |
C6 | −0.1460 (6) | 0.2528 (3) | 0.0708 (3) | 0.0247 (6) | |
C7 | 0.4940 (6) | 0.2331 (3) | 0.4036 (3) | 0.0243 (5) | |
C2 | 0.2651 (6) | 0.3363 (3) | 0.3325 (3) | 0.0216 (5) | |
C3 | 0.1780 (6) | 0.4782 (3) | 0.3500 (3) | 0.0282 (6) | |
H3 | 0.2576 | 0.5210 | 0.4133 | 0.034* | |
C1 | −0.0524 (6) | 0.3479 (3) | 0.1644 (3) | 0.0219 (5) | |
C5 | −0.1520 (6) | 0.4895 (3) | 0.1761 (3) | 0.0272 (6) | |
H5 | −0.2941 | 0.5399 | 0.1231 | 0.033* | |
C4 | −0.0320 (7) | 0.5546 (3) | 0.2701 (3) | 0.0311 (6) | |
H4 | −0.0936 | 0.6505 | 0.2794 | 0.037* | |
Atomic displacement parameters (Å2) top | U11 | U22 | U33 | U12 | U13 | U23 |
Cu1 | 0.0244 (2) | 0.0220 (2) | 0.0308 (2) | 0.00593 (14) | −0.00732 (14) | −0.01257 (14) |
N1 | 0.0209 (11) | 0.0187 (10) | 0.0238 (11) | 0.0021 (8) | −0.0042 (9) | −0.0062 (8) |
N2 | 0.0198 (11) | 0.0239 (11) | 0.0259 (11) | 0.0070 (9) | −0.0056 (9) | −0.0042 (9) |
N3 | 0.0302 (13) | 0.0285 (13) | 0.0382 (14) | 0.0074 (10) | −0.0086 (11) | −0.0177 (11) |
O4 | 0.0407 (13) | 0.0327 (11) | 0.0375 (12) | 0.0058 (10) | −0.0197 (10) | −0.0136 (10) |
O2 | 0.0317 (11) | 0.0292 (11) | 0.0345 (11) | 0.0056 (9) | −0.0104 (9) | −0.0157 (9) |
O3 | 0.0267 (10) | 0.0261 (10) | 0.0323 (10) | 0.0064 (8) | −0.0083 (8) | −0.0116 (8) |
O1 | 0.0341 (12) | 0.0393 (13) | 0.0429 (13) | 0.0058 (10) | −0.0186 (10) | −0.0153 (10) |
C6 | 0.0255 (14) | 0.0243 (13) | 0.0245 (13) | −0.0021 (11) | −0.0050 (11) | −0.0051 (10) |
C7 | 0.0214 (13) | 0.0245 (13) | 0.0269 (13) | 0.0012 (10) | −0.0052 (10) | −0.0051 (10) |
C2 | 0.0207 (12) | 0.0205 (12) | 0.0252 (13) | −0.0005 (10) | −0.0044 (10) | −0.0075 (10) |
C3 | 0.0293 (15) | 0.0272 (14) | 0.0324 (15) | 0.0002 (11) | −0.0061 (12) | −0.0149 (12) |
C1 | 0.0198 (13) | 0.0213 (12) | 0.0247 (13) | −0.0002 (10) | −0.0028 (10) | −0.0048 (10) |
C5 | 0.0260 (14) | 0.0231 (13) | 0.0319 (14) | 0.0044 (11) | −0.0073 (11) | −0.0047 (11) |
C4 | 0.0362 (16) | 0.0205 (13) | 0.0391 (16) | 0.0071 (12) | −0.0066 (13) | −0.0128 (12) |
Geometric parameters (Å, º) top
Cu1—N1 | 1.911 (2) | O4—C7 | 1.236 (3) |
Cu1—N3 | 1.962 (3) | O2—C6 | 1.278 (4) |
Cu1—O2 | 2.021 (2) | O3—C7 | 1.273 (4) |
Cu1—O3 | 2.049 (2) | O1—C6 | 1.229 (4) |
Cu1—N2 | 2.319 (2) | C6—C1 | 1.520 (4) |
O1—Cu1i | 2.925 (2) | C7—C2 | 1.515 (4) |
N1—C2 | 1.329 (3) | C2—C3 | 1.384 (4) |
N1—C1 | 1.332 (4) | C3—C4 | 1.389 (4) |
N2—H2A | 0.8900 | C3—H3 | 0.9300 |
N2—H2B | 0.8900 | C1—C5 | 1.381 (4) |
N2—H2C | 0.8900 | C5—C4 | 1.396 (4) |
N3—H3A | 0.8900 | C5—H5 | 0.9300 |
N3—H3B | 0.8900 | C4—H4 | 0.9300 |
N3—H3C | 0.8900 | | |
| | | |
N1—Cu1—N3 | 169.27 (11) | H3B—N3—H3C | 109.5 |
N1—Cu1—O2 | 80.68 (9) | C6—O2—Cu1 | 114.41 (18) |
N3—Cu1—O2 | 104.03 (10) | C7—O3—Cu1 | 114.95 (18) |
N1—Cu1—O3 | 79.60 (9) | O1—C6—O2 | 125.9 (3) |
N3—Cu1—O3 | 94.95 (10) | O1—C6—C1 | 119.5 (3) |
O2—Cu1—O3 | 160.08 (9) | O2—C6—C1 | 114.6 (2) |
N1—Cu1—N2 | 100.57 (9) | O4—C7—O3 | 126.2 (3) |
N3—Cu1—N2 | 89.13 (10) | O4—C7—C2 | 119.4 (3) |
O2—Cu1—N2 | 90.40 (9) | O3—C7—C2 | 114.5 (2) |
O3—Cu1—N2 | 95.96 (9) | N1—C2—C3 | 120.5 (3) |
C2—N1—C1 | 122.7 (2) | N1—C2—C7 | 111.7 (2) |
C2—N1—Cu1 | 119.09 (19) | C3—C2—C7 | 127.8 (2) |
C1—N1—Cu1 | 118.12 (19) | C2—C3—C4 | 117.8 (3) |
Cu1—N2—H2A | 109.5 | C2—C3—H3 | 121.1 |
Cu1—N2—H2B | 109.5 | C4—C3—H3 | 121.1 |
H2A—N2—H2B | 109.5 | N1—C1—C5 | 120.5 (3) |
Cu1—N2—H2C | 109.5 | N1—C1—C6 | 111.3 (2) |
H2A—N2—H2C | 109.5 | C5—C1—C6 | 128.2 (3) |
H2B—N2—H2C | 109.5 | C1—C5—C4 | 117.7 (3) |
Cu1—N3—H3A | 109.5 | C1—C5—H5 | 121.1 |
Cu1—N3—H3B | 109.5 | C4—C5—H5 | 121.1 |
H3A—N3—H3B | 109.5 | C3—C4—C5 | 120.9 (3) |
Cu1—N3—H3C | 109.5 | C3—C4—H4 | 119.6 |
H3A—N3—H3C | 109.5 | C5—C4—H4 | 119.6 |
Symmetry code: (i) x−1, y, z. |
Hydrogen-bond geometry (Å, º) top
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H2A···O3i | 0.89 | 1.95 | 2.765 (3) | 152 |
N2—H2B···O4ii | 0.89 | 1.91 | 2.739 (3) | 155 |
N2—H2C···N3i | 0.89 | 2.55 | 3.148 (4) | 126 |
N3—H3A···O2iii | 0.89 | 2.41 | 3.204 (4) | 149 |
N3—H3B···O1iv | 0.89 | 2.18 | 3.007 (3) | 154 |
Symmetry codes: (i) x−1, y, z; (ii) −x+1, −y, −z+1; (iii) x+1, y, z; (iv) −x, −y, −z. |
Experimental details
Crystal data |
Chemical formula | [Cu(C7H3NO4)(NH3)2] |
Mr | 262.72 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 295 |
a, b, c (Å) | 4.8654 (6), 9.1161 (11), 10.0916 (12) |
α, β, γ (°) | 76.927 (2), 86.987 (2), 86.618 (2) |
V (Å3) | 434.88 (9) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 2.51 |
Crystal size (mm) | 0.26 × 0.18 × 0.11 |
|
Data collection |
Diffractometer | Bruker APEX area-dectector diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2002) |
Tmin, Tmax | 0.558, 0.755 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 2693, 1901, 1772 |
Rint | 0.014 |
(sin θ/λ)max (Å−1) | 0.655 |
|
Refinement |
R[F2 > 2σ(F2)], wR(F2), S | 0.037, 0.104, 1.08 |
No. of reflections | 1901 |
No. of parameters | 138 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.83, −0.81 |
Selected geometric parameters (Å, º) topCu1—N1 | 1.911 (2) | Cu1—O3 | 2.049 (2) |
Cu1—N3 | 1.962 (3) | Cu1—N2 | 2.319 (2) |
Cu1—O2 | 2.021 (2) | O1—Cu1i | 2.925 (2) |
| | | |
N1—Cu1—N3 | 169.27 (11) | O2—Cu1—O3 | 160.08 (9) |
N1—Cu1—O2 | 80.68 (9) | N1—Cu1—N2 | 100.57 (9) |
N3—Cu1—O2 | 104.03 (10) | N3—Cu1—N2 | 89.13 (10) |
N1—Cu1—O3 | 79.60 (9) | O2—Cu1—N2 | 90.40 (9) |
N3—Cu1—O3 | 94.95 (10) | O3—Cu1—N2 | 95.96 (9) |
Symmetry code: (i) x−1, y, z. |
Hydrogen-bond geometry (Å, º) top
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H2A···O3i | 0.89 | 1.95 | 2.765 (3) | 152 |
N2—H2B···O4ii | 0.89 | 1.91 | 2.739 (3) | 155 |
N2—H2C···N3i | 0.89 | 2.55 | 3.148 (4) | 126 |
N3—H3A···O2iii | 0.89 | 2.41 | 3.204 (4) | 149 |
N3—H3B···O1iv | 0.89 | 2.18 | 3.007 (3) | 154 |
Symmetry codes: (i) x−1, y, z; (ii) −x+1, −y, −z+1; (iii) x+1, y, z; (iv) −x, −y, −z. |
The multifunctional ligand H2PDC (pyridine-2,6-dicarboxylic acid) is of particular interest for obtaining metal organic frameworks because of its potential coordinating sites, from a carboxylic acid group, which when deprotonated results in a divalent anion, and a neutral aromatic nitrogen coordinating site (Eubank et al., 2005). In the molecule of the title compound, the central CuII atom is chelated by a PDC2− ligand and two ammine ligands, giving a square pyramidal coordination geometry (Fig. 1). In addition, as shown in Fig. 2, a weak interaction between CuII and an O atom from a symmetry-related molecule (Table 1) connects molecules into one-dimensional chains in the a-axis direction. In the crystal structure, intermolecular hydrogen bonds connect the one-dimensional molecular chains into a two-dimensional framework perpendicular to the b axis (Table 2 and Fig. 3).