Download citation
Download citation
link to html
The title compound, [Ru(C12H8N2)3]2[Fe(NCS)4](ClO4)2, crystallizes in a tetra­gonal chiral space group (P41212) and the assigned absolute configuration of the optically active mol­ecules was unequivocally confirmed. The Δ-[RuII(phen)3]2+ complex cations (phen is 1,10-phenanthroline) inter­act along the 41 screw axis parallel to the c axis, with an Ru...Ru distance of 10.4170 (6) Å, and in the ab plane, with Ru...Ru distances of 10.0920 (6) and 10.0938 (6) Å, defining a primitive cubic lattice. The Fe atom is situated on the twofold axis diagonal in the ab plane. The supra­molecular architecture is supported by C—H...O inter­actions between the [RuII(phen)3]2+ cation and the disordered perchlorate anion. This study adds to the relatively scarce knowledge about inter­molecular inter­actions between [Ru(phen)3]2+ ions in the solid state, knowledge that eventually may also lead to a better understanding of the solution state inter­actions of this species; these are of immense interest because of the photochemical properties of these ions and their inter­actions with DNA.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270108015849/ln3097sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270108015849/ln3097Isup2.hkl
Contains datablock I

CCDC reference: 697557

Comment top

Dual-metal compounds that comprise both coordination and inorganic metal complexes as cationic and anionic modules have a growing significance in the self-assembly of supramolecular architectures (Adachi et al., 2005; Luo et al., 2004). We have recently reported on helices of Λ- and Δ-[RuII(phen)3]2+ (phen is 1,10-phenanthroline), observed in the dual-metal self-assembly of racemic [RuII(phen)3]2+ with [M(NCS)4]2-, where M is either FeII or CoII (Ghazzali et al., 2008). There are a number of structural studies on racemic [RuII(phen)3]2+ complexes (Nakamura et al., 2004; Zheng et al., 2006; Wu et al., 2001; Otsuka et al., 2001; Breu & Stoll, 1996), and the absolute configuration of the Λ enantiomers has been unambiguously assigned (Maloney & MacDonnell, 1997; Nakamura et al., 2004; Rutherford et al., 1998). We present here the dual-metal assembly of the optically pure Δ-[RuII(phen)3]2+ with [Fe(NCS)4]2- and ClO4- anions. Such assignment is significant, as it confirms earlier physicochemical studies for Λ and Δ enantiomers within complexes of this genre (Lincoln & Nordén, 1998).

The overall geometries of the RuII and FeII complexes are slightly distorted octahedral and tetrahedral, respectively (Fig. 1). The FeII metal center is situated on a twofold axis, which lies in the diagonal of the ab plane. In the RuII complex, the minimum and maximum interplanar angles between the three phenathroline ligands, defined by the 14-atom best-fit plane, are 74.10 (8) and 88.75 (9)°, respectively. The minimum and maximum bite angles for the chelating phen ligands are 79.55 (13) and 79.84 (13)°, respectively. The average Ru—N bond distance is 2.069 (3) Å and the average Fe—N bond distance is 1.992 (5) Å; selected bond distances are presented in Table 1. The maximum deviation from linearity in the SCN- groups is 2.6 (5)° and the shortest Ru···Ru distance is 10.0920 (6) Å, while the shortest Fe···Fe distance is 12.5275 (8) Å. The shortest Ru···Fe distance is 5.9761 (7) Å. While the bond angles and distances are typical of similar, previously described complexes (Maloney & MacDonnell, 1997; Nakamura et al., 2004; Rutherford et al., 1998), the screw axis symmetry is higher than that of those reported earlier (21) for Λ enantiomers (Nakamura et al., 2004; Rutherford et al., 1998).

Elucidation of the intermolecular interactions of the Ru(phen)32+ ions in the solid state may eventually lead to a better understanding of the solution state interactions of this species. This is of importance because of the photochemical properties of Ru(phen)32+ and similar compounds (Bonnet et al., 2006) and their interactions with DNA (Norden et al. 1996). Moreover, as the DNA chiral helices show some discrimination between the Ru(phen)32+ enantiomers (Barton et al., 1986; Yamagishi, 1983), it is of interest to compare racemic and optically pure materials.

An analysis of known Ru(phen)32+ compounds indicates that the closest interaction between two such ions (less than 9 Å) found in the compounds rac-[RuII(phen)3][PF6]2.0.5H2O (Nakamura et al. 2004), the anhydrous analogue rac-[RuII(phen)3][PF6]2 (Breu & Stoll, 1996) and rac-[RuII(phen)3][Co(NCS)4] (Ghazzali et al., 2008) occurs between species of the same chirality, despite the fact that these compounds are all racemic. An interaction similar to that in racemic [RuII(phen)3][Co(NCS)4] can be found in the opticaly pure [RuII(phen)3][PF6]2 acetonitrile diethyl ether solvate (Maloney & MacDonnell, 1997), with a Ru···Ru distance only slightly longer than 9 Å (9.292 Å), and in both structures, supramolecular helices were revealed.

For the present compound we find that in the ab plane the Δ-[RuII(phen)3]2+ cations interact, with Ru···Ru distances of 10.0920 (6) and 10.0938 (6) Å, through two very similar weak C—H···π interactions [H2···C32iii = 2.87 Å and H6···C25ii = 2.95 Å; symmetry codes: (iii) x - 1/2, -y + 1/2, -z - 1/4; (ii) x - 1/2, -y + 3/2, -z - 1/4]. Along the 41 screw axis parallel to the c axis, the tris(phenanthroline) complexes interact in a distinctively different [different from what? Replace with, say, `novel' or `unusual'?] manner that can be described as a `tongue and groove' fit, giving an Ru···Ru distance of 10.4170 (6) Å (Fig. 2). In this interaction, the distances from atom H17 to the centre of gravity of the two closest six-membered rings [defined by atoms N1, C1–C4 and C12, and atoms N6, C25–C28 and C36, both in the molecule at (-y + 1/2, x + 1/2, z + 1/4)] are 2.68 and 2.98 Å. Together, these three interactions define a six-connected pcu-net (O'Keeffe et al., 2008; Öhrström & Larsson, 2005), as shown in Fig. 3. Similar examples of networks formed by such interactions, in certain cases called `phenyl embraces', have been reported (Scudder & Dance, 2001; Dance, 2003). It is worth noting that, despite the phenanthroline complexes having the same charge, an overall attraction may result as the sum of many weak interactions, overriding this charge–charge repulsion.

A check of other reported Ru(phen)32+ structures reveals that pcu-nets are also present in rac-[RuII(phen)3][PF6]2.0.5H2O (Nakamura et al. 2004) and rac-[RuII(phen)3][PF6]2 (Breu & Stoll, 1996). However, at present, it is hard to judge the significance of these findings. We need more structural data for different types of Ru(phen)32+ compounds and perhaps also theoretical studies that could indicate the preferred orientations of pairs of ruthenium phenanthroline complexes.

The supramolecular architecture is complemented with [consolidated by?] C—S···π interactions between the [tetraisothiocyanato–FeII]2- and [RuII(phen)3]2+ ions, with an S···π distance of 3.680 (2) Å and a C—S···π angle of 145.2 (2)° [the acceptor ring is defined by atoms N5 and C31–C35 in the cation at (-y + 1/2, x + 1/2, z + 1/4)], as well as with C—H···O interactions extending between the disordered perchlorate anion and the [RuII(phen)3]2+ cation (Table 2).

Related literature top

For related literature, see: Adachi et al. (2005); Barton et al. (1986); Bonnet et al. (2006); Breu & Stoll (1996); Dance (2003); Ghazzali et al. (2008); Lincoln & Nordén (1998); Luo et al. (2004); Maloney & MacDonnell (1997); Nakamura et al. (2004); Norden et al. (1996); O'Keeffe et al. (2008); Otsuka et al. (2001); Rutherford et al. (1998); Scudder & Dance (2001); Wu et al. (2001); Yamagishi (1983); Zheng et al. (2006); Öhrström & Larsson (2005).

Experimental top

A solution of iron(II) perchlorate hexahydrate (0.1 mmol, 0.03 g) and potassium thiocyanate (0.2 mmol, 0.02 g) in 15 ml of MeOH/EtOH/MeCN (1:1:1) was stirred for 30 min at room temperature under an N2 stream and then filtered. Into the filtrate, a 20 ml MeOH/EtOH (1:1) solution of Δ-tris(1,10 phenanthroline)ruthenium(II) chloride (0.1 mmol, 0.08 g), prepared as descibed previously (Lincoln & Nordén, 1998), was poured carefully. The resulting solution was set aside and crystallized at room temperature. Dark-red crystals were collected after one week and dried in air. Caution: Perchlorate salts of metal complexes are potentially explosive. Only small quantities of the compound should be prepared and these should be handled with care. IR (γ, cm-1, KBr): 717 (s, πCH), 837 (s, σCH], 1091 (s, ClO4-), 1630 (m, C C), 2070 (s, SCN-).

Refinement top

The perchlorate anion was refined as disordered with the two orientations related by pseudo-inversion and the major orientation having a site occupation factor of 0.586 (9). The anion O atoms were refined isotropically. The highest peak of residual electron density is 1.56 Å from O4'. 20 distance and occupancy constraints (or restraints?) were used to refine the model for the perchlorate anion. H atoms were constrained to an ideal geometry using an appropriate riding model [C—H = 0.95 Å and Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: SMART (Bruker, 2003); cell refinement: SAINT (Bruker, 2003); data reduction: SADABS (Sheldrick, 2003); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A perspective drawing showing the atomic-numbering scheme. The atomic displacement ellipsoids are shown at the 50% probability level. Both components of the disordered perchlorate anion are shown. [Symmetry code: (i) y, x, -z.]
[Figure 2] Fig. 2. The interaction between two [RuII-(1,10-phen)3]2+ ions in the c direction at an Ru···Ru distance of 10.4107 (6) Å.
[Figure 3] Fig. 3. The pcu-net (primitive cubic packing) defined by C—H···π interactions (drawn in black); the [tetraisothiocyanato–FeII]2- ions are shown in light grey. The perchlorate ions (omitted for clarity) are situated in the smaller `squares' between the isothiocyanate complexes.
bis[tris(1,10-phenantroline)ruthenium(II)] tetraisothiocyanatoiron(II) bis(perchlorate) top
Crystal data top
[Ru(C12H8N2)3][Fe(NCS)4](ClO4)2Dx = 1.588 Mg m3
Mr = 1770.43Mo Kα radiation, λ = 0.71073 Å
Tetragonal, P41212Cell parameters from 8855 reflections
Hall symbol: P 4abw 2nwθ = 2.1–32.6°
a = 13.3292 (5) ŵ = 0.85 mm1
c = 41.668 (2) ÅT = 153 K
V = 7403.1 (5) Å3Drop-like, red
Z = 40.45 × 0.21 × 0.15 mm
F(000) = 3568
Data collection top
Siemens SMART CCD area-detector
diffractometer
13662 independent reflections
Radiation source: fine-focus sealed tube11006 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.041
ω scansθmax = 33.1°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
h = 1920
Tmin = 0.701, Tmax = 0.883k = 2019
132579 measured reflectionsl = 6363
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.061H-atom parameters constrained
wR(F2) = 0.200 w = 1/[σ2(Fo2) + (0.112P)2 + 18.0779P]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max < 0.001
13662 reflectionsΔρmax = 2.38 e Å3
499 parametersΔρmin = 0.61 e Å3
20 restraintsAbsolute structure: Flack (1983), 3280 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.01 (3)
Crystal data top
[Ru(C12H8N2)3][Fe(NCS)4](ClO4)2Z = 4
Mr = 1770.43Mo Kα radiation
Tetragonal, P41212µ = 0.85 mm1
a = 13.3292 (5) ÅT = 153 K
c = 41.668 (2) Å0.45 × 0.21 × 0.15 mm
V = 7403.1 (5) Å3
Data collection top
Siemens SMART CCD area-detector
diffractometer
13662 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
11006 reflections with I > 2σ(I)
Tmin = 0.701, Tmax = 0.883Rint = 0.041
132579 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.061H-atom parameters constrained
wR(F2) = 0.200 w = 1/[σ2(Fo2) + (0.112P)2 + 18.0779P]
where P = (Fo2 + 2Fc2)/3
S = 1.01Δρmax = 2.38 e Å3
13662 reflectionsΔρmin = 0.61 e Å3
499 parametersAbsolute structure: Flack (1983), 3280 Friedel pairs
20 restraintsAbsolute structure parameter: 0.01 (3)
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ru10.00142 (2)0.50005 (2)0.081681 (6)0.02065 (8)
N10.1155 (2)0.5144 (3)0.11409 (7)0.0227 (6)
N20.0188 (3)0.6535 (3)0.08102 (7)0.0235 (6)
N30.0821 (3)0.4877 (3)0.04003 (7)0.0235 (6)
N40.1148 (2)0.4988 (2)0.04769 (7)0.0210 (5)
N50.0161 (3)0.3470 (2)0.08874 (7)0.0221 (6)
N60.0944 (2)0.4991 (3)0.12136 (7)0.0213 (5)
C10.1640 (3)0.4420 (3)0.13018 (10)0.0247 (7)
H10.15210.37400.12450.030*
C20.2309 (3)0.4627 (4)0.15477 (9)0.0294 (8)
H20.26450.40940.16540.035*
C30.2487 (3)0.5599 (4)0.16376 (10)0.0330 (9)
H30.29340.57440.18090.040*
C40.1997 (3)0.6381 (3)0.14722 (9)0.0278 (8)
C50.2117 (4)0.7422 (4)0.15443 (10)0.0334 (9)
H50.25340.76130.17190.040*
C60.1655 (4)0.8140 (4)0.13718 (11)0.0344 (9)
H60.17520.88260.14250.041*
C70.1017 (3)0.7874 (3)0.11080 (10)0.0278 (8)
C80.0544 (4)0.8581 (3)0.09106 (12)0.0332 (9)
H80.06340.92790.09470.040*
C90.0055 (4)0.8250 (3)0.06614 (11)0.0343 (9)
H90.03430.87160.05160.041*
C100.0234 (3)0.7218 (3)0.06259 (9)0.0261 (7)
H100.06800.70020.04620.031*
C110.0831 (3)0.6866 (3)0.10439 (8)0.0228 (7)
C120.1339 (3)0.6109 (3)0.12278 (8)0.0215 (7)
C130.1816 (3)0.4868 (3)0.03671 (10)0.0293 (8)
H130.22200.49070.05540.035*
C140.2287 (4)0.4802 (4)0.00686 (11)0.0366 (10)
H140.29980.48090.00550.044*
C150.1709 (4)0.4729 (4)0.02078 (10)0.0362 (10)
H150.20180.46730.04120.043*
C160.0667 (4)0.4737 (3)0.01796 (9)0.0288 (8)
C170.0029 (4)0.4671 (4)0.04486 (9)0.0328 (9)
H170.02320.46040.06600.039*
C180.1016 (4)0.4701 (4)0.04084 (10)0.0341 (9)
H180.14410.46320.05900.041*
C190.1458 (4)0.4833 (3)0.00989 (9)0.0288 (8)
C200.2493 (4)0.4922 (4)0.00404 (11)0.0349 (9)
H200.29580.48820.02130.042*
C210.2823 (4)0.5065 (4)0.02669 (11)0.0350 (9)
H210.35190.51470.03090.042*
C220.2135 (3)0.5092 (3)0.05178 (10)0.0266 (7)
H220.23810.51890.07300.032*
C230.0809 (3)0.4870 (3)0.01695 (9)0.0228 (7)
C240.0255 (3)0.4821 (3)0.01318 (9)0.0253 (7)
C250.1295 (3)0.5759 (3)0.13814 (9)0.0241 (7)
H250.11420.64200.13120.029*
C260.1886 (4)0.5631 (3)0.16577 (9)0.0302 (8)
H260.21380.61990.17700.036*
C270.2098 (3)0.4677 (4)0.17650 (10)0.0298 (8)
H270.25020.45850.19510.036*
C280.1721 (3)0.3845 (3)0.16013 (9)0.0247 (7)
C290.1862 (3)0.2820 (4)0.17016 (9)0.0300 (8)
H290.22620.26770.18850.036*
C300.1429 (3)0.2057 (3)0.15363 (9)0.0265 (8)
H300.15140.13880.16110.032*
C310.0848 (3)0.2232 (3)0.12528 (9)0.0231 (7)
C320.0397 (3)0.1461 (3)0.10724 (10)0.0258 (7)
H320.04690.07790.11340.031*
C330.0151 (3)0.1716 (3)0.08045 (10)0.0290 (8)
H330.04580.12110.06770.035*
C340.0250 (3)0.2723 (3)0.07224 (9)0.0263 (7)
H340.06330.28860.05370.032*
C350.0713 (3)0.3221 (3)0.11501 (8)0.0204 (6)
C360.1136 (3)0.4034 (3)0.13286 (8)0.0193 (6)
Fe10.17490 (5)0.17490 (5)0.00000.03210 (19)
N70.2417 (3)0.2305 (4)0.03858 (10)0.0387 (9)
N80.0262 (3)0.1903 (4)0.00471 (10)0.0441 (10)
S10.31760 (10)0.34383 (10)0.08956 (3)0.0384 (3)
S20.18238 (10)0.19575 (12)0.00120 (3)0.0431 (3)
C370.2749 (4)0.2766 (4)0.05993 (10)0.0318 (8)
C380.0618 (4)0.1903 (4)0.00332 (10)0.0348 (9)
Cl10.0733 (3)0.8976 (3)0.17363 (6)0.0410 (8)0.586 (9)
O10.0152 (8)0.9496 (9)0.1657 (3)0.107 (4)*0.586 (9)
O20.1061 (9)0.8901 (8)0.2067 (2)0.078 (3)*0.586 (9)
O30.0781 (9)0.7984 (7)0.1579 (3)0.075 (3)*0.586 (9)
O40.1549 (7)0.9532 (6)0.1583 (2)0.051 (2)*0.586 (9)
Cl1'0.1134 (4)0.8651 (3)0.17511 (8)0.0388 (10)0.414 (9)
O1'0.0514 (8)0.7903 (6)0.1628 (2)0.035 (2)*0.414 (9)
O2'0.1266 (10)0.9480 (9)0.1536 (3)0.057 (4)*0.414 (9)
O3'0.0584 (11)0.9107 (10)0.2037 (3)0.076 (4)*0.414 (9)
O4'0.2062 (8)0.8256 (10)0.1863 (3)0.072 (4)*0.414 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ru10.02445 (14)0.02183 (13)0.01567 (13)0.00026 (10)0.00112 (9)0.00171 (9)
N10.0244 (14)0.0262 (16)0.0175 (13)0.0013 (12)0.0031 (10)0.0023 (11)
N20.0266 (16)0.0255 (15)0.0186 (13)0.0002 (12)0.0001 (11)0.0017 (11)
N30.0274 (15)0.0262 (16)0.0169 (12)0.0069 (12)0.0042 (11)0.0023 (11)
N40.0299 (15)0.0173 (12)0.0159 (11)0.0019 (12)0.0009 (10)0.0010 (11)
N50.0315 (17)0.0224 (14)0.0124 (11)0.0006 (12)0.0005 (11)0.0010 (10)
N60.0247 (14)0.0204 (13)0.0187 (12)0.0007 (12)0.0012 (10)0.0032 (12)
C10.0237 (17)0.0265 (17)0.0239 (16)0.0006 (14)0.0025 (14)0.0057 (14)
C20.0283 (19)0.042 (2)0.0176 (15)0.0035 (16)0.0011 (14)0.0091 (15)
C30.0279 (19)0.053 (3)0.0184 (16)0.0066 (18)0.0027 (14)0.0060 (17)
C40.0288 (19)0.039 (2)0.0160 (15)0.0070 (16)0.0028 (13)0.0012 (14)
C50.034 (2)0.042 (2)0.0244 (18)0.0072 (18)0.0047 (15)0.0087 (16)
C60.038 (2)0.031 (2)0.034 (2)0.0074 (17)0.0003 (17)0.0104 (17)
C70.0268 (18)0.0275 (18)0.0291 (19)0.0034 (14)0.0011 (15)0.0057 (15)
C80.034 (2)0.0233 (18)0.042 (2)0.0054 (16)0.0050 (18)0.0045 (17)
C90.035 (2)0.031 (2)0.036 (2)0.0039 (18)0.0005 (18)0.0063 (17)
C100.0277 (19)0.0278 (18)0.0228 (16)0.0028 (14)0.0024 (13)0.0003 (14)
C110.0254 (16)0.0272 (17)0.0159 (14)0.0038 (13)0.0035 (12)0.0015 (13)
C120.0235 (16)0.0293 (18)0.0115 (13)0.0025 (13)0.0036 (11)0.0000 (12)
C130.0274 (18)0.035 (2)0.0260 (17)0.0053 (16)0.0032 (14)0.0040 (15)
C140.033 (2)0.048 (3)0.029 (2)0.0036 (18)0.0128 (17)0.0031 (18)
C150.049 (3)0.041 (2)0.0191 (16)0.008 (2)0.0130 (17)0.0056 (15)
C160.044 (2)0.0249 (18)0.0177 (16)0.0052 (16)0.0054 (15)0.0007 (13)
C170.051 (3)0.032 (2)0.0154 (15)0.0061 (19)0.0056 (16)0.0027 (13)
C180.049 (3)0.033 (2)0.0198 (17)0.0100 (19)0.0034 (17)0.0002 (15)
C190.046 (2)0.0257 (19)0.0149 (14)0.0047 (16)0.0010 (14)0.0012 (12)
C200.039 (2)0.038 (2)0.0281 (19)0.0043 (19)0.0112 (17)0.0025 (18)
C210.030 (2)0.040 (2)0.035 (2)0.0015 (18)0.0044 (16)0.0057 (19)
C220.0273 (17)0.0249 (18)0.0277 (17)0.0013 (14)0.0018 (14)0.0020 (14)
C230.0328 (18)0.0174 (16)0.0180 (14)0.0025 (13)0.0016 (13)0.0002 (11)
C240.038 (2)0.0222 (17)0.0156 (14)0.0039 (14)0.0006 (13)0.0008 (12)
C250.0285 (18)0.0289 (18)0.0148 (14)0.0038 (14)0.0019 (13)0.0046 (13)
C260.037 (2)0.035 (2)0.0188 (16)0.0107 (17)0.0059 (15)0.0058 (14)
C270.0285 (19)0.039 (2)0.0215 (16)0.0043 (16)0.0067 (14)0.0008 (15)
C280.0242 (17)0.0295 (18)0.0205 (15)0.0002 (14)0.0026 (14)0.0018 (13)
C290.0289 (19)0.040 (2)0.0215 (17)0.0056 (16)0.0038 (14)0.0048 (15)
C300.0280 (18)0.0279 (18)0.0237 (17)0.0075 (14)0.0028 (14)0.0038 (14)
C310.0227 (16)0.0252 (17)0.0213 (16)0.0002 (13)0.0023 (12)0.0000 (13)
C320.0302 (19)0.0233 (17)0.0239 (17)0.0013 (14)0.0024 (14)0.0020 (14)
C330.032 (2)0.0244 (18)0.0306 (19)0.0025 (15)0.0012 (15)0.0076 (14)
C340.032 (2)0.0267 (18)0.0205 (16)0.0022 (14)0.0028 (14)0.0033 (14)
C350.0193 (14)0.0267 (17)0.0151 (14)0.0003 (13)0.0029 (11)0.0026 (12)
C360.0203 (15)0.0234 (16)0.0142 (13)0.0019 (12)0.0003 (11)0.0015 (12)
Fe10.0360 (3)0.0360 (3)0.0243 (4)0.0007 (4)0.0019 (2)0.0019 (2)
N70.039 (2)0.049 (2)0.0274 (17)0.0007 (18)0.0023 (15)0.0049 (16)
N80.040 (2)0.063 (3)0.0287 (19)0.002 (2)0.0008 (16)0.0007 (19)
S10.0412 (6)0.0384 (6)0.0355 (5)0.0055 (5)0.0043 (5)0.0112 (5)
S20.0369 (6)0.0620 (8)0.0305 (5)0.0079 (6)0.0056 (5)0.0122 (5)
C370.035 (2)0.034 (2)0.0266 (18)0.0010 (17)0.0004 (16)0.0030 (16)
C380.043 (2)0.043 (2)0.0186 (17)0.005 (2)0.0001 (16)0.0021 (16)
Cl10.0430 (16)0.0460 (16)0.0339 (10)0.0133 (12)0.0014 (10)0.0055 (10)
Cl1'0.047 (2)0.0358 (18)0.0334 (14)0.0102 (16)0.0038 (14)0.0027 (12)
Geometric parameters (Å, º) top
Ru1—N22.064 (3)C17—C181.327 (7)
Ru1—N62.067 (3)C17—H170.9500
Ru1—N32.069 (3)C18—C191.428 (6)
Ru1—N52.070 (3)C18—H180.9500
Ru1—N12.071 (3)C19—C201.406 (7)
Ru1—N42.071 (3)C19—C231.415 (5)
N1—C11.341 (5)C20—C211.367 (7)
N1—C121.358 (5)C20—H200.9500
N2—C101.316 (5)C21—C221.391 (6)
N2—C111.370 (5)C21—H210.9500
N3—C131.332 (5)C22—H220.9500
N3—C241.351 (5)C23—C241.429 (6)
N4—C221.333 (5)C25—C261.405 (5)
N4—C231.368 (4)C25—H250.9500
N5—C341.328 (5)C26—C271.378 (7)
N5—C351.360 (5)C26—H260.9500
N6—C251.325 (5)C27—C281.396 (6)
N6—C361.387 (5)C27—H270.9500
C1—C21.386 (6)C28—C361.400 (5)
C1—H10.9500C28—C291.441 (6)
C2—C31.368 (7)C29—C301.357 (6)
C2—H20.9500C29—H290.9500
C3—C41.410 (6)C30—C311.432 (5)
C3—H30.9500C30—H300.9500
C4—C121.392 (5)C31—C351.397 (5)
C4—C51.429 (6)C31—C321.409 (6)
C5—C61.346 (7)C32—C331.377 (6)
C5—H50.9500C32—H320.9500
C6—C71.435 (6)C33—C341.391 (6)
C6—H60.9500C33—H330.9500
C7—C111.393 (6)C34—H340.9500
C7—C81.401 (7)C35—C361.430 (5)
C8—C91.382 (7)Fe1—N71.981 (4)
C8—H80.9500Fe1—N82.003 (5)
C9—C101.405 (6)N7—C371.169 (6)
C9—H90.9500N8—C381.175 (7)
C10—H100.9500S1—C371.628 (5)
C11—C121.436 (5)S2—C381.611 (5)
C13—C141.396 (6)Cl1—O11.407 (11)
C13—H130.9500Cl1—O21.450 (9)
C14—C151.389 (7)Cl1—O41.464 (8)
C14—H140.9500Cl1—O31.476 (10)
C15—C161.394 (7)Cl1'—O1'1.394 (9)
C15—H150.9500Cl1'—O4'1.423 (12)
C16—C241.413 (5)Cl1'—O2'1.433 (10)
C16—C171.458 (6)Cl1'—O3'1.525 (11)
N2—Ru1—N695.44 (13)C18—C17—H17118.9
N2—Ru1—N389.85 (13)C16—C17—H17118.9
N6—Ru1—N3173.56 (13)C17—C18—C19121.7 (4)
N2—Ru1—N5172.33 (12)C17—C18—H18119.1
N6—Ru1—N579.85 (13)C19—C18—H18119.1
N3—Ru1—N595.26 (13)C20—C19—C23117.4 (4)
N2—Ru1—N179.56 (13)C20—C19—C18124.8 (4)
N6—Ru1—N186.01 (12)C23—C19—C18117.8 (4)
N3—Ru1—N198.58 (12)C21—C20—C19119.3 (4)
N5—Ru1—N193.99 (13)C21—C20—H20120.3
N2—Ru1—N495.39 (13)C19—C20—H20120.3
N6—Ru1—N496.26 (12)C20—C21—C22119.7 (4)
N3—Ru1—N479.55 (13)C20—C21—H21120.2
N5—Ru1—N491.16 (13)C22—C21—H21120.2
N1—Ru1—N4174.67 (13)N4—C22—C21123.5 (4)
C1—N1—C12117.4 (3)N4—C22—H22118.3
C1—N1—Ru1128.5 (3)C21—C22—H22118.3
C12—N1—Ru1113.4 (3)N4—C23—C19122.8 (4)
C10—N2—C11117.4 (4)N4—C23—C24115.9 (3)
C10—N2—Ru1129.6 (3)C19—C23—C24121.2 (3)
C11—N2—Ru1113.0 (3)N3—C24—C16123.2 (4)
C13—N3—C24118.0 (3)N3—C24—C23117.4 (3)
C13—N3—Ru1128.5 (3)C16—C24—C23119.3 (4)
C24—N3—Ru1113.5 (3)N6—C25—C26122.5 (4)
C22—N4—C23117.3 (3)N6—C25—H25118.8
C22—N4—Ru1129.2 (3)C26—C25—H25118.8
C23—N4—Ru1113.6 (3)C27—C26—C25119.5 (4)
C34—N5—C35117.1 (3)C27—C26—H26120.2
C34—N5—Ru1128.8 (3)C25—C26—H26120.2
C35—N5—Ru1114.0 (2)C26—C27—C28120.0 (4)
C25—N6—C36117.6 (3)C26—C27—H27120.0
C25—N6—Ru1129.0 (3)C28—C27—H27120.0
C36—N6—Ru1113.1 (2)C27—C28—C36117.0 (4)
N1—C1—C2122.4 (4)C27—C28—C29124.3 (4)
N1—C1—H1118.8C36—C28—C29118.6 (4)
C2—C1—H1118.8C30—C29—C28120.5 (4)
C3—C2—C1120.2 (4)C30—C29—H29119.7
C3—C2—H2119.9C28—C29—H29119.7
C1—C2—H2119.9C29—C30—C31121.7 (4)
C2—C3—C4119.0 (4)C29—C30—H30119.1
C2—C3—H3120.5C31—C30—H30119.1
C4—C3—H3120.5C35—C31—C32118.0 (3)
C12—C4—C3117.2 (4)C35—C31—C30118.5 (4)
C12—C4—C5118.5 (4)C32—C31—C30123.5 (4)
C3—C4—C5124.3 (4)C33—C32—C31118.6 (4)
C6—C5—C4121.8 (4)C33—C32—H32120.7
C6—C5—H5119.1C31—C32—H32120.7
C4—C5—H5119.1C32—C33—C34119.2 (4)
C5—C6—C7120.3 (4)C32—C33—H33120.4
C5—C6—H6119.8C34—C33—H33120.4
C7—C6—H6119.8N5—C34—C33123.9 (4)
C11—C7—C8117.2 (4)N5—C34—H34118.1
C11—C7—C6119.4 (4)C33—C34—H34118.1
C8—C7—C6123.4 (4)N5—C35—C31123.2 (3)
C9—C8—C7119.1 (4)N5—C35—C36116.5 (3)
C9—C8—H8120.5C31—C35—C36120.3 (3)
C7—C8—H8120.5N6—C36—C28123.2 (3)
C8—C9—C10119.4 (4)N6—C36—C35116.4 (3)
C8—C9—H9120.3C28—C36—C35120.4 (3)
C10—C9—H9120.3N7—Fe1—N7i108.8 (3)
N2—C10—C9122.9 (4)N7—Fe1—N8i113.82 (19)
N2—C10—H10118.6N7i—Fe1—N8i109.06 (18)
C9—C10—H10118.6N7—Fe1—N8109.06 (18)
N2—C11—C7123.9 (4)N7i—Fe1—N8113.83 (19)
N2—C11—C12116.7 (3)N8i—Fe1—N8102.3 (3)
C7—C11—C12119.4 (4)C37—N7—Fe1170.0 (4)
N1—C12—C4123.7 (4)C38—N8—Fe1169.7 (4)
N1—C12—C11115.9 (3)N7—C37—S1177.8 (5)
C4—C12—C11120.3 (4)N8—C38—S2177.4 (5)
N3—C13—C14122.7 (4)O1—Cl1—O2120.5 (7)
N3—C13—H13118.6O1—Cl1—O4105.7 (7)
C14—C13—H13118.6O2—Cl1—O4103.1 (6)
C15—C14—C13119.6 (4)O1—Cl1—O3111.9 (7)
C15—C14—H14120.2O2—Cl1—O3110.4 (7)
C13—C14—H14120.2O4—Cl1—O3103.2 (6)
C14—C15—C16118.8 (4)O1'—Cl1'—O4'111.9 (7)
C14—C15—H15120.6O1'—Cl1'—O2'113.2 (7)
C16—C15—H15120.6O4'—Cl1'—O2'112.6 (8)
C15—C16—C24117.7 (4)O1'—Cl1'—O3'106.7 (8)
C15—C16—C17124.7 (4)O4'—Cl1'—O3'108.0 (8)
C24—C16—C17117.6 (4)O2'—Cl1'—O3'103.8 (8)
C18—C17—C16122.2 (4)
N2—Ru1—N1—C1179.0 (3)C24—N3—C13—C140.0 (6)
N6—Ru1—N1—C184.7 (3)Ru1—N3—C13—C14178.5 (3)
N3—Ru1—N1—C190.7 (3)N3—C13—C14—C151.0 (7)
N3—Ru1—N1—C1299.0 (3)C13—C14—C15—C161.0 (7)
N5—Ru1—N1—C12165.0 (2)C14—C15—C16—C240.1 (7)
N6—Ru1—N2—C10101.6 (4)C14—C15—C16—C17179.7 (5)
N3—Ru1—N2—C1074.8 (4)C15—C16—C17—C18178.8 (5)
N1—Ru1—N2—C10173.5 (4)C24—C16—C17—C180.9 (7)
N4—Ru1—N2—C104.7 (4)C16—C17—C18—C192.1 (8)
N3—Ru1—N2—C11108.1 (3)C17—C18—C19—C20176.7 (5)
N1—Ru1—N2—C119.4 (3)C17—C18—C19—C233.9 (7)
N4—Ru1—N2—C11172.4 (3)C23—C19—C20—C211.8 (7)
N2—Ru1—N3—C1381.2 (4)C18—C19—C20—C21178.8 (5)
N5—Ru1—N3—C1393.1 (4)C19—C20—C21—C221.9 (7)
N1—Ru1—N3—C131.7 (4)C23—N4—C22—C211.3 (6)
N4—Ru1—N3—C13176.7 (4)Ru1—N4—C22—C21179.8 (3)
N2—Ru1—N3—C2497.4 (3)C20—C21—C22—N40.3 (7)
N5—Ru1—N3—C2488.3 (3)C22—N4—C23—C191.4 (6)
N1—Ru1—N3—C24176.8 (3)Ru1—N4—C23—C19179.5 (3)
N4—Ru1—N3—C241.9 (3)C22—N4—C23—C24176.4 (4)
N2—Ru1—N4—C2287.6 (4)Ru1—N4—C23—C242.6 (4)
N6—Ru1—N4—C228.5 (4)C20—C19—C23—N40.1 (6)
N3—Ru1—N4—C22176.5 (4)C18—C19—C23—N4179.6 (4)
N5—Ru1—N4—C2288.4 (4)C20—C19—C23—C24177.9 (4)
N6—Ru1—N4—C23172.6 (3)C18—C19—C23—C242.7 (6)
N3—Ru1—N4—C232.4 (3)C13—N3—C24—C161.0 (6)
N5—Ru1—N4—C2392.7 (3)Ru1—N3—C24—C16179.7 (3)
N6—Ru1—N5—C34179.1 (4)C13—N3—C24—C23177.7 (4)
N3—Ru1—N5—C345.1 (4)Ru1—N3—C24—C231.1 (4)
N1—Ru1—N5—C3493.9 (4)C15—C16—C24—N30.9 (6)
N4—Ru1—N5—C3484.7 (4)C17—C16—C24—N3179.3 (4)
N6—Ru1—N5—C353.0 (2)C15—C16—C24—C23177.7 (4)
N3—Ru1—N5—C35178.8 (3)C17—C16—C24—C232.1 (6)
N1—Ru1—N5—C3582.2 (3)N4—C23—C24—N31.1 (5)
N4—Ru1—N5—C3599.2 (3)C19—C23—C24—N3179.0 (4)
N2—Ru1—N6—C253.0 (3)N4—C23—C24—C16177.6 (3)
N5—Ru1—N6—C25176.9 (3)C19—C23—C24—C160.3 (6)
N1—Ru1—N6—C2582.1 (3)C36—N6—C25—C263.2 (6)
N4—Ru1—N6—C2593.0 (3)Ru1—N6—C25—C26176.7 (3)
N2—Ru1—N6—C36170.7 (2)N6—C25—C26—C271.4 (7)
N5—Ru1—N6—C363.2 (2)C25—C26—C27—C280.5 (7)
N1—Ru1—N6—C3691.6 (3)C26—C27—C28—C360.4 (6)
N4—Ru1—N6—C3693.2 (3)C26—C27—C28—C29177.2 (4)
C12—N1—C1—C20.2 (5)C27—C28—C29—C30176.9 (4)
Ru1—N1—C1—C2170.1 (3)C36—C28—C29—C300.6 (6)
N1—C1—C2—C30.9 (6)C28—C29—C30—C312.1 (6)
C1—C2—C3—C41.3 (6)C29—C30—C31—C351.4 (6)
C2—C3—C4—C121.2 (6)C29—C30—C31—C32179.2 (4)
C2—C3—C4—C5179.7 (4)C35—C31—C32—C330.2 (6)
C12—C4—C5—C63.6 (7)C30—C31—C32—C33179.6 (4)
C3—C4—C5—C6177.8 (4)C31—C32—C33—C340.6 (6)
C4—C5—C6—C70.3 (7)C35—N5—C34—C330.4 (6)
C5—C6—C7—C113.8 (7)Ru1—N5—C34—C33175.6 (3)
C5—C6—C7—C8177.4 (5)C32—C33—C34—N50.3 (7)
C11—C7—C8—C91.5 (6)C34—N5—C35—C310.9 (5)
C6—C7—C8—C9179.8 (4)Ru1—N5—C35—C31175.7 (3)
C7—C8—C9—C104.6 (7)C34—N5—C35—C36179.0 (3)
C11—N2—C10—C90.3 (6)Ru1—N5—C35—C362.4 (4)
Ru1—N2—C10—C9176.7 (3)C32—C31—C35—N50.6 (6)
C8—C9—C10—N23.8 (7)C30—C31—C35—N5178.9 (3)
C10—N2—C11—C73.7 (6)C32—C31—C35—C36178.6 (3)
Ru1—N2—C11—C7173.8 (3)C30—C31—C35—C360.8 (5)
C10—N2—C11—C12175.7 (3)C25—N6—C36—C283.4 (5)
Ru1—N2—C11—C126.8 (4)Ru1—N6—C36—C28177.9 (3)
C8—C7—C11—N22.8 (6)C25—N6—C36—C35177.5 (3)
C6—C7—C11—N2176.0 (4)Ru1—N6—C36—C352.9 (4)
C8—C7—C11—C12176.6 (4)C27—C28—C36—N61.6 (6)
C6—C7—C11—C124.6 (6)C29—C28—C36—N6179.3 (4)
C1—N1—C12—C40.0 (5)C27—C28—C36—C35179.3 (4)
Ru1—N1—C12—C4171.4 (3)C29—C28—C36—C351.6 (6)
C1—N1—C12—C11178.2 (3)N5—C35—C36—N60.4 (5)
Ru1—N1—C12—C1110.4 (4)C31—C35—C36—N6178.5 (3)
C3—C4—C12—N10.5 (6)N5—C35—C36—C28179.6 (3)
C5—C4—C12—N1179.1 (4)C31—C35—C36—C282.3 (5)
C3—C4—C12—C11178.6 (4)N7i—Fe1—N7—C3762 (2)
C5—C4—C12—C112.8 (6)N8i—Fe1—N7—C37176 (2)
N2—C11—C12—N12.5 (5)N8—Fe1—N7—C3763 (2)
C7—C11—C12—N1176.9 (3)N7—Fe1—N8—C38171 (3)
N2—C11—C12—C4179.3 (3)N7i—Fe1—N8—C3867 (3)
C7—C11—C12—C41.3 (5)N8i—Fe1—N8—C3850 (3)
Symmetry code: (i) y, x, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C30—H30···O2ii0.952.583.442 (12)150
C13—H13···O4iii0.952.353.262 (11)160
C25—H25···O30.952.413.154 (10)135
C30—H30···O4ii0.952.483.374 (9)157
Symmetry codes: (ii) x, y1, z; (iii) x1/2, y+3/2, z1/4.

Experimental details

Crystal data
Chemical formula[Ru(C12H8N2)3][Fe(NCS)4](ClO4)2
Mr1770.43
Crystal system, space groupTetragonal, P41212
Temperature (K)153
a, c (Å)13.3292 (5), 41.668 (2)
V3)7403.1 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.85
Crystal size (mm)0.45 × 0.21 × 0.15
Data collection
DiffractometerSiemens SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.701, 0.883
No. of measured, independent and
observed [I > 2σ(I)] reflections
132579, 13662, 11006
Rint0.041
(sin θ/λ)max1)0.768
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.061, 0.200, 1.01
No. of reflections13662
No. of parameters499
No. of restraints20
H-atom treatmentH-atom parameters constrained
w = 1/[σ2(Fo2) + (0.112P)2 + 18.0779P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)2.38, 0.61
Absolute structureFlack (1983), 3280 Friedel pairs
Absolute structure parameter0.01 (3)

Computer programs: SMART (Bruker, 2003), SAINT (Bruker, 2003), SADABS (Sheldrick, 2003), SHELXTL (Sheldrick, 2008), DIAMOND (Brandenburg, 2008).

Selected bond lengths (Å) top
Ru1—N22.064 (3)Ru1—N12.071 (3)
Ru1—N62.067 (3)Ru1—N42.071 (3)
Ru1—N32.069 (3)Fe1—N71.981 (4)
Ru1—N52.070 (3)Fe1—N82.003 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C30—H30···O2'i0.952.583.442 (12)150
C13—H13···O4ii0.952.353.262 (11)160
C25—H25···O30.952.413.154 (10)135
C30—H30···O4i0.952.483.374 (9)157
Symmetry codes: (i) x, y1, z; (ii) x1/2, y+3/2, z1/4.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds