Download citation
Download citation
link to html
The absolute and relative configurations of 1-epialexine are established by X-ray crystallographic analysis, giving (1S,2R,3R,7S,7aS)-1,2,7-trihydroxy-3-(hydroxy­meth­yl)pyrrolizidine. The compound crystallizes as the hemihydrate C8H15NO4·0.5H2O, with hydrogen bonds holding the water mol­ecule in a hydro­philic pocket between epialexine bilayers. In addition, a comparison was made between results obtained from examination of the Bijvoet pairs from data sets collected using molybdenum and copper radiation.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270108037086/ln3116sup1.cif
Contains datablocks I, II, III, IV, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270108037086/ln3116Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270108037086/ln3116IIsup3.hkl
Contains datablock I-OxDiffGeminiMo

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270108037086/ln3116IIIsup4.hkl
Contains datablock I-OxDiffGeminiCu

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270108037086/ln3116IVsup5.hkl
Contains datablock I-NoniusKCCD2

CCDC references: 718145; 718146; 718147; 718148

Comment top

A new polyhydroxylated pyrrolizidine alkaloid, 1-epialexine, (I), has been isolated from the stems of Castanospermum australe. Alexine, (II), isolated from Alexa leiopetala (Nash et al., 1988), was the first example of a class of 3-hydroxymethyltrihydroxypyrrolizidines, (IV), known as alexines; they possess five chiral centers that give rise to 32 stereoisomers. Australine, (III), which is epimeric at C-7a, was isolated from Castanospermum australe (Molyneux et al., 1988) and shown to inhibit various glucosidases (Tropea et al., 1989). Subsequently other diastereomeric natural products have been isolated (Harris et al., 1989; Nash et al., 1990; Kato et al., 1999, 2007).

The alexines can be regarded as iminosugar analogues which have considerable potential as therapeutic agents (Asano et al., 2001; Watson et al., 2001). The analysis of the structures of alexines is not simple (Wormald et al., 1998; Kato et al., 2003), and confirmation of structure by X-ray crystallographic analysis is essential to ensure that structures are properly reported. Because of the biological activity of the alexines, considerable effort in synthesizing both natural and unnatural stereoisomers has been expended (Choi et al., 1991; Fleet et al., 1988; Takahashi et al., 2008; Trost et al., 2007; Kumar & Pinto, 2006).

The title compound was found to crystallize in the monoclinic space group C2 as the hemihydrate (Fig. 1). The water molecule was found to be well ordered, occupying a position on the twofold axis and acting as a hydrogen-bond acceptor for the hydroxy group O9/H91 and its twofold-related counterpart. The unique water H atom was clearly visible in the difference map hydrogen bonding to atom N4 of a neighbouring 1-epialexine molecule. As a result of these interactions, the O atom of the water molecule occupies a position at the centre of a hydrogen-bonded tetrahedron (Fig. 2). In addition to these interactions, there are a number of other intermolecular strong O—H···O hydrogen bonds (Table 1). These hydrogen bonds lead to the formation of sheets of epialexine molecules which extend along the bc plane. These sheets can be viewed as having a hydrophobic and a hydrophilic side, with all the hydrogen-bonding interactions on the hydrophilic side. The hydrogen bonds connect together pairs of layers with the water molecules in the middle. Thus (I) forms a layered structure of the form ABAABA where B represents the hydrophilic–water component (Fig. 3).

The structure was initially determined using Mo Kα radiation on a Nonius Kappa CCD diffractometer. Freidel pairs were measured and the Flack (1983) x parameter refined (Table 2) using the CRYSTALS software (Betteridge et al., 2003). The Flack x parameter was outside the conventionally accepted range with a very large s.u., rendering it essentially meaningless. However, examination of the Bijvoet pairs was carried out within CRYSTALS, and this gave the Hooft y parameter as -0.66 (41) with G = 2.31 (82). This gave the probability that the absolute configuration was correct as greater than 99% assuming the material to be enantiopure, with the probability of a reliable assignment as greater than 90% for a three-hypothesis model (Hooft et al., 2008).

In order to confirm the absolute configuration, the data collection was repeated on the same crystal using an Oxford Diffraction Gemini A Ultra diffractometer and the Enhance Ultra (Cu Kα) source. For comparison, data were also collected on the same diffractometer using Mo Kα radiation and on a second Nonius KappaCCD diffractometer (Mo Kα). The Flack x parameter, the Hooft y parameter, G (all with s.u. values) and the probabilities derived from these values are given in Table 2.

In all four cases, the s.u. values are greater than the value of 0.10 suggested as the upper limit for confidently determining the absolute configuration of a known enantiopure compound (Flack & Bernardinelli, 2000). However, in order to achieve s.u. values of this magnitude with only carbon, hydrogen, nitrogen and oxygen present in the crystal, the data need to be of exceptional quality. Nonetheless, the likelihood that the absolute structure is incorrect given the data collected with Cu Kα radiation seems very small.

Examination of the three cases where data were collected with Mo Kα radiation is also interesting. In two of these three examples, the Flack x parameter was considerably outside the meaningful range for the parameter, and for all three, the s.u. was exceptionally large, indicating that the absolute configuration could not be determined. In contrast, examination of the Bijvoet pairs using the Hooft method suggests that the absolute configuration could be determined with a high confidence.

Related literature top

For related literature, see: Oxford Diffraction (2008); Altomare et al. (1994); Asano et al. (2001); Betteridge et al. (2003); Choi et al. (1991); Cosier & Glazer (1986); Flack (1983); Flack & Bernardinelli (2000); Fleet et al. (1988); Harris et al. (1989); Hooft et al. (2008); Kato et al. (1999, 2003, 2007); Kumar & Pinto (2006); Molyneux et al. (1988); Nash et al. (1988, 1990); Otwinowski & Minor (1997); Takahashi et al. (2008); Tropea et al. (1989); Trost et al. (2007); Watson et al. (2001); Wormald et al. (1998).

Experimental top

The title compound was isolated from Castanospermum australe and crystallized from an ethanol/water/acetone mixture. The melting point was recorded as 432–434 K. [α]D25 +53.4 (c, 0.43 in H2O).

Refinement top

A colourless single crystal was mounted in a nylon loop using perfluoropolyether oil and quench-cooled to 150 K in a stream of cold N2 using an Oxford Cryosystems Cryostream unit (Cosier & Glazer, 1986). Diffraction data were initially measured using a Nonius KappaCCD diffractometer (graphite-monochromated Mo Kα radiation, λ = 0.71073 Å). Given that the compound was known to be enantiopure, examination of the systematic absences of the intensity data showed the space group to be C2.

The H atoms were all visible in a difference map and were refined with soft restraints on the bond lengths and angles, to regularize their geometry (C—H in the range 0.93–0.98 Å), and Uiso(H) in the range 1.2–1.5 times Ueq of the parent atom, after which the positions were refined with riding constraints.

The Flack x parameter was refined and the Bijvoet pairs examined to give the Hooft y parameter, G and the probabilities that the absolute configuration was correct as explained above (Hooft et al., 2008) (Table 2).

The crystal was then remounted on an Oxford Diffraction Gemini A Ultra at 100 K, where data were collected using both Mo Kα (λ = 0.71073 Å) and Cu Kα (λ = 1.54184 Å) radiation. The atomic coordinates from the initial structure determination were refined against the data as above. Data were similarly collected on a second Nonius KappaCCD diffractometer (graphite-monochromated Mo Kα radiation) and the model refined.

Computing details top

Data collection: COLLECT (Nonius, 2001) for (I), (IV); CrysAlis CCD (Oxford Diffraction, 2008) for (II), (III). Cell refinement: DENZO/SCALEPACK (Otwinowski & Minor, 1997) for (I), (IV); CrysAlis RED (Oxford Diffraction, 2008) for (II), (III). Data reduction: DENZO/SCALEPACK (Otwinowski & Minor, 1997) for (I), (IV); CrysAlis RED (Oxford Diffraction, 2008) for (II), (III). For all compounds, program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: CAMERON (Watkin et al., 1996); software used to prepare material for publication: CRYSTALS (Betteridge et al., 2003).

Figures top
[Figure 1] Fig. 1. The structure of 1-epialexine from the Gemini–Cu data, shown with displacment ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. The hydrogen bonding between the 1-epialexine molecule and the water of crystallization in (I), viewed down the unique axis showing the C2 symmetry. The O14···N4 distance is 2.737 (2) Å and O14···O9 is 2.719 (2) Å for the Gemini–Cu data. [Symmetry codes: (i) -x + 3/2, y - 1/2, -z + 1; (ii) -x + 1, y, -z + 1; (iii) x - 1/2, y - 1/2, z.] Only iii matches the codes in Table 1.
[Figure 3] Fig. 3. The layered structure of (I) (viewed down the a axis). The hydrogen-bonding interactions are shown as dotted lines.
(I) (1S,2R,3R,7S,7aS)-1,2,7-trihydroxy-3- (hydroxymethyl)pyrrolizidine hemihydrate top
Crystal data top
C8H15NO4·0.5H2OF(000) = 428
Mr = 198.22Dx = 1.511 Mg m3
Monoclinic, C2Melting point = 432–434 K
Hall symbol: C 2yMo Kα radiation, λ = 0.71073 Å
a = 12.4594 (6) ÅCell parameters from 1049 reflections
b = 7.3115 (4) Åθ = 5–27°
c = 9.5878 (5) ŵ = 0.12 mm1
β = 93.843 (2)°T = 150 K
V = 871.45 (8) Å3Plate, clear_pale_colourless
Z = 40.25 × 0.21 × 0.07 mm
Data collection top
Nonius KappaCCD
diffractometer
1863 reflections with I > 2.0σ(I)
Graphite monochromatorRint = 0.030
ω scansθmax = 27.5°, θmin = 5.2°
Absorption correction: multi-scan
(DENZO/SCALEPACK; Otwinowski & Minor, 1997)
h = 1516
Tmin = 0.91, Tmax = 0.99k = 99
5649 measured reflectionsl = 1212
1943 independent reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.030 Method = Modified Sheldrick w = 1/[σ2(F2) + ( 0.02P)2 + 0.67P] ,
where P = (max(Fo2,0) + 2Fc2)/3
wR(F2) = 0.071(Δ/σ)max = 0.000386
S = 0.98Δρmax = 0.19 e Å3
1943 reflectionsΔρmin = 0.17 e Å3
126 parametersAbsolute structure: Flack (1983), 875 Friedel-pairs
3 restraintsAbsolute structure parameter: 1.1 (9)
Primary atom site location: structure-invariant direct methods
Crystal data top
C8H15NO4·0.5H2OV = 871.45 (8) Å3
Mr = 198.22Z = 4
Monoclinic, C2Mo Kα radiation
a = 12.4594 (6) ŵ = 0.12 mm1
b = 7.3115 (4) ÅT = 150 K
c = 9.5878 (5) Å0.25 × 0.21 × 0.07 mm
β = 93.843 (2)°
Data collection top
Nonius KappaCCD
diffractometer
1943 independent reflections
Absorption correction: multi-scan
(DENZO/SCALEPACK; Otwinowski & Minor, 1997)
1863 reflections with I > 2.0σ(I)
Tmin = 0.91, Tmax = 0.99Rint = 0.030
5649 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.030H-atom parameters constrained
wR(F2) = 0.071Δρmax = 0.19 e Å3
S = 0.98Δρmin = 0.17 e Å3
1943 reflectionsAbsolute structure: Flack (1983), 875 Friedel-pairs
126 parametersAbsolute structure parameter: 1.1 (9)
3 restraints
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.70350 (10)0.6233 (2)0.30188 (13)0.0152
C20.77631 (11)0.4619 (2)0.26855 (14)0.0155
C30.88541 (11)0.5238 (2)0.33364 (15)0.0161
N40.89097 (9)0.71993 (19)0.29594 (12)0.0159
C50.94192 (11)0.7658 (2)0.16307 (15)0.0196
C60.87964 (11)0.9330 (2)0.10902 (15)0.0202
C70.76460 (11)0.8758 (2)0.13353 (14)0.0166
C80.77615 (10)0.7882 (2)0.27942 (14)0.0152
O90.67845 (7)0.62022 (17)0.44553 (10)0.0182
O100.73896 (8)0.28951 (17)0.31327 (11)0.0203
C110.98058 (12)0.4057 (2)0.29967 (16)0.0211
O120.98233 (8)0.35959 (18)0.15607 (11)0.0223
O130.68650 (8)1.01839 (16)0.12209 (10)0.0197
O140.50.4236 (2)0.50.0183
H110.63680.62960.23940.0164*
H210.78130.45400.16650.0188*
H310.87990.52060.43490.0187*
H511.01920.79010.18450.0226*
H520.93110.66490.09540.0232*
H610.90061.04500.16490.0237*
H620.89040.95630.00870.0248*
H710.74060.78360.06240.0183*
H810.76450.87900.35040.0189*
H1111.04910.46780.33060.0238*
H1120.97610.29130.35260.0256*
H1310.70351.10000.18360.0297*
H1010.76430.27170.39500.0318*
H1410.46650.35350.43940.0281*
H910.62270.55370.44840.0311*
H1211.03920.40060.12930.0374*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0145 (6)0.0168 (7)0.0142 (6)0.0006 (6)0.0015 (5)0.0000 (5)
C20.0153 (6)0.0146 (6)0.0167 (6)0.0002 (5)0.0016 (5)0.0013 (5)
C30.0144 (6)0.0176 (7)0.0162 (6)0.0004 (5)0.0002 (5)0.0016 (5)
N40.0132 (5)0.0168 (6)0.0180 (6)0.0003 (4)0.0018 (4)0.0015 (5)
C50.0165 (6)0.0213 (8)0.0215 (7)0.0002 (6)0.0052 (5)0.0035 (6)
C60.0182 (7)0.0209 (7)0.0219 (7)0.0007 (6)0.0045 (5)0.0032 (6)
C70.0164 (6)0.0150 (7)0.0182 (6)0.0008 (5)0.0012 (5)0.0001 (5)
C80.0136 (6)0.0153 (7)0.0167 (6)0.0000 (5)0.0010 (5)0.0013 (5)
O90.0174 (4)0.0208 (5)0.0167 (5)0.0038 (4)0.0044 (4)0.0019 (4)
O100.0230 (5)0.0159 (5)0.0216 (5)0.0028 (4)0.0005 (4)0.0017 (4)
C110.0172 (7)0.0236 (8)0.0225 (7)0.0058 (6)0.0012 (5)0.0019 (6)
O120.0190 (5)0.0249 (6)0.0236 (5)0.0007 (4)0.0047 (4)0.0030 (5)
O130.0186 (5)0.0183 (5)0.0217 (5)0.0038 (4)0.0007 (4)0.0005 (4)
O140.0168 (7)0.0191 (8)0.0190 (7)0.00000.0002 (5)0.0000
Geometric parameters (Å, º) top
C1—C21.5351 (19)C6—H611.003
C1—C81.5317 (19)C6—H620.994
C1—O91.4326 (15)C7—C81.5362 (19)
C1—H110.993C7—O131.4255 (17)
C2—C31.5260 (19)C7—H710.991
C2—O101.4195 (18)C8—H810.969
C2—H210.986O9—H910.850
C3—N41.4815 (19)O10—H1010.835
C3—C111.520 (2)C11—O121.4190 (18)
C3—H310.978C11—H1110.995
N4—C51.4990 (17)C11—H1120.982
N4—C81.5135 (17)O12—H1210.826
C5—C61.520 (2)O13—H1310.856
C5—H510.987O14—H141i0.862
C5—H520.986O14—H1410.862
C6—C71.5265 (19)
C2—C1—C8102.30 (10)C5—C6—H61111.4
C2—C1—O9110.98 (11)C7—C6—H61110.8
C8—C1—O9108.44 (11)C5—C6—H62111.6
C2—C1—H11113.1C7—C6—H62112.6
C8—C1—H11110.9H61—C6—H62109.2
O9—C1—H11110.7C6—C7—C8102.87 (11)
C1—C2—C3102.08 (11)C6—C7—O13115.52 (12)
C1—C2—O10114.16 (11)C8—C7—O13113.38 (11)
C3—C2—O10116.17 (11)C6—C7—H71108.9
C1—C2—H21109.2C8—C7—H71110.4
C3—C2—H21108.0O13—C7—H71105.8
O10—C2—H21107.0C7—C8—C1115.85 (11)
C2—C3—N4104.03 (11)C7—C8—N4105.25 (11)
C2—C3—C11115.46 (12)C1—C8—N4106.80 (12)
N4—C3—C11116.61 (12)C7—C8—H81110.2
C2—C3—H31106.2C1—C8—H81108.8
N4—C3—H31105.9N4—C8—H81109.8
C11—C3—H31107.9C1—O9—H91105.7
C3—N4—C5116.96 (11)C2—O10—H101108.1
C3—N4—C8106.58 (11)C3—C11—O12113.94 (12)
C5—N4—C8106.77 (11)C3—C11—H111110.1
N4—C5—C6103.54 (11)O12—C11—H111109.2
N4—C5—H51109.0C3—C11—H112107.5
C6—C5—H51113.3O12—C11—H112107.7
N4—C5—H52110.2H111—C11—H112108.2
C6—C5—H52109.5C11—O12—H121106.5
H51—C5—H52111.1C7—O13—H131108.7
C5—C6—C7100.97 (11)H141i—O14—H141107.0
Symmetry code: (i) x+1, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H52···O120.992.383.014 (2)121
C6—H61···O12ii1.002.523.390 (2)145
O13—H131···O10ii0.861.892.749 (2)177
O10—H101···O9iii0.831.982.761 (2)155
O14—H141···N4iv0.861.892.745 (2)175
O9—H91···O140.851.892.727 (2)166
O12—H121···O13v0.832.032.835 (2)164
Symmetry codes: (ii) x, y+1, z; (iii) x+3/2, y1/2, z+1; (iv) x1/2, y1/2, z; (v) x+1/2, y1/2, z.
(II) (1S,2R,3R,7S,7aS)-1,2,7-trihydroxy-3- (hydroxymethyl)pyrrolizidine hemihydrate top
Crystal data top
C8H15NO4·0.5H2OF(000) = 428
Mr = 198.22Dx = 1.519 Mg m3
Monoclinic, C2Melting point = 432–434 K
Hall symbol: C 2yMo Kα radiation, λ = 0.71073 Å
a = 12.4267 (3) ÅCell parameters from 5964 reflections
b = 7.30208 (18) Åθ = 5.2–31.5°
c = 9.5708 (2) ŵ = 0.12 mm1
β = 93.839 (2)°T = 100 K
V = 866.51 (4) Å3Plate, clear_pale_colourless
Z = 40.25 × 0.21 × 0.07 mm
Data collection top
Oxford Diffraction Gemini A Ultra CCD
diffractometer
1724 independent reflections
Radiation source: Enhance (Mo) X-ray Source1402 reflections with I > 2.0σ(I)
Graphite monochromatorRint = 0.030
ω scansθmax = 25.1°, θmin = 3.8°
Absorption correction: multi-scan
[empirical (using intensity measurements) absorption correction using spherical harmonics (CrysAlis RED) implementing the SCALE3 ABSPACK scaling algorithm (Oxford Diffraction, 2008)]
h = 1514
Tmin = 0.92, Tmax = 0.99k = 99
7771 measured reflectionsl = 1111
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.026 Method = Modified Sheldrick w = 1/[σ2(F2) + ( 0.04P)2 + 0.0P] ,
where P = (max(Fo2,0) + 2Fc2)/3
wR(F2) = 0.064(Δ/σ)max = 0.001
S = 1.01Δρmax = 0.19 e Å3
1511 reflectionsΔρmin = 0.16 e Å3
126 parametersAbsolute structure: Flack (1983), 777 Friedel-pairs
3 restraintsAbsolute structure parameter: 1.5 (9)
Primary atom site location: structure-invariant direct methods
Crystal data top
C8H15NO4·0.5H2OV = 866.51 (4) Å3
Mr = 198.22Z = 4
Monoclinic, C2Mo Kα radiation
a = 12.4267 (3) ŵ = 0.12 mm1
b = 7.30208 (18) ÅT = 100 K
c = 9.5708 (2) Å0.25 × 0.21 × 0.07 mm
β = 93.839 (2)°
Data collection top
Oxford Diffraction Gemini A Ultra CCD
diffractometer
1724 independent reflections
Absorption correction: multi-scan
[empirical (using intensity measurements) absorption correction using spherical harmonics (CrysAlis RED) implementing the SCALE3 ABSPACK scaling algorithm (Oxford Diffraction, 2008)]
1402 reflections with I > 2.0σ(I)
Tmin = 0.92, Tmax = 0.99Rint = 0.030
7771 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.026H-atom parameters constrained
wR(F2) = 0.064Δρmax = 0.19 e Å3
S = 1.01Δρmin = 0.16 e Å3
1511 reflectionsAbsolute structure: Flack (1983), 777 Friedel-pairs
126 parametersAbsolute structure parameter: 1.5 (9)
3 restraints
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.70347 (12)0.6234 (2)0.30227 (16)0.0111
C20.77593 (12)0.4618 (2)0.26825 (16)0.0111
C30.88550 (12)0.5236 (2)0.33368 (17)0.0120
N40.89097 (11)0.7201 (2)0.29592 (14)0.0119
C50.94194 (12)0.7657 (2)0.16284 (17)0.0141
C60.87980 (13)0.9327 (2)0.10843 (18)0.0149
C70.76468 (14)0.8763 (2)0.13319 (17)0.0126
C80.77599 (13)0.7884 (2)0.27916 (17)0.0115
O90.67852 (8)0.62057 (18)0.44568 (11)0.0134
O100.73856 (9)0.28941 (18)0.31306 (12)0.0148
C110.98061 (14)0.4056 (2)0.29969 (18)0.0152
O120.98239 (9)0.35930 (18)0.15566 (12)0.0164
O130.68619 (8)1.01858 (18)0.12166 (12)0.0144
O140.500000 (10)0.4232 (2)0.500000 (10)0.0137
H110.63840.62600.24070.0094*
H210.78010.45120.16810.0110*
H310.88120.51920.43490.0119*
H511.01800.78850.18220.0157*
H520.93130.66860.09440.0157*
H610.90021.04160.16300.0163*
H620.89120.95330.00900.0180*
H710.74110.78480.06410.0130*
H810.76600.87880.35130.0136*
H1111.04770.46400.33230.0169*
H1120.97770.29050.35350.0182*
H1310.70311.09800.18230.0208*
H1010.76670.26820.38830.0235*
H1410.46800.35280.44100.0210*
H910.62570.55440.44970.0204*
H1211.03640.39370.12900.0259*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0087 (7)0.0139 (8)0.0107 (8)0.0005 (8)0.0003 (6)0.0002 (7)
C20.0093 (8)0.0124 (8)0.0119 (8)0.0019 (6)0.0023 (6)0.0010 (7)
C30.0117 (8)0.0135 (8)0.0107 (8)0.0017 (7)0.0005 (6)0.0006 (7)
N40.0098 (6)0.0127 (7)0.0136 (8)0.0003 (6)0.0028 (5)0.0012 (6)
C50.0116 (8)0.0155 (9)0.0157 (9)0.0010 (7)0.0043 (6)0.0011 (7)
C60.0147 (9)0.0141 (8)0.0160 (8)0.0016 (8)0.0029 (7)0.0013 (7)
C70.0138 (8)0.0097 (8)0.0144 (8)0.0009 (6)0.0014 (6)0.0016 (7)
C80.0104 (8)0.0116 (8)0.0126 (8)0.0007 (7)0.0006 (6)0.0022 (7)
O90.0113 (5)0.0158 (6)0.0134 (6)0.0039 (5)0.0044 (4)0.0016 (5)
O100.0159 (6)0.0121 (6)0.0160 (6)0.0021 (5)0.0011 (4)0.0017 (5)
C110.0125 (8)0.0154 (10)0.0174 (9)0.0027 (7)0.0004 (6)0.0017 (7)
O120.0123 (6)0.0182 (6)0.0191 (7)0.0005 (5)0.0040 (4)0.0023 (5)
O130.0135 (6)0.0126 (6)0.0170 (6)0.0023 (5)0.0002 (4)0.0001 (5)
O140.0110 (8)0.0153 (9)0.0146 (9)0.00000.0003 (6)0.0000
Geometric parameters (Å, º) top
C1—C21.533 (2)C6—H610.976
C1—C81.529 (2)C6—H620.983
C1—O91.4274 (18)C7—C81.536 (2)
C1—H110.968C7—O131.4241 (19)
C2—C31.528 (2)C7—H710.971
C2—O101.418 (2)C8—H810.970
C2—H210.966O9—H910.818
C3—N41.482 (2)O10—H1010.795
C3—C111.515 (2)C11—O121.421 (2)
C3—H310.974C11—H1110.969
N4—C51.497 (2)C11—H1120.987
N4—C81.512 (2)O12—H1210.775
C5—C61.517 (2)O13—H1310.837
C5—H510.965O14—H141i0.844
C5—H520.968O14—H1410.844
C6—C71.522 (2)
C2—C1—C8102.44 (12)C5—C6—H61111.3
C2—C1—O9111.19 (13)C7—C6—H61110.5
C8—C1—O9108.59 (12)C5—C6—H62110.6
C2—C1—H11111.4C7—C6—H62112.9
C8—C1—H11111.9H61—C6—H62110.2
O9—C1—H11111.0C6—C7—C8103.00 (13)
C1—C2—C3101.86 (12)C6—C7—O13115.89 (13)
C1—C2—O10114.23 (13)C8—C7—O13113.34 (14)
C3—C2—O10116.03 (13)C6—C7—H71108.9
C1—C2—H21110.1C8—C7—H71109.7
C3—C2—H21108.9O13—C7—H71106.0
O10—C2—H21105.6C7—C8—C1116.24 (12)
C2—C3—N4103.88 (12)C7—C8—N4105.24 (13)
C2—C3—C11115.50 (14)C1—C8—N4106.68 (13)
N4—C3—C11116.67 (14)C7—C8—H81110.8
C2—C3—H31106.9C1—C8—H81109.2
N4—C3—H31106.3N4—C8—H81108.3
C11—C3—H31106.9C1—O9—H91106.3
C3—N4—C5116.84 (13)C2—O10—H101108.3
C3—N4—C8106.66 (13)C3—C11—O12113.99 (13)
C5—N4—C8106.68 (12)C3—C11—H111110.3
N4—C5—C6103.66 (13)O12—C11—H111110.4
N4—C5—H51109.9C3—C11—H112108.4
C6—C5—H51113.3O12—C11—H112107.9
N4—C5—H52111.5H111—C11—H112105.5
C6—C5—H52108.3C11—O12—H121108.2
H51—C5—H52110.1C7—O13—H131108.2
C5—C6—C7101.02 (13)H141i—O14—H141104.9
Symmetry code: (i) x+1, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H52···O120.972.413.011 (2)120
C6—H61···O12ii0.982.543.384 (2)145
O13—H131···O10ii0.841.912.744 (2)177
O10—H101···O9iii0.792.002.756 (2)158
O14—H141···N4iv0.841.902.738 (2)173
O9—H91···O140.821.922.724 (2)167
O12—H121···O13v0.782.082.825 (2)162
Symmetry codes: (ii) x, y+1, z; (iii) x+3/2, y1/2, z+1; (iv) x1/2, y1/2, z; (v) x+1/2, y1/2, z.
(III) (1S,2R,3R,7S,7aS)-1,2,7-trihydroxy-3- (hydroxymethyl)pyrrolizidine hemihydrate top
Crystal data top
C8H15NO4·0.5H2OF(000) = 428
Mr = 198.22Dx = 1.523 Mg m3
Monoclinic, C2Melting point = 432–434 K
Hall symbol: C 2yCu Kα radiation, λ = 1.54184 Å
a = 12.4190 (4) ÅCell parameters from 2205 reflections
b = 7.2933 (2) Åθ = 4.6–66.8°
c = 9.5671 (3) ŵ = 1.05 mm1
β = 93.841 (3)°T = 100 K
V = 864.60 (5) Å3Plate, clear_pale_colourless
Z = 40.25 × 0.21 × 0.07 mm
Data collection top
Oxford Diffraction Gemini A Ultra CCD
diffractometer
1479 independent reflections
Radiation source: Enhance Ultra (Cu) X-ray Source1464 reflections with I > 2.0σ(I)
Multi-layer focusing mirror monochromatorRint = 0.025
ω scansθmax = 67.1°, θmin = 7.2°
Absorption correction: multi-scan
[empirical (using intensity measurements) absorption correction using spherical harmonics (CrysAlis RED) implementing the SCALE3 ABSPACK scaling algorithm (Oxford Diffraction, 2008)]
h = 1414
Tmin = 0.80, Tmax = 0.92k = 88
7817 measured reflectionsl = 1111
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.026 Method = Modified Sheldrick w = 1/[σ2(F2) + ( 0.05P)2 + 0.45P] ,
where P = (max(Fo2,0) + 2Fc2)/3
wR(F2) = 0.071(Δ/σ)max = 0.001
S = 1.06Δρmax = 0.19 e Å3
1476 reflectionsΔρmin = 0.15 e Å3
126 parametersAbsolute structure: Flack (1983), 650 Friedel-pairs
3 restraintsAbsolute structure parameter: 0.01 (17)
Primary atom site location: structure-invariant direct methods
Crystal data top
C8H15NO4·0.5H2OV = 864.60 (5) Å3
Mr = 198.22Z = 4
Monoclinic, C2Cu Kα radiation
a = 12.4190 (4) ŵ = 1.05 mm1
b = 7.2933 (2) ÅT = 100 K
c = 9.5671 (3) Å0.25 × 0.21 × 0.07 mm
β = 93.841 (3)°
Data collection top
Oxford Diffraction Gemini A Ultra CCD
diffractometer
1479 independent reflections
Absorption correction: multi-scan
[empirical (using intensity measurements) absorption correction using spherical harmonics (CrysAlis RED) implementing the SCALE3 ABSPACK scaling algorithm (Oxford Diffraction, 2008)]
1464 reflections with I > 2.0σ(I)
Tmin = 0.80, Tmax = 0.92Rint = 0.025
7817 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.026H-atom parameters constrained
wR(F2) = 0.071Δρmax = 0.19 e Å3
S = 1.06Δρmin = 0.15 e Å3
1476 reflectionsAbsolute structure: Flack (1983), 650 Friedel-pairs
126 parametersAbsolute structure parameter: 0.01 (17)
3 restraints
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.70337 (11)0.6235 (2)0.30236 (14)0.0138
C20.77569 (11)0.4617 (2)0.26825 (14)0.0132
C30.88551 (11)0.5236 (2)0.33385 (15)0.0143
N40.89103 (10)0.71996 (19)0.29579 (13)0.0138
C50.94218 (11)0.7659 (2)0.16282 (15)0.0160
C60.87956 (12)0.9330 (2)0.10817 (16)0.0169
C70.76429 (12)0.8761 (2)0.13328 (16)0.0146
C80.77603 (11)0.7881 (2)0.27924 (15)0.0139
O90.67830 (8)0.62039 (17)0.44567 (10)0.0156
O100.73843 (8)0.28957 (17)0.31297 (11)0.0165
C110.98073 (13)0.4055 (2)0.29938 (17)0.0175
O120.98231 (8)0.35919 (18)0.15575 (11)0.0181
O130.68616 (8)1.01883 (16)0.12185 (10)0.0163
O140.500000 (10)0.4233 (2)0.500000 (10)0.0149
H110.63870.62610.24030.0163*
H210.77970.45320.16870.0142*
H310.88090.51880.43290.0148*
H511.01780.79110.18290.0185*
H520.93200.66840.09490.0180*
H610.90021.04040.16280.0192*
H620.88980.95520.00970.0189*
H710.74030.78400.06450.0159*
H810.76590.87680.34940.0162*
H1111.04610.46800.32950.0193*
H1120.97840.29110.35050.0204*
H1310.70101.09990.18260.0233*
H1010.76320.26780.38970.0254*
H1410.47130.35290.43980.0226*
H910.62790.55130.44710.0237*
H1211.03450.40300.12620.0278*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0140 (6)0.0146 (7)0.0130 (7)0.0002 (6)0.0016 (5)0.0003 (6)
C20.0113 (7)0.0140 (7)0.0145 (7)0.0000 (5)0.0014 (5)0.0012 (5)
C30.0133 (7)0.0167 (7)0.0127 (6)0.0023 (6)0.0009 (5)0.0006 (6)
N40.0114 (6)0.0139 (6)0.0163 (6)0.0000 (5)0.0024 (4)0.0004 (5)
C50.0142 (7)0.0158 (7)0.0185 (8)0.0007 (6)0.0041 (6)0.0016 (6)
C60.0157 (7)0.0162 (7)0.0190 (7)0.0016 (6)0.0038 (6)0.0011 (6)
C70.0139 (7)0.0120 (7)0.0181 (7)0.0003 (5)0.0023 (5)0.0013 (6)
C80.0109 (7)0.0138 (7)0.0168 (7)0.0006 (5)0.0008 (5)0.0029 (6)
O90.0134 (4)0.0167 (5)0.0171 (5)0.0033 (4)0.0044 (4)0.0015 (4)
O100.0181 (5)0.0136 (5)0.0176 (5)0.0019 (4)0.0002 (4)0.0009 (4)
C110.0133 (7)0.0182 (8)0.0208 (7)0.0033 (6)0.0006 (5)0.0023 (6)
O120.0145 (5)0.0195 (5)0.0209 (6)0.0003 (4)0.0041 (4)0.0018 (4)
O130.0146 (5)0.0150 (5)0.0190 (5)0.0024 (4)0.0002 (4)0.0002 (4)
O140.0130 (7)0.0156 (7)0.0158 (7)0.00000.0002 (5)0.0000
Geometric parameters (Å, º) top
C1—C21.531 (2)C6—H610.966
C1—C81.527 (2)C6—H620.972
C1—O91.4263 (17)C7—C81.535 (2)
C1—H110.967C7—O131.4224 (18)
C2—C31.5307 (19)C7—H710.972
C2—O101.4143 (19)C8—H810.947
C2—H210.959O9—H910.804
C3—N41.480 (2)O10—H1010.792
C3—C111.517 (2)C11—O121.4166 (19)
C3—H310.954C11—H1110.958
N4—C51.4974 (18)C11—H1120.969
N4—C81.5104 (18)O12—H1210.792
C5—C61.520 (2)O13—H1310.841
C5—H510.963O14—H141i0.834
C5—H520.965O14—H1410.834
C6—C71.525 (2)
C2—C1—C8102.37 (11)C5—C6—H61110.7
C2—C1—O9111.21 (12)C7—C6—H61110.7
C8—C1—O9108.70 (11)C5—C6—H62111.7
C2—C1—H11111.1C7—C6—H62112.5
C8—C1—H11111.8H61—C6—H62110.0
O9—C1—H11111.4C6—C7—C8102.96 (12)
C1—C2—C3101.81 (12)C6—C7—O13115.55 (12)
C1—C2—O10114.27 (11)C8—C7—O13113.49 (12)
C3—C2—O10116.00 (12)C6—C7—H71109.2
C1—C2—H21109.4C8—C7—H71109.4
C3—C2—H21108.8O13—C7—H71106.1
O10—C2—H21106.4C7—C8—C1116.07 (11)
C2—C3—N4103.83 (12)C7—C8—N4105.33 (11)
C2—C3—C11115.44 (12)C1—C8—N4106.85 (12)
N4—C3—C11116.49 (12)C7—C8—H81110.5
C2—C3—H31106.6C1—C8—H81109.1
N4—C3—H31106.7N4—C8—H81108.7
C11—C3—H31107.2C1—O9—H91104.3
C3—N4—C5117.03 (11)C2—O10—H101110.1
C3—N4—C8106.56 (12)C3—C11—O12114.08 (12)
C5—N4—C8106.82 (11)C3—C11—H111108.8
N4—C5—C6103.60 (11)O12—C11—H111109.8
N4—C5—H51109.7C3—C11—H112109.2
C6—C5—H51112.6O12—C11—H112106.7
N4—C5—H52111.3H111—C11—H112108.1
C6—C5—H52108.5C11—O12—H121108.3
H51—C5—H52110.9C7—O13—H131110.2
C5—C6—C7101.04 (12)H141i—O14—H141104.1
Symmetry code: (i) x+1, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H52···O120.972.403.009 (2)121
C6—H61···O12ii0.972.543.379 (2)145
O13—H131···O10ii0.841.902.739 (2)177
O10—H101···O9iii0.792.002.758 (2)159
O14—H141···N4iv0.831.912.737 (2)172
O9—H91···O140.801.942.719 (2)163
O12—H121···O13v0.792.072.825 (2)160
Symmetry codes: (ii) x, y+1, z; (iii) x+3/2, y1/2, z+1; (iv) x1/2, y1/2, z; (v) x+1/2, y1/2, z.
(IV) (1S,2R,3R,7S,7aS)-1,2,7-trihydroxy-3- (hydroxymethyl)pyrrolizidine hemihydrate top
Crystal data top
C8H15NO4·0.5H2OF(000) = 428
Mr = 198.22Dx = 1.511 Mg m3
Monoclinic, C2Melting point = 432–434 K
Hall symbol: C 2yMo Kα radiation, λ = 0.71073 Å
a = 12.4567 (5) ÅCell parameters from 1058 reflections
b = 7.3097 (3) Åθ = 5–27°
c = 9.5920 (5) ŵ = 0.12 mm1
β = 93.8151 (16)°T = 150 K
V = 871.46 (7) Å3Plate, clear_pale_colourless
Z = 40.25 × 0.21 × 0.07 mm
Data collection top
Nonius KappaCCD
diffractometer
1862 reflections with I > 2.0σ(I)
Graphite monochromatorRint = 0.032
ω scansθmax = 27.5°, θmin = 5.2°
Absorption correction: multi-scan
(DENZO/SCALEPACK; Otwinowski & Minor, 1997)
h = 1516
Tmin = 0.94, Tmax = 0.99k = 99
7632 measured reflectionsl = 1212
1974 independent reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.029 Method = Modified Sheldrick w = 1/[σ2(F2) + ( 0.03P)2 + 0.49P] ,
where P = (max(Fo2,0) + 2Fc2)/3
wR(F2) = 0.067(Δ/σ)max = 0.001
S = 1.01Δρmax = 0.34 e Å3
1974 reflectionsΔρmin = 0.33 e Å3
126 parametersAbsolute structure: Flack (1983), 0 Friedel-pairs
3 restraintsAbsolute structure parameter: 0.1 (8)
Primary atom site location: structure-invariant direct methods
Crystal data top
C8H15NO4·0.5H2OV = 871.46 (7) Å3
Mr = 198.22Z = 4
Monoclinic, C2Mo Kα radiation
a = 12.4567 (5) ŵ = 0.12 mm1
b = 7.3097 (3) ÅT = 150 K
c = 9.5920 (5) Å0.25 × 0.21 × 0.07 mm
β = 93.8151 (16)°
Data collection top
Nonius KappaCCD
diffractometer
1974 independent reflections
Absorption correction: multi-scan
(DENZO/SCALEPACK; Otwinowski & Minor, 1997)
1862 reflections with I > 2.0σ(I)
Tmin = 0.94, Tmax = 0.99Rint = 0.032
7632 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.029H-atom parameters constrained
wR(F2) = 0.067Δρmax = 0.34 e Å3
S = 1.01Δρmin = 0.33 e Å3
1974 reflectionsAbsolute structure: Flack (1983), 0 Friedel-pairs
126 parametersAbsolute structure parameter: 0.1 (8)
3 restraints
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.70361 (10)0.6232 (2)0.30195 (13)0.0137
C20.77609 (10)0.4619 (2)0.26861 (14)0.0143
C30.88547 (10)0.5239 (2)0.33370 (14)0.0146
N40.89109 (9)0.72019 (18)0.29614 (12)0.0146
C50.94209 (10)0.7657 (2)0.16317 (14)0.0180
C60.87957 (11)0.9327 (2)0.10874 (15)0.0185
C70.76453 (11)0.8757 (2)0.13346 (14)0.0154
C80.77615 (10)0.7878 (2)0.27932 (13)0.0137
O90.67853 (7)0.62031 (16)0.44550 (9)0.0167
O100.73887 (8)0.28959 (16)0.31313 (10)0.0186
C110.98078 (12)0.4060 (2)0.29970 (15)0.0195
O120.98235 (8)0.35952 (17)0.15619 (11)0.0210
O130.68650 (7)1.01845 (16)0.12222 (10)0.0181
O140.500000 (10)0.4236 (2)0.500000 (10)0.0167
H110.63790.62740.23890.0144*
H210.78070.45380.16690.0171*
H310.88030.51960.43640.0161*
H511.01890.78890.18450.0219*
H520.93220.66570.09710.0218*
H610.89971.04480.16280.0207*
H620.89090.95540.00890.0227*
H710.74040.78330.06340.0161*
H810.76520.87840.34970.0163*
H1111.04950.46870.33170.0227*
H1120.97670.29060.35170.0232*
H1310.70421.09890.18450.0272*
H1010.76670.26970.39060.0293*
H1410.46570.35480.44020.0256*
H910.62530.54970.45120.0284*
H1211.03740.40140.12990.0347*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0130 (5)0.0148 (6)0.0133 (6)0.0008 (6)0.0014 (4)0.0000 (5)
C20.0138 (6)0.0130 (6)0.0161 (6)0.0001 (5)0.0013 (5)0.0012 (5)
C30.0126 (6)0.0153 (6)0.0159 (6)0.0005 (5)0.0004 (5)0.0013 (5)
N40.0116 (5)0.0151 (6)0.0172 (6)0.0009 (4)0.0020 (4)0.0014 (4)
C50.0158 (6)0.0186 (7)0.0202 (7)0.0005 (5)0.0050 (5)0.0031 (6)
C60.0167 (7)0.0176 (7)0.0214 (7)0.0010 (6)0.0035 (5)0.0031 (5)
C70.0150 (6)0.0136 (6)0.0177 (6)0.0001 (5)0.0015 (5)0.0005 (5)
C80.0122 (6)0.0134 (6)0.0153 (6)0.0004 (5)0.0002 (5)0.0011 (5)
O90.0158 (4)0.0194 (5)0.0154 (5)0.0045 (4)0.0045 (3)0.0018 (4)
O100.0207 (5)0.0137 (5)0.0209 (5)0.0029 (4)0.0018 (4)0.0012 (4)
C110.0153 (6)0.0211 (8)0.0218 (7)0.0057 (5)0.0002 (5)0.0018 (5)
O120.0170 (5)0.0233 (5)0.0232 (5)0.0008 (4)0.0044 (4)0.0028 (4)
O130.0168 (5)0.0161 (5)0.0210 (5)0.0040 (4)0.0012 (4)0.0005 (4)
O140.0146 (6)0.0166 (7)0.0187 (7)0.00000.0009 (5)0.0000
Geometric parameters (Å, º) top
C1—C21.5314 (18)C6—H610.993
C1—C81.5291 (18)C6—H620.992
C1—O91.4322 (15)C7—C81.5373 (18)
C1—H110.985C7—O131.4254 (16)
C2—C31.5290 (18)C7—H710.986
C2—O101.4180 (17)C8—H810.962
C2—H210.983O9—H910.845
C3—N41.4824 (17)O10—H1010.811
C3—C111.5196 (19)C11—O121.4194 (17)
C3—H310.992C11—H1111.001
N4—C51.4996 (16)C11—H1120.983
N4—C81.5131 (17)O12—H1210.807
C5—C61.5215 (19)O13—H1310.856
C5—H510.980O14—H141i0.856
C5—H520.970O14—H1410.856
C6—C71.5260 (19)
C2—C1—C8102.35 (10)C5—C6—H61112.1
C2—C1—O9111.02 (11)C7—C6—H61110.6
C8—C1—O9108.47 (10)C5—C6—H62111.3
C2—C1—H11111.9C7—C6—H62113.0
C8—C1—H11111.3H61—C6—H62108.6
O9—C1—H11111.4C6—C7—C8102.88 (11)
C1—C2—C3102.04 (10)C6—C7—O13115.53 (11)
C1—C2—O10114.32 (10)C8—C7—O13113.40 (11)
C3—C2—O10116.13 (11)C6—C7—H71109.2
C1—C2—H21109.2C8—C7—H71109.9
C3—C2—H21108.3O13—C7—H71105.9
O10—C2—H21106.7C7—C8—C1115.92 (10)
C2—C3—N4104.04 (11)C7—C8—N4105.35 (10)
C2—C3—C11115.61 (11)C1—C8—N4106.95 (11)
N4—C3—C11116.51 (11)C7—C8—H81110.0
C2—C3—H31106.3C1—C8—H81109.2
N4—C3—H31106.2N4—C8—H81109.1
C11—C3—H31107.4C1—O9—H91107.1
C3—N4—C5116.80 (11)C2—O10—H101107.9
C3—N4—C8106.42 (10)C3—C11—O12113.91 (11)
C5—N4—C8106.75 (10)C3—C11—H111109.8
N4—C5—C6103.51 (10)O12—C11—H111109.9
N4—C5—H51108.9C3—C11—H112108.0
C6—C5—H51113.8O12—C11—H112106.9
N4—C5—H52110.2H111—C11—H112108.0
C6—C5—H52109.9C11—O12—H121106.2
H51—C5—H52110.3C7—O13—H131107.9
C5—C6—C7101.08 (11)H141i—O14—H141108.1
Symmetry code: (i) x+1, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H52···O120.972.383.012 (2)122
C6—H61···O12ii0.992.523.392 (2)146
O13—H131···O10ii0.861.892.747 (2)176
O10—H101···O9iii0.812.002.763 (2)157
O14—H141···N4iv0.861.892.743 (2)175
O9—H91···O140.841.902.728 (2)167
O12—H121···O13v0.812.052.834 (2)164
Symmetry codes: (ii) x, y+1, z; (iii) x+3/2, y1/2, z+1; (iv) x1/2, y1/2, z; (v) x+1/2, y1/2, z.

Experimental details

(I)(II)(III)(IV)
Crystal data
Chemical formulaC8H15NO4·0.5H2OC8H15NO4·0.5H2OC8H15NO4·0.5H2OC8H15NO4·0.5H2O
Mr198.22198.22198.22198.22
Crystal system, space groupMonoclinic, C2Monoclinic, C2Monoclinic, C2Monoclinic, C2
Temperature (K)150100100150
a, b, c (Å)12.4594 (6), 7.3115 (4), 9.5878 (5)12.4267 (3), 7.30208 (18), 9.5708 (2)12.4190 (4), 7.2933 (2), 9.5671 (3)12.4567 (5), 7.3097 (3), 9.5920 (5)
β (°) 93.843 (2) 93.839 (2) 93.841 (3) 93.8151 (16)
V3)871.45 (8)866.51 (4)864.60 (5)871.46 (7)
Z4444
Radiation typeMo KαMo KαCu KαMo Kα
µ (mm1)0.120.121.050.12
Crystal size (mm)0.25 × 0.21 × 0.070.25 × 0.21 × 0.070.25 × 0.21 × 0.070.25 × 0.21 × 0.07
Data collection
DiffractometerNonius KappaCCD
diffractometer
Oxford Diffraction Gemini A Ultra CCD
diffractometer
Oxford Diffraction Gemini A Ultra CCD
diffractometer
Nonius KappaCCD
diffractometer
Absorption correctionMulti-scan
(DENZO/SCALEPACK; Otwinowski & Minor, 1997)
Multi-scan
[empirical (using intensity measurements) absorption correction using spherical harmonics (CrysAlis RED) implementing the SCALE3 ABSPACK scaling algorithm (Oxford Diffraction, 2008)]
Multi-scan
[empirical (using intensity measurements) absorption correction using spherical harmonics (CrysAlis RED) implementing the SCALE3 ABSPACK scaling algorithm (Oxford Diffraction, 2008)]
Multi-scan
(DENZO/SCALEPACK; Otwinowski & Minor, 1997)
Tmin, Tmax0.91, 0.990.92, 0.990.80, 0.920.94, 0.99
No. of measured, independent and
observed [I > 2.0σ(I)] reflections
5649, 1943, 1863 7771, 1724, 1402 7817, 1479, 1464 7632, 1974, 1862
Rint0.0300.0300.0250.032
(sin θ/λ)max1)0.6490.5970.5980.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.071, 0.98 0.026, 0.064, 1.01 0.026, 0.071, 1.06 0.029, 0.067, 1.01
No. of reflections1943151114761974
No. of parameters126126126126
No. of restraints3333
H-atom treatmentH-atom parameters constrainedH-atom parameters constrainedH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.19, 0.170.19, 0.160.19, 0.150.34, 0.33
Absolute structureFlack (1983), 875 Friedel-pairsFlack (1983), 777 Friedel-pairsFlack (1983), 650 Friedel-pairsFlack (1983), 0 Friedel-pairs
Absolute structure parameter1.1 (9)1.5 (9)0.01 (17)0.1 (8)

Computer programs: COLLECT (Nonius, 2001), CrysAlis CCD (Oxford Diffraction, 2008), DENZO/SCALEPACK (Otwinowski & Minor, 1997), CrysAlis RED (Oxford Diffraction, 2008), SIR92 (Altomare et al., 1994), CRYSTALS (Betteridge et al., 2003), CAMERON (Watkin et al., 1996).

Hydrogen-bond geometry (Å, º) for (III) top
D—H···AD—HH···AD···AD—H···A
C5—H52···O120.972.403.009 (2)121
C6—H61···O12i0.972.543.379 (2)145
O13—H131···O10i0.841.902.739 (2)177
O10—H101···O9ii0.792.002.758 (2)159
O14—H141···N4iii0.831.912.737 (2)172
O9—H91···O140.801.942.719 (2)163
O12—H121···O13iv0.792.072.825 (2)160
Symmetry codes: (i) x, y+1, z; (ii) x+3/2, y1/2, z+1; (iii) x1/2, y1/2, z; (iv) x+1/2, y1/2, z.
The values for the Flack x parameter (with s.u.), Hooft y parameter, G and the probabilitiesa derived from these values. top
KCCD1Gemini-MoGemini-CuKCCD2
Flack x-1.09 (86)-1.47 (93)-0.01 (17)-0.13 (80)
Hooft y-0.66 (41)-1.69 (26)-0.031 (22)-0.09 (40)
G2.31 (82)4.38 (51)1.061 (44)1.19 (81)
P2(correct)a0.999n/a1.0000.974
P3(correct)a0.9330.9921.0000.726
P3(rac-twin)a0.0660.0080.000b0.255
P3(inverse)a0.0010.2E-40.000b0.019
Reflections1943171814761974
Friedel Pairs875775650902
(a) P2(correct) is the probability that the given enantiomer is correct assuming that the crystal is enantiopure. The P3 probabilities assume a three possibility hypothesis, which adds the third possibility that the crystal is a racemic twin. (b) Values less than 0.1 × 10-6.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds