Download citation
Download citation
link to html
In the crystal structure of the title compound, [Cu(C7H3NO4)(NH3)2], the Cu atom is coordinated in a square-pyramidal geometry by a pyridine-2,6-dicarboxyl­ate ligand acting in an N,O,O'-tridentate chelating mode, and by two N atoms from two ammine ligands. A further long Cu-O bond involving a symmetry-realated mol­ecule generates chains of mol­ecules in the a-axis direction.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536805037256/lh6539sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536805037256/lh6539Isup2.hkl
Contains datablock I

CCDC reference: 296603

Key indicators

  • Single-crystal X-ray study
  • T = 295 K
  • Mean [sigma](C-C) = 0.004 Å
  • R factor = 0.037
  • wR factor = 0.104
  • Data-to-parameter ratio = 13.8

checkCIF/PLATON results

No syntax errors found



Alert level B PLAT415_ALERT_2_B Short Inter D-H..H-X H2C .. H4 .. 2.02 Ang.
Alert level C PLAT420_ALERT_2_C D-H Without Acceptor N3 - H3C ... ?
0 ALERT level A = In general: serious problem 1 ALERT level B = Potentially serious problem 1 ALERT level C = Check and explain 0 ALERT level G = General alerts; check 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 2 ALERT type 2 Indicator that the structure model may be wrong or deficient 0 ALERT type 3 Indicator that the structure quality may be low 0 ALERT type 4 Improvement, methodology, query or suggestion

Comment top

The multifunctional ligand H2PDC (pyridine-2,6-dicarboxylic acid) is of particular interest for obtaining metal organic frameworks because of its potential coordinating sites, from a carboxylic acid group, which when deprotonated results in a divalent anion, and a neutral aromatic nitrogen coordinating site (Eubank et al., 2005). In the molecule of the title compound, the central CuII atom is chelated by a PDC2− ligand and two ammine ligands, giving a square pyramidal coordination geometry (Fig. 1). In addition, as shown in Fig. 2, a weak interaction between CuII and an O atom from a symmetry-related molecule (Table 1) connects molecules into one-dimensional chains in the a-axis direction. In the crystal structure, intermolecular hydrogen bonds connect the one-dimensional molecular chains into a two-dimensional framework perpendicular to the b axis (Table 2 and Fig. 3).

Experimental top

Following the procedure described by Constable et al., (1990), H2PDC (0.083 g, 0.5 mmol) was added with 1 ml of concentrated ammine to an aqueous solution (15 ml) of copper(II) oxalate (0.075 g, 0.5 mmol). The mixture was placed in a 25 ml Teflon-lined Parr bomb and heated at 433 K for 38 h. The bomb was then cooled to room temperature at 5 K h−1. Crystals were obtained in about 30% yield. Analysis calculated for C7H9N3O4Cu: C 32.00, H 3.45, N 15.99%; found: C 31.98, H 3.50, N 16.02%. IR (KBr, cm−1): 3378 (m), 3065 (w), 1605 (vs), 1565 (m), 1556 (m), 1482 (s), 1417 (s).

Refinement top

H atoms were placed in calculated positions (C–H = 0.93 Å; Uiso(H) = 1.2UeqC and N—H = 0.89 Å; Uiso(H) = 1.5UeqN), and were included in the refinement in a riding-model approximation.

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976) and PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. View of (I), showing 30% displacement ellipsoids and H atoms drawn as spheres of arbitrary radii.
[Figure 2] Fig. 2. Section of a one-dimensional chain of molecules of (I) connected by weak Cu—O bonds (shown as green dashed lines). The atoms labeled with suffixes a and b are related by the symmetry operators −1 + x, y, z and −2 + x, y, z respectively.
[Figure 3] Fig. 3. View of the hydrogen bonding in (I), shown as dashed lines. Thick green lines indicate the long Cu—O bonds.
Diammine(pyridine-2,6-dicarboxylate)copper(II) top
Crystal data top
[Cu(C7H3NO4)(NH3)2]Z = 2
Mr = 262.72F(000) = 266
Triclinic, P1Dx = 2.006 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 4.8654 (6) ÅCell parameters from 58 reflections
b = 9.1161 (11) Åθ = 2.2–26.0°
c = 10.0916 (12) ŵ = 2.51 mm1
α = 76.927 (2)°T = 295 K
β = 86.987 (2)°Needle, blue
γ = 86.618 (2)°0.26 × 0.18 × 0.11 mm
V = 434.88 (9) Å3
Data collection top
Bruker APEX area-dectector
diffractometer
1901 independent reflections
Radiation source: fine-focus sealed tube1772 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.014
ϕ and ω scansθmax = 27.8°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
h = 65
Tmin = 0.558, Tmax = 0.755k = 1111
2693 measured reflectionsl = 1213
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.104H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0653P)2 + 0.365P]
where P = (Fo2 + 2Fc2)/3
1901 reflections(Δ/σ)max = 0.001
138 parametersΔρmax = 0.83 e Å3
0 restraintsΔρmin = 0.81 e Å3
Crystal data top
[Cu(C7H3NO4)(NH3)2]γ = 86.618 (2)°
Mr = 262.72V = 434.88 (9) Å3
Triclinic, P1Z = 2
a = 4.8654 (6) ÅMo Kα radiation
b = 9.1161 (11) ŵ = 2.51 mm1
c = 10.0916 (12) ÅT = 295 K
α = 76.927 (2)°0.26 × 0.18 × 0.11 mm
β = 86.987 (2)°
Data collection top
Bruker APEX area-dectector
diffractometer
1901 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
1772 reflections with I > 2σ(I)
Tmin = 0.558, Tmax = 0.755Rint = 0.014
2693 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.104H-atom parameters constrained
S = 1.08Δρmax = 0.83 e Å3
1901 reflectionsΔρmin = 0.81 e Å3
138 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.29849 (7)0.08868 (4)0.20886 (3)0.02474 (15)
N10.1509 (5)0.2770 (3)0.2411 (2)0.0209 (4)
N20.0104 (5)0.0765 (3)0.3523 (2)0.0235 (5)
H2A0.12840.02440.38410.035*
H2B0.10490.13010.42160.035*
H2C0.05600.13830.30640.035*
N30.5141 (6)0.0849 (3)0.1665 (3)0.0308 (6)
H3A0.67320.05450.12470.046*
H3B0.41990.12640.11240.046*
H3C0.54720.15260.24330.046*
O40.6084 (5)0.2681 (3)0.4977 (2)0.0357 (5)
O20.0093 (5)0.1358 (2)0.0668 (2)0.0304 (5)
O30.5501 (4)0.1156 (2)0.3573 (2)0.0276 (4)
O10.3591 (5)0.2906 (3)0.0091 (2)0.0375 (5)
C60.1460 (6)0.2528 (3)0.0708 (3)0.0247 (6)
C70.4940 (6)0.2331 (3)0.4036 (3)0.0243 (5)
C20.2651 (6)0.3363 (3)0.3325 (3)0.0216 (5)
C30.1780 (6)0.4782 (3)0.3500 (3)0.0282 (6)
H30.25760.52100.41330.034*
C10.0524 (6)0.3479 (3)0.1644 (3)0.0219 (5)
C50.1520 (6)0.4895 (3)0.1761 (3)0.0272 (6)
H50.29410.53990.12310.033*
C40.0320 (7)0.5546 (3)0.2701 (3)0.0311 (6)
H40.09360.65050.27940.037*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0244 (2)0.0220 (2)0.0308 (2)0.00593 (14)0.00732 (14)0.01257 (14)
N10.0209 (11)0.0187 (10)0.0238 (11)0.0021 (8)0.0042 (9)0.0062 (8)
N20.0198 (11)0.0239 (11)0.0259 (11)0.0070 (9)0.0056 (9)0.0042 (9)
N30.0302 (13)0.0285 (13)0.0382 (14)0.0074 (10)0.0086 (11)0.0177 (11)
O40.0407 (13)0.0327 (11)0.0375 (12)0.0058 (10)0.0197 (10)0.0136 (10)
O20.0317 (11)0.0292 (11)0.0345 (11)0.0056 (9)0.0104 (9)0.0157 (9)
O30.0267 (10)0.0261 (10)0.0323 (10)0.0064 (8)0.0083 (8)0.0116 (8)
O10.0341 (12)0.0393 (13)0.0429 (13)0.0058 (10)0.0186 (10)0.0153 (10)
C60.0255 (14)0.0243 (13)0.0245 (13)0.0021 (11)0.0050 (11)0.0051 (10)
C70.0214 (13)0.0245 (13)0.0269 (13)0.0012 (10)0.0052 (10)0.0051 (10)
C20.0207 (12)0.0205 (12)0.0252 (13)0.0005 (10)0.0044 (10)0.0075 (10)
C30.0293 (15)0.0272 (14)0.0324 (15)0.0002 (11)0.0061 (12)0.0149 (12)
C10.0198 (13)0.0213 (12)0.0247 (13)0.0002 (10)0.0028 (10)0.0048 (10)
C50.0260 (14)0.0231 (13)0.0319 (14)0.0044 (11)0.0073 (11)0.0047 (11)
C40.0362 (16)0.0205 (13)0.0391 (16)0.0071 (12)0.0066 (13)0.0128 (12)
Geometric parameters (Å, º) top
Cu1—N11.911 (2)O4—C71.236 (3)
Cu1—N31.962 (3)O2—C61.278 (4)
Cu1—O22.021 (2)O3—C71.273 (4)
Cu1—O32.049 (2)O1—C61.229 (4)
Cu1—N22.319 (2)C6—C11.520 (4)
O1—Cu1i2.925 (2)C7—C21.515 (4)
N1—C21.329 (3)C2—C31.384 (4)
N1—C11.332 (4)C3—C41.389 (4)
N2—H2A0.8900C3—H30.9300
N2—H2B0.8900C1—C51.381 (4)
N2—H2C0.8900C5—C41.396 (4)
N3—H3A0.8900C5—H50.9300
N3—H3B0.8900C4—H40.9300
N3—H3C0.8900
N1—Cu1—N3169.27 (11)H3B—N3—H3C109.5
N1—Cu1—O280.68 (9)C6—O2—Cu1114.41 (18)
N3—Cu1—O2104.03 (10)C7—O3—Cu1114.95 (18)
N1—Cu1—O379.60 (9)O1—C6—O2125.9 (3)
N3—Cu1—O394.95 (10)O1—C6—C1119.5 (3)
O2—Cu1—O3160.08 (9)O2—C6—C1114.6 (2)
N1—Cu1—N2100.57 (9)O4—C7—O3126.2 (3)
N3—Cu1—N289.13 (10)O4—C7—C2119.4 (3)
O2—Cu1—N290.40 (9)O3—C7—C2114.5 (2)
O3—Cu1—N295.96 (9)N1—C2—C3120.5 (3)
C2—N1—C1122.7 (2)N1—C2—C7111.7 (2)
C2—N1—Cu1119.09 (19)C3—C2—C7127.8 (2)
C1—N1—Cu1118.12 (19)C2—C3—C4117.8 (3)
Cu1—N2—H2A109.5C2—C3—H3121.1
Cu1—N2—H2B109.5C4—C3—H3121.1
H2A—N2—H2B109.5N1—C1—C5120.5 (3)
Cu1—N2—H2C109.5N1—C1—C6111.3 (2)
H2A—N2—H2C109.5C5—C1—C6128.2 (3)
H2B—N2—H2C109.5C1—C5—C4117.7 (3)
Cu1—N3—H3A109.5C1—C5—H5121.1
Cu1—N3—H3B109.5C4—C5—H5121.1
H3A—N3—H3B109.5C3—C4—C5120.9 (3)
Cu1—N3—H3C109.5C3—C4—H4119.6
H3A—N3—H3C109.5C5—C4—H4119.6
Symmetry code: (i) x1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O3i0.891.952.765 (3)152
N2—H2B···O4ii0.891.912.739 (3)155
N2—H2C···N3i0.892.553.148 (4)126
N3—H3A···O2iii0.892.413.204 (4)149
N3—H3B···O1iv0.892.183.007 (3)154
Symmetry codes: (i) x1, y, z; (ii) x+1, y, z+1; (iii) x+1, y, z; (iv) x, y, z.

Experimental details

Crystal data
Chemical formula[Cu(C7H3NO4)(NH3)2]
Mr262.72
Crystal system, space groupTriclinic, P1
Temperature (K)295
a, b, c (Å)4.8654 (6), 9.1161 (11), 10.0916 (12)
α, β, γ (°)76.927 (2), 86.987 (2), 86.618 (2)
V3)434.88 (9)
Z2
Radiation typeMo Kα
µ (mm1)2.51
Crystal size (mm)0.26 × 0.18 × 0.11
Data collection
DiffractometerBruker APEX area-dectector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2002)
Tmin, Tmax0.558, 0.755
No. of measured, independent and
observed [I > 2σ(I)] reflections
2693, 1901, 1772
Rint0.014
(sin θ/λ)max1)0.655
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.104, 1.08
No. of reflections1901
No. of parameters138
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.83, 0.81

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SAINT, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEPII (Johnson, 1976) and PLATON (Spek, 2003), SHELXL97.

Selected geometric parameters (Å, º) top
Cu1—N11.911 (2)Cu1—O32.049 (2)
Cu1—N31.962 (3)Cu1—N22.319 (2)
Cu1—O22.021 (2)O1—Cu1i2.925 (2)
N1—Cu1—N3169.27 (11)O2—Cu1—O3160.08 (9)
N1—Cu1—O280.68 (9)N1—Cu1—N2100.57 (9)
N3—Cu1—O2104.03 (10)N3—Cu1—N289.13 (10)
N1—Cu1—O379.60 (9)O2—Cu1—N290.40 (9)
N3—Cu1—O394.95 (10)O3—Cu1—N295.96 (9)
Symmetry code: (i) x1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O3i0.891.952.765 (3)152
N2—H2B···O4ii0.891.912.739 (3)155
N2—H2C···N3i0.892.553.148 (4)126
N3—H3A···O2iii0.892.413.204 (4)149
N3—H3B···O1iv0.892.183.007 (3)154
Symmetry codes: (i) x1, y, z; (ii) x+1, y, z+1; (iii) x+1, y, z; (iv) x, y, z.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds